RU2592609C1 - Способ производства холоднокатаного проката для упаковочной ленты - Google Patents

Способ производства холоднокатаного проката для упаковочной ленты Download PDF

Info

Publication number
RU2592609C1
RU2592609C1 RU2015114959/02A RU2015114959A RU2592609C1 RU 2592609 C1 RU2592609 C1 RU 2592609C1 RU 2015114959/02 A RU2015114959/02 A RU 2015114959/02A RU 2015114959 A RU2015114959 A RU 2015114959A RU 2592609 C1 RU2592609 C1 RU 2592609C1
Authority
RU
Russia
Prior art keywords
steel
cold
rolling
strip
less
Prior art date
Application number
RU2015114959/02A
Other languages
English (en)
Inventor
Петр Александрович Мишнев
Игорь Николаевич Щелкунов
Татьяна Сергеевна Вархалева
Марина Викторовна Шурыгина
Константин Сергеевич Смирнов
Артем Викторович Митрофанов
Original Assignee
Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Северсталь" (ПАО "Северсталь") filed Critical Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority to RU2015114959/02A priority Critical patent/RU2592609C1/ru
Application granted granted Critical
Publication of RU2592609C1 publication Critical patent/RU2592609C1/ru

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты. Повышение механических свойств, их стабильности и однородности по длине полосы обеспечивается за счет того, что способ включает горячую прокатку полосы из стали, имеющей регламентированный состав, ее смотку, травление, холодную прокатку, термообработку, согласно которому температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку ведут с суммарным относительным обжатием не менее 90%, температуру конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, холодную прокатку ведут с суммарным относительным обжатием не менее 62%. Стальная полоса имеет феррито-цементитную структуру с нерекристаллизованным ферритным зерном и отношение σтв не менее 0,70. 3 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты.
Холоднокатаный прокат, предназначенный для изготовления упаковочной ленты, должен отвечать определенным требованиям по механическим свойствам (прочности и относительному удлинению). Для обеспечения необходимой затяжки ленты при упаковке прочность холоднокатаного проката должна быть в диапазоне от 850 до 1200 Н/мм2, а необходимое удлинение δ100 - не менее 4% (стремиться к 6%), причем свойства должны быть однородными и стабильными по длине полосы. При этом для упрочнения холоднокатаного проката структура должна оставаться феррито-цементитной с нерекристаллизованным ферритным зерном, полученным при холодной прокатке.
Известен способ производства холоднокатаной полосы из углеродистой стали, включающий нагрев сляба, горячую прокатку, охлаждение и смотку полосы в рулон, травление и холодную прокатку, согласно которому сляб нагревают до температуры 1260-1320°С, горячую прокатку завершают при температуре 820-880°С, охлаждение полосы ведут до температуры 550-590°С, а холодную прокатку осуществляют с суммарным обжатием 60-73%. Кроме того, сталь имеет следующий химический состав, мас.%:
Углерод 0,30-0,45
Кремний 0,01-0,05
Марганец 0,85-1,35
Алюминий 0,01-0,04
Хром Не более 0,10
Никель Не более 0,05
Медь Не более 0,10
Молибден Не более 0,05
Сера Не более 0,020
Фосфор Не более 0,020
Железо Остальное [1]
Недостаток известного способа состоит в том, что он не обеспечивает требуемые свойства для упаковочной ленты в части относительного удлинения.
Наиболее близким аналогом к предлагаемому изобретению является способ производства холоднокатаного проката для упаковочной ленты, включающий горячую прокатку полосы из стали, ее смотку, травление, холодную прокатку и термическую обработку, согласно которому горячую прокатку ведут с суммарным относительным обжатием не менее 70%, температуру конца прокатки и смотки поддерживают в диапазонах 790-870°С и 540-620°С соответственно, холодную прокатку ведут с суммарным относительным обжатием 55-80%, термическую обработку осуществляют путем нагрева до температуры 360-450°С и выдержки при этой температуре в течение 10-30 ч, при этом обрабатывают полосу из стали следующего химического состава, мас.%:
Углерод 0,12-0,20
Кремний 0,08-0,30
Марганец 0,25-0,65
Алюминий 0,01-0,05
Хром Не более 0,08
Никель Не более 0,08
Медь Не более 0,08
Азот Не более 0,010
Железо Остальное [2]
Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств, в части показателя предела прочности, что уменьшает выход годного.
