RU2588522C1 - Способ добычи газовых гидратов из придонных слоев морей, океанов и озер - Google Patents

Способ добычи газовых гидратов из придонных слоев морей, океанов и озер Download PDF

Info

Publication number
RU2588522C1
RU2588522C1 RU2015120472/03A RU2015120472A RU2588522C1 RU 2588522 C1 RU2588522 C1 RU 2588522C1 RU 2015120472/03 A RU2015120472/03 A RU 2015120472/03A RU 2015120472 A RU2015120472 A RU 2015120472A RU 2588522 C1 RU2588522 C1 RU 2588522C1
Authority
RU
Russia
Prior art keywords
gas
pipeline
water
platform
hydrates
Prior art date
Application number
RU2015120472/03A
Other languages
English (en)
Inventor
Александр Егорович Воробьёв
Кирилл Евгеньевич Щесняк
Джугендра Сингх Рагхав
Леонид Евгеньевич Щесняк
Анна Владимировна Власова
Елена Владимировна Чекушина
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Application granted granted Critical
Publication of RU2588522C1 publication Critical patent/RU2588522C1/ru

Links

Abstract

Изобретение относится к газонефтяной промышленности, а более конкретно к разработке придонных залежей газовых гидратов. В способе добычи аквальных газовых гидратов из придонных слоев морей, океанов и озер, включающем прокладку трубопровода с платформы до залежей гидратов, накачку морской воды в емкость с последующей ее закачкой в трубопровод, разрушение газового гидрата водой из трубопровода и откачку смеси воды и газа на поверхность платформы, добычу осуществляют при помощи наночастиц-фуллеренов, добавленных в емкость с морской водой в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, при этом подачу полученного состава осуществляют с ускорением на выходе из трубопровода с помощью гидромониторной насадки. Изобретение развито в зависимом пункте формулы. Технический результат - контролируемое разрушение залежи газовых гидратов. 1 з.п. ф-лы, 2 пр.

