RU2583785C1 - Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы - Google Patents

Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы Download PDF

Info

Publication number
RU2583785C1
RU2583785C1 RU2014147727/04A RU2014147727A RU2583785C1 RU 2583785 C1 RU2583785 C1 RU 2583785C1 RU 2014147727/04 A RU2014147727/04 A RU 2014147727/04A RU 2014147727 A RU2014147727 A RU 2014147727A RU 2583785 C1 RU2583785 C1 RU 2583785C1
Authority
RU
Russia
Prior art keywords
methanation
gas
primary
reactor
methanation reactor
Prior art date
Application number
RU2014147727/04A
Other languages
English (en)
Inventor
Вэйгуан ЯН
Янь ГУН
Сяодун ЧЖАНЬ
Дэчэн СУН
Original Assignee
Саншайн Кайди Нью Энерджи Груп Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саншайн Кайди Нью Энерджи Груп Ко., Лтд. filed Critical Саншайн Кайди Нью Энерджи Груп Ко., Лтд.
Application granted granted Critical
Publication of RU2583785C1 publication Critical patent/RU2583785C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/14Instantaneous or flash steam boilers built-up from heat-exchange elements arranged within a confined chamber having heat-retaining walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1687Integration of gasification processes with another plant or parts within the plant with steam generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/04Gasification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/42Fischer-Tropsch steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3. Технический результат - энергия биомассы превращается в чистый и удобный для использования природный газ с высокой теплотворной способностью, большое количество тепла, высвободившееся в результате реакций газификации и метанирования биомассы, эффективно утилизируется для образования высококачественного перегретого пара. 2 н. и 8 з.п. ф-лы, 3 табл., 3 ил., 2 пр.

Description

Область техники
Изобретение относится к области получения энергии на основе биомассы и, в частности, к способу и системе парогазовой когенерации, основанным на газификации и метанировании биомассы, такой как рисовая шелуха, солома и древесные опилки.
Уровень техники изобретения
В последние годы с развитием экономики и общества спрос на природный газ быстро растет, поэтому в 21-м веке природный газ станет источником энергии с самым быстрым ростом потребления. Однако возможность обеспечения Китая природным газом относительно отстает, приводя к резкому несоответствию между спросом и предложением природного газа. Таким образом, по-прежнему необходимо расширять поставки ресурсов по многим каналам и многими способами на основе имеющихся ресурсов Китая для удовлетворения растущей потребности рынка. По-прежнему необходимо не только разрабатывать внутренние ресурсы природного газа и вводить в оборот зарубежные ресурсы природного газа, но также и использовать огромные ресурсы биомассы в Китае для активной разработки заменителя природного газа, получаемого из биомассы и облегчающего напряженную ситуацию с поставками природного газа, что имеет стратегическое значение для осуществления постепенной замены нефтяных и газовых ресурсов, энергобезопасности, энергосбережения и сокращения выбросов.
Неочищенный сингаз, полученный в результате газификации биомассы, содержит большое количество СО, H2, CO2, и т.д. и не подходит для прямого использования в качестве городского газа и топлива для электростанций комбинированного цикла из-за его низкой теплотворной способности и токсичности CO. Природный газ подходит для использования в качестве городского газа и топлива для электростанций с комбинированным циклом по причине его высокой теплотворной способности и отсутствию токсичности. В присутствии катализатора СО и СО2 могут быть полностью превращены в метан, который является синтетическим заменителем природного газа (ЗПГ). Основная реакция метанирования выглядит следующим образом:
СО+3Н2=>СН42О ΔH0θ=-206 кДж/моль
Исходя из характеристик сильно экзотермической реакции метанирования маршрут реакции метанирования разрабатывают, главным образом, принимая во внимание регулирование и утилизацию теплоты реакции. Теплота реакции может достигать примерно 20% теплотворной способности сингаза, поэтому эффективная утилизация теплоты существенно важна для любой технологии метанирования.
Все большее значение придается технологии комбинированного цикла производства электроэнергии с внутрицикловой газификацией биомассы (BIGCC) как новой экологически чистой и высокоэффективной технологии производства энергии из биомассы, обладающей преимуществами высокого КПД выработки электроэнергии и снижения эмиссии CO2.
Это может не только решить проблему нетранспортабельности биомассы на дальние расстояния и способствовать эффективному и экологически чистому использованию биомассы, но и эффективно уменьшить несоответствие между спросом и предложением природного газа с использованием существующих газопроводов при более низких экономических затратах, что является сильным основанием для полной утилизации биомассы.
В патенте CN 101245262, озаглавленном «Gas-steam combined cycle system and process based on coal gasification and methanation», сырье получают из невозобновляемого угля с низкой теплотворной способностью; в реакции метанирования используется молибденосульфидный катализатор, поэтому эффективность конверсии сингаза низкая, производственная мощность в значительной степени ограничена и практическое использование затруднено. Крупномасштабное применение оказывается еще более трудным из-за сложной конструкции, сложной структуры и высокой стоимости изготовления изотермического реактора, трудной механической амплификации, трудной загрузки и выгрузки катализатора и т.д. Кроме того, реакция протекает в изотермическом реакторе при 210-280°С, поэтому трудно получить высококачественный пар и эффективно утилизировать теплоту реакции.
В патенте CN 100582201C, озаглавленном «Combined System and Process for Producing Electricity-Substituted Natural Gas Based on Coal Gasification and Methanation», сырье получают из невозобновляемого угля с низкой теплотворной способностью; реакция метанирования осуществляется в высокотемпературном реакторе и низкотемпературном реакторе. Этот способ предъявляет жесткие требования к катализатору, обладает низкой эффективностью теплообмена между полученным газом и системой циркуляции пара в способе и низкой эффективностью утилизации теплоты реакции метанирования.
Сущность изобретения
Изобретение предлагает способ и систему парогазовой когенерации на основе полного использования газификации биомассы при высокой температуре и высоком давлении и метанирования в неподвижном слое с адиабатической циркуляцией. В то же время в способе может образовываться большое количество перегретого пара и заменителя природного газа с высокой эффективностью.
Техническая схема изобретения заключается в том, что способ парогазовой когенерации, основанный на газификации и метанировании биомассы, включает следующие стадии:
1) газификации биомассы: смешивание кислорода и водяного пара, полученного из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате рациональной утилизации тепла, к паровой турбине;
2) конверсии и очистки: в соответствии с требованиями реакции метанирования корректировка отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и элюирование неочищенного газифицированного газа с использованием низкотемпературного метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз;
3) метанирования: введения очищенного сингаза со стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставления возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введения сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4; и транспортировка перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и
4) концентрирования метана: концентрирования метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.
Смесь со стадии 1) вводится через сопло в газификатор со слоем воздушной подачи со скоростью 100-120 м/с для газификации в параллельном потоке.
Неочищенный газифицированный газ из верхней боковой части газификатора на стадии 1) регулируют для получения температуры 1200-1500°C; отходящую теплоту неочищенного газифицированного газа утилизируют с помощью котла-утилизатора отработанного тепла с образованием перегретого пара промежуточного давления, часть которого смешивают с кислородом, который является газифицирующим агентом, и остальную часть направляют к паровой турбине; после утилизации тепла температура газифицированного газа падает до 220-280°C; газифицированный газ очищают с помощью двухступенчатого циклонного сепаратора для удаления пыли