Техническим результатом предлагаемого изобретения является повышение выхода годного холоднокатаного проката за счет обеспечения требуемого комплекса механических свойств, стабильных и однородных по длине полосы.
Технический результат достигается тем, что в предлагаемом способе производства холоднокатаного проката, включающем горячую прокатку полосы из стали, ее смотку, травление, холодную прокатку, термообработку, согласно изобретению, температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку ведут с суммарным относительным обжатием не менее 90%, температуры конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, холодную прокатку ведут с суммарным относительным обжатием не менее 62%, а обрабатывают полосу из стали следующего химического состава, мас.%:
Углерод 0,04-0,18
Кремний 0,10-0,35
Марганец 1,10-1,60
Сера Не более 0,025
Фосфор Не более 0,025
Хром 0,001-0,10
Никель 0,001-0,10
Медь 0,001-0,10
Алюминий 0,01- 0,08
Титан 0,001-0,05
Ниобий 0,001-0,08
Ванадий 0,001-0,08
Молибден 0,001-0,08
Азот Не более 0,010
Олово Не более 0,015
Железо и неизбежные примеси Остальное,
при этом углеродный эквивалент стали Сэ≤0,50. Кроме того, в варианте реализации способа сталь содержит не более 0,0005% водорода и кислорода соответственно, прочностные характеристики обеспечиваются термообработкой за счет сохранения в прокате феррито-цементитной структуры с нерекристаллизованным ферритным зерном, при этом отношение σтв не менее 0,70.
Сущность изобретения заключается в следующем. На прочностные характеристики холоднокатаного проката влияют как химический состав стали, так и режимы горячей прокатки, деформации при холодной прокатке и получаемая микроструктура проката.
Углерод - один из упрочняющих элементов. При содержании углерода менее 0,04% механические свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,18% приводит к снижению пластичности стали, что недопустимо.
Кремний раскисляет и упрочняет сталь. Снижение содержания кремния менее 0,10% приводит к снижению прочностных свойств полосы. Увеличение содержания этого элемента более 0,35% приводит к потере пластичности, имеет место охрупчивание стали.
Марганец обеспечивает получение заданных механических свойств и связывает серу в сульфиды. При содержании марганца менее 1,10% прочность стали ниже допустимого уровня. Увеличение содержания марганца более 1,60% приводит к ухудшению пластичности стали.
Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,01% снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,08% приводит к ухудшению комплекса механических свойств.
Содержание азота более 0,010%, фосфора более 0,025%, серы более 0,025% приводит к ухудшению комплекса механических свойств.
Хром, никель, медь упрочняют сталь, содержание более 0,10% каждого приводит к снижению пластичности стали ниже допустимого уровня. При содержании каждого менее 0,001% возникает необходимость применения особо чистых материалов при выплавке, что приводит к повышению себестоимости стали.
Титан, молибден стабилизируют и упрочняют сталь. Содержание титана выше 0,05% и молибдена выше 0,08% приводит к повышению себестоимости стали. Снижение содержания каждого менее 0,001% приводит к ухудшению комплекса механических свойств.
Ниобий, ванадий образуют мелкодисперсные частицы (карбонитриды), которые измельчают зерно и упрочняют сталь. Содержание более 0,08% каждого приводит к хладноломкости стали ниже допустимого уровня. При снижении содержания каждого менее 0,001% возникает необходимость применения особочистых материалов при выплавке, что приводит к повышению себестоимости стали.
Олово имеет склонность сегрегировать к границам зерен, при содержании более 0,015% может вызывать отпускную хрупкость в стали, что может приводить к снижению пластичности и разрыву ленты.
Сочетание предложенного химического состава стали обеспечивает углеродный эквивалент стали Сэ≤0,50, выраженный в виде приведения к содержанию углерода концентраций V, Cr, Mn, Si и других элементов и определяемый по формуле:
Figure 00000001
где С, Mn, Si, Cr, Ni, Cu, V, Р - массовые доли углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора в стали, %.
В стали с Сэ≤0,50 обеспечивается формирование оптимальных структурных составляющих фаз и однородной микроструктуры, необходимых для получения высоких прочностных и пластических свойств. Повышение Сэ>0,50 приводит к снижению пластических свойств.