Description

Изобретение относится к газонефтяной промышленности, а более конкретно к разработке придонных залежей газовых гидратов.
Известен способ добычи гидратов природного газа - термальное воздействие (Воробьев А.Е., Малюков В.П. Газовые гидраты. Технологии воздействия на нетрадиционные углеводороды. Учебное пособие. - 2-е изд., испр. доп. - М. РУДН, 2009. - с. 184-185). Способ основан на применении диссоциации - процесса, в ходе которого вещество распадается на более простые составляющие. В случае с гидратами природного газа диссоциация проходит при увеличении температуры и снижении давления, когда кристаллы льда тают или изменяют свою форму, тем самым высвобождая молекулы природного газа, заключенные внутри кристалла.
Способ термального воздействия основан на подаче тепла внутрь кристаллической структуры гидрата с целью повышения температуры и ускорения процесса диссоциации. Практическим примером такого метода может служить накачивание теплой морской воды внутрь слоя гидратов газа, залегающего на дне моря. Как только газ начнет высвобождаться из слоя морских отложений, его можно будет собрать. Недостатком данного способа являются высокие энергозатраты, необходимые на нагрев требуемого количества воды, которая подается для разрушения гидратов. Например, для оттаивания льда требуется 336 кДж/кг энергии, а для разложения газового гидрата - 450 кДж/кг энергии (В. Якушев. Газовый источник, способный перевернуть мировой рынок энергии. - ЭСКО. Электронный журнал энергетической компании «Экологические системы», 2009, №3. http://www.Journal.esco.co.ua/2009_3/art052.htm).
Известен способ и устройство для добычи подводных газовых гидратов, заключающийся в том, что прокладывают специальный трубопровод с платформы на поверхности моря до залежи газовых гидратов на морском дне. Согласно способу по внутренней трубе подается морская вода, нагретая до 30-40°C, непосредственно к месторождению газовых гидратов, которые начинают плавиться, при этом из них выделяются пузырьки газообразного метана, которые вместе с водой поднимаются по внешней трубе наверх, к платформе, где метан отделяется от воды и подается в цистерны или в магистральный трубопровод, а теплая вода снова закачивается вниз, к залежам газовых гидратов (В. Фрадкин. Газ на дне океана как альтернативный энергоноситель. Источник: Газовые гидраты, http://n-t.ru/tp/ie/gn.htm)
Компьютерное моделирование процесса термального воздействия на гидраты с использованием горячей воды и пара показало, что объем газа, высвобождаемый таким методом, достаточно велик для добычи, но не контролируем. Также существенны затраты на добычу газа за счет нагрева воды, которую нагнетают в газогидратный пласт для его разрушения.
Наиболее близким по существенным признакам и технической сущности к предлагаемому изобретению способ добычи подводных залежей газовых гидратов и подводный добычный комплекс газовых гидратов, предложенный в патенте RU 2489568. Согласно этому изобретению прокладывают трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренней труб. По внутренней трубе из емкости на платформе подают морскую воду, нагретую до 30-40°C°, непосредственно к месторождению газовых гидратов. Транспортируют пузырьки газообразного метана вместе с водой по внешней трубе наверх - к платформе. Отделяют метан от воды. Подают метан в цистерны или в магистральный трубопровод. При подаче морской воды, нагретой до 30-40 C°, подают гранитную крошку в пропорции 1:2 для заполнения внутреннего объема пласта, освободившегося при извлечении газовых гидратов. Подводный добычный комплекс включает платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды непосредственно к месторождению газовых гидратов, нагретой до 30-40°C°, и гранитной крошки в пропорции 1:2, и внешней трубы для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды. Кроме того, имеются насосы, газотурбинная установка мощностью 6 МВт и теплосиловая установка для вырабатывания энергии за счет термобарической разности морской воды. При этом платформа выполнена в виде подвижного морского аппарата с погружаемым тендером посредством телескопического устройства, внутри которого размещен трубопровод, выполненный из пропилена.
Недостатком рассмотренного способа является то, что в нем не решена проблема неконтролируемого разрушения газовых гидратов. Этот процесс плохо предсказуемый, в результате которого может произойти выброс большого количества газа. Как следствие, главным недостатком является низкая степень управления процессом разложения газогидратов.
Техническим результатом изобретения является контролируемое разрушение залежи газовых гидратов.
Технический результат достигается тем, что способ добычи аквальных газовых гидратов из придонных слоев морей, океанов и озер, включающий прокладку трубопровода с платформы до залежей гидратов, накачку морской воды в емкость с последующей ее закачкой в трубопровод, разрушение газового гидрата водой из трубопровода и откачку смеси воды и газа на поверхность платформы, при этом добычу аквальных газогидратов осуществляют при помощи наночастиц-фуллеренов, добавленных в емкость с морской водой в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, при этом подачу полученного состава осуществляют с ускорением на выходе из трубопровода с помощью гидромониторной насадки. Кроме того, количество наночастиц составляет 120-150 тыс./л подаваемой на разрушение залежи воды.
Способ осуществляется следующим образом. Передвижной комплекс разработки придонных газовых гидратов включает: плавучую платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды с наночастицами-фуллеренами (C60) непосредственно к месторождению газовых гидратов и внешней трубы с погружным вытяжным колпаком для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды и последующего его сжатия при использовании компрессорной станции. Также, в передвижной комплекс входят насосы, емкость, магистральный трубопровод, устройство соединения магистрального трубопровода с платформой, телескопическое устройство. Прокладывают закачной трубопровод (пульпопровод, газопровод) с плавучей платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренней труб. Морскую воду подают из емкости на платформе, в которую предварительно добавлены наночастицы-фуллерены (C60) в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, что обусловлено длиной пути наночастиц по поверхности залежи, определенной первоначальной скоростью частицы, ее массой и поверхностью залежи, которые в процессе контакта разрушают залежь газового гидрата в необходимых, контролируемых объемах. Процесс осуществляется за счет прикрепления к внутреннему трубопроводу гидромониторной насадки и добавления в емкость на платформе в морскую воду наночастиц-фуллеренов (С60). Концентрация наночастиц фуллеренов (C60) в литре морской воды составляет 120-150 тыс. штук. Добавление меньшего количества наночастиц будет неэффективным, а большее - затратным.
По внутренней трубе, на конце которой расположена гидромониторная насадка, осуществляют подачу полученного состава с ускорением на выходе из закачного трубопровода (пульпопровода, газопровода), что обусловлено термобарическими (равновесными) условиями существования газогидратов (Воробьев А.Е., Молдабаева Г.Ж., Чекушина Е.В., Синченко А.В. и др. Развитие грязевого вулканизма и гидратоносность аквальных залежей. Монография. - Севастополь.: Рибэст, 2012 - с. 25-34) и определяется устойчивостью ячеек газовых гидратов. По внешней трубе, на конце которой прикреплен погружаемый тендер, посредством телескопического устройства с размещенным внутри закачным трубопроводом, происходит подача смеси газа и воды к платформе. Здесь отделяют метан от воды и сжимают его в компрессорной станции. Далее подают метан в цистерны или в магистральный трубопровод.
Пример 1.
В емкость с морской водой, установленной на платформе, добавляли наночастицы-фуллерены в соотношении 1 наночастица к 15 ячейкам газового гидрата, концентрация на литр воды составила 120 тыс. наночастиц. Морскую воду с наночастицами подавали в закачной трубопровод по внутренней трубе, подсоединенный к емкости, и направляли к поверхности залежи газогидратов на дне моря. На выходе из закачного трубопровода движение состава получало ускорение с помощью гидромониторной насадки. После разрушения газового гидрата по внешней трубе смесь газа и воды подавали к компрессорной станции, расположенной на платформе. Полученный метан подавали в трубопровод. В ходе процесса разрушения газового гидрата в районе морской залежи не наблюдалось выбросов или взрыва газа, высвобожденного из газового гидрата.
Пример 2.
В емкость с морской водой, установленной на платформе, добавляли наночастицы - фуллерены в соотношении 1 наночастица к 20 ячейкам газового гидрата, концентрация на литр воды составила 150 тыс. наночастиц. Морскую воду с наночастицами подавали в закачной трубопровод по внутренней трубе, подсоединенный к емкости, и направляли к поверхности залежи газогидратов на дне моря. На выходе из закачного трубопровода движение состава получало ускорение с помощью гидромониторной насадки. После разрушения газового гидрата в большем объеме, чем в примере 1, по внешней трубе смесь газа и воды подавали к компрессорной станции, расположенной на платформе. Полученный метан подавали в трубопровод. В ходе процесса разрушения газового гидрата в районе морской залежи не наблюдалось выбросов или взрыва газа высвобожденного из газового гидрата.
В результате происходит контролируемое разрушение залежи газовых гидратов, вследствие чего дебит добываемого газа из аквальных газогидратных месторождений является контролируемым, за счет использования водного раствора, обогащенного наночастицами (фуллеренами), которые предотвращают саморазложение газа до его контролируемого отбора из залежи путем поячеечного разрушения гидратов.