Регламентированная температура раската перед чистовой группой клетей в диапазоне 1050-1200°С приводит к обеспечению заданной температуры конца прокатки Ткп=810-880°С и полному выделению мелкодисперсных частиц, которые дополнительно упрочняют сталь.
Горячая прокатка полос с суммарным относительным обжатием не менее 90% позволяет получить толщину полосы менее 3,5 мм и обеспечить суммарное обжатие при холодной прокатке не менее 62% для получения требуемого сочетания показателей прочности и пластичности в холоднокатаном прокате.
Горячая прокатка с температурами конца прокатки 810-880°С и смотки 480-570°С обеспечивает получение однородных механических свойств по длине полосы. Окончание горячей прокатки полос при температуре ниже 810°С, в двухфазной области, приводит к значительной разнозернистости структуры, что влечет за собой нестабильность механических свойств в горячекатаном, а затем и в холоднокатаном состоянии. Повышение температуры конца горячей прокатки свыше 880°С приводит к укрупнению зерна и понижению прочностных свойств горячекатаного проката. Смотка полос ниже 480°С очень сильно повышает прочность стали, однако значительно снижает пластичность. При температуре смотки выше 570°С пластичность стали повышается, однако это приводит к снижению ее прочности ниже допустимого уровня.
Холодная прокатка с суммарным обжатием менее 62% требует уменьшения толщины горячекатаного подката, что приводит к снижению наклепа при холодной деформации, снижению прочностных характеристик, недостаточной деформации структуры и нестабильности механических свойств по длине полосы.
Кроме того, кислород в стали может образовывать с входящими в нее элементами химические соединения, приводящие к образованию неметаллических включений. При содержании кислорода более 0,0005% повышается склонность металла к хрупкости.
Водород в стали может проникать в пустоты и дефекты металла и приводить к наводораживанию стали. При содержании водорода более 0,0005% снижается пластичность стали и возникает водородная хрупкость.
Для повышения пластичности проката проводят окончательную термообработку таким образом, что в результате термообработки сохраняется феррито-цементитная структура с нерекристаллизованным ферритным зерном. Это позволяет обеспечить отношение предела текучести к пределу прочности σтв не менее 0,70. Отношение σтв показывает чувствительность материала к действию статических нагрузок. Обеспечение его не менее 0,70 свидетельствует о приближении предела текучести к пределу прочности и характеризует сталь как высокопрочную [3], имеющую запас прочности, необходимый для безопасной работы материала.
Пример реализации способа
В кислородном конвертере выплавили 6 плавок стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы толщиной 250 мм. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 3,0 мм.
Суммарное относительное обжатие при этом составляет:
Figure 00000002
Горячекатаные полосы на отводящем рольганге охлаждали водой и сматывали в рулон. Охлажденные рулоны подвергали солянокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-ти клетевом стане до конечной толщины 1,0 мм с суммарным относительным обжатием, составляющим:
Figure 00000003
Холоднокатаные рулоны подвергали термической обработке в колпаковых печах. После всех операций отбирали пробы и проводили испытания для определения механических свойств и структуры проката. Холоднокатаный прокат в виде рулонов отгружали потребителям для дальнейшей переработки (резке, нанесению покрытия и др.). В таблице 2 приведены технологические параметры и механические свойства предложенного способа (варианты №2-4), способа при запредельных значениях заявленных параметров (варианты №1 и 5) и способа-прототипа (вариант №6).
Figure 00000004
Из таблиц 1, 2 видно, что при реализации предложенного способа (варианты №2-№4) достигается увеличение выхода годного за счет повышения комплекса механических свойств, стабильных и однородных по длине полосы.
В случае запредельных значений заявленных параметров (варианты №1 и №5), а также при реализации известного способа (вариант №6) достигнут более низкий уровень механических свойств.
Литературные источники
1. Патент Российской Федерации №2203965, МПК С21D 8/02, С22С 38/04, 2003 г.
2. Патент Российской Федерации №2499640, МПК C21D 8/02, С22С 38/04, 2013 г.
3. Металлические конструкции. Общий курс. Учебник для Вузов/Е.И. Беленя и др. М.: Стройиздат, 1986 г., 560 с.

Claims (4)

1. Способ производства холоднокатаного проката для упаковочной ленты, включающий горячую прокатку полосы из стали следующего химического состава, мас.%:
Углерод 0,04-0,18 Кремний 0,10-0,35 Марганец 1,10-1,60 Сера Не более 0,025 Фосфор Не более 0,025 Хром 0,001-0,10 Никель 0,001-0,10 Медь 0,001-0,10 Алюминий 0,01-0,08 Титан 0,001 - 0,05 Ниобий 0,001 - 0,08 Ванадий 0,001 - 0,08 Молибден 0,001 - 0,08 Азот Не более 0,010 Олово Не более 0,015 Железо и неизбежные примеси Остальное,

с углеродным эквивалентом стали Сэ≤0,50, ее смотку, травление, холодную прокатку, термообработку, при этом температуру раската перед чистовой группой клетей поддерживают в диапазоне 1050-1200°С, горячую прокатку производят с суммарным относительным обжатием не менее 90%, температуру конца прокатки и смотки поддерживают в диапазонах 810-880°С и 480-570°С соответственно, а холодную прокатку производят с суммарным относительным обжатием не менее 62%.
2. Способ по п. 1, отличающийся тем, что сталь содержит не более 0,0005% водорода и кислорода соответственно.
3. Способ по п. 1, отличающийся тем, что стальная полоса имеет феррито-цементитную структуру с нерекристаллизованным ферритным зерном.
4. Способ по п. 1, отличающийся тем, что отношение предела текучести σт к пределу прочности σв стальной полосы составляет σтв не менее 0,70.
RU2015114959/02A 2015-04-21 2015-04-21 Способ производства холоднокатаного проката для упаковочной ленты RU2592609C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015114959/02A RU2592609C1 (ru) 2015-04-21 2015-04-21 Способ производства холоднокатаного проката для упаковочной ленты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015114959/02A RU2592609C1 (ru) 2015-04-21 2015-04-21 Способ производства холоднокатаного проката для упаковочной ленты

Publications (1)

Publication Number Publication Date
RU2592609C1 true RU2592609C1 (ru) 2016-07-27

Family

ID=56556960

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015114959/02A RU2592609C1 (ru) 2015-04-21 2015-04-21 Способ производства холоднокатаного проката для упаковочной ленты

Country Status (1)

Country Link
RU (1) RU2592609C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604398B1 (en) * 1999-02-03 2003-08-12 Sms Demag Ag Working method and installation for the flexible and economical pickling and cold-rolling of metal strips
RU2350415C2 (ru) * 2002-07-26 2009-03-27 Смс Демаг Акциенгезелльшафт Способ и устройство для производства металлических полос
RU2381844C1 (ru) * 2008-07-14 2010-02-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ изготовления холоднокатаной ленты из низкоуглеродистой стали
RU2499640C1 (ru) * 2012-06-14 2013-11-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката для упаковочной ленты

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604398B1 (en) * 1999-02-03 2003-08-12 Sms Demag Ag Working method and installation for the flexible and economical pickling and cold-rolling of metal strips
RU2350415C2 (ru) * 2002-07-26 2009-03-27 Смс Демаг Акциенгезелльшафт Способ и устройство для производства металлических полос
RU2381844C1 (ru) * 2008-07-14 2010-02-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ изготовления холоднокатаной ленты из низкоуглеродистой стали
RU2499640C1 (ru) * 2012-06-14 2013-11-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката для упаковочной ленты

Similar Documents

Publication Publication Date Title
CN110073018B (zh) 低屈服比方形钢管用热轧钢板及其制造方法、和低屈服比方形钢管及其制造方法
KR101287331B1 (ko) 연성이 우수한 고장력 강판 및 그 제조 방법
JP6327277B2 (ja) 板幅方向の強度均一性に優れた高強度熱延鋼板およびその製造方法
RU2613265C1 (ru) Способ производства горячекатаных листов из низколегированной стали класса прочности к60 для электросварных прямошовных труб
WO2011115279A1 (ja) 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法
RU2463359C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2581696C1 (ru) Способ производства горячекатаных листов из низколегированной стали
RU2583536C1 (ru) Способ производства горячекатаных листов для строительных стальных конструкций (варианты)
JP6284813B2 (ja) 強冷間加工性と加工後の硬さに優れる熱延鋼板
KR20210114041A (ko) 각형 강관 및 그 제조 방법, 그리고 건축 구조물
KR20140132423A (ko) 린 듀플렉스 스테인리스 열연강판 제조 방법
RU2689348C1 (ru) Способ производства горячекатаного проката повышенной прочности
RU2630721C1 (ru) Толстый лист из конструкционной стали для изготовления деталей сварных конструкций и способ его получения в нормализованном состоянии
KR20200028502A (ko) 탁월한 내산화성, 우수한 고온 강도 및 우수한 성형성을 갖는 페라이트계 스테인레스 강
RU2677426C1 (ru) Способ производства горячекатаного проката из конструкционной стали
WO2016194273A1 (ja) 熱延鋼板、フルハード冷延鋼板及び熱延鋼板の製造方法
RU2592609C1 (ru) Способ производства холоднокатаного проката для упаковочной ленты
JP5481941B2 (ja) 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法
RU2562201C1 (ru) Способ производства холоднокатаного высокопрочного проката для холодной штамповки
RU2676543C1 (ru) Способ производства горячекатаного проката из конструкционной стали
RU2495142C1 (ru) Способ производства толстолистового проката из низколегированной стали
RU2679675C1 (ru) Способ производства конструкционного проката из низколегированной стали
RU2548536C1 (ru) Способ производства толстолистового проката классов прочности к52-к60, х52-х70, l360-l485 для изготовления электросварных труб магистральных трубопроводов
JPH05222484A (ja) 耐火性と靱性に優れた建築用低降伏比熱延鋼帯およびその製造方法
JPWO2019203251A1 (ja) 熱延鋼板