Claims (2)

1. Способ добычи аквальных газовых гидратов из придонных слоев морей, океанов и озер, включающий прокладку трубопровода с платформы до залежей гидратов, накачку морской воды в емкость с последующей ее закачкой в трубопровод, разрушение газового гидрата водой из трубопровода и откачку смеси воды и газа на поверхность платформы, отличающийся тем, что добычу аквальных газогидратов осуществляют при помощи наночастиц-фуллеренов, добавленных в емкость с морской водой в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, при этом подачу полученного состава осуществляют с ускорением на выходе из трубопровода с помощью гидромониторной насадки.
2. Способ по п. 1, отличающийся тем, что количество наночастиц составляет 120-150 тыс./л подаваемой на разрушение залежи воды.
RU2015120472/03A 2015-05-29 Способ добычи газовых гидратов из придонных слоев морей, океанов и озер RU2588522C1 (ru)

Publications (1)

Publication Number Publication Date
RU2588522C1 true RU2588522C1 (ru) 2016-06-27

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713416A (en) * 1996-10-02 1998-02-03 Halliburton Energy Services, Inc. Methods of decomposing gas hydrates
RU2159323C1 (ru) * 1999-06-01 2000-11-20 Институт катализа им. Г.К. Борескова СО РАН Способ добычи газа из твердых газогидратов
RU2230899C2 (ru) * 2000-08-18 2004-06-20 Ухтинский государственный технический университет Способ разработки газогидратных залежей
RU2292452C2 (ru) * 2001-09-28 2007-01-27 Стивен АТКИНСОН Способ извлечения углеводородов из гидратов
RU2489568C1 (ru) * 2012-03-05 2013-08-10 Александр Валентинович Воробьев Способ добычи подводных залежей газовых гидратов и подводный добычный комплекс газовых гидратов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713416A (en) * 1996-10-02 1998-02-03 Halliburton Energy Services, Inc. Methods of decomposing gas hydrates
RU2159323C1 (ru) * 1999-06-01 2000-11-20 Институт катализа им. Г.К. Борескова СО РАН Способ добычи газа из твердых газогидратов
RU2230899C2 (ru) * 2000-08-18 2004-06-20 Ухтинский государственный технический университет Способ разработки газогидратных залежей
RU2292452C2 (ru) * 2001-09-28 2007-01-27 Стивен АТКИНСОН Способ извлечения углеводородов из гидратов
RU2489568C1 (ru) * 2012-03-05 2013-08-10 Александр Валентинович Воробьев Способ добычи подводных залежей газовых гидратов и подводный добычный комплекс газовых гидратов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВОРОБЬЕВ А.Е. и др. Газовые гидраты. Технология воздействия на нетрадиционные углеводороды. Москва, РУДН, 2009, с. 184, 185. *

Similar Documents

Publication Publication Date Title
RU2425860C2 (ru) Способ получения не образующей пробки суспензии гидрата
CN102704894B (zh) 原位开采海底天然气水合物的装置及其方法
CN105625998B (zh) 一种海底天然气水合物稳定层逆向开采方法及其开采设备
CN100587227C (zh) 一种开采天然气水合物的方法及装置
JP5575813B2 (ja) 海底に埋まっているハイドレートを市場価値のある炭化水素組成物に変換する方法
JP2012514148A5 (ru)
JP2015121093A (ja) 利用可能な廃熱を用いてハイドレート貯留層から炭化水素を生産する方法及びシステム
WO2007023943A1 (ja) ガスハイドレートの生成方法、置換方法及び採掘方法
CN101182771A (zh) 一种海底天然气水合物开采方法及装置
WO2011072963A1 (en) Converting an underwater methane hydrate containing deposit into a marketable product
RU2412337C1 (ru) Способ добычи газа из газовых гидратов донных отложений
DE60115628D1 (de) Verfahren und system zum handhaben von kohlenwasserstoffen auf hoher see
JP2017071959A (ja) ガス回収装置及び水底メタンハイドレートからのガス回収方法
CN102392646B (zh) 海底天然气水合物电喷泵组合开采方法及装置
TW200839005A (en) System for continuous production of hydrates
RU2011148494A (ru) Способ добычи природного газа из газогидратных залежей и устройство для его осуществления
JP2012519591A5 (ru)
RU2018116611A (ru) Способ и система для извлечения труднодоступного газа из подводных сред, его преобразования в клатраты и безопасной транспортировки для потребления
RU2588522C1 (ru) Способ добычи газовых гидратов из придонных слоев морей, океанов и озер
JP6341518B2 (ja) メタンガス回収付随水の処理装置及び処理方法
CN102337876A (zh) 一种海上重质油田热力开采系统与开采方法
JP6016173B2 (ja) 水平井及び生石灰を用いたメタンハイドレート採取法
RU2338869C2 (ru) Способ добычи сероводорода со дна черного моря
CN102337877A (zh) 一种海上稠油边际油田的开发系统及方法
CN113187444A (zh) 深海可燃冰的开采及安全储运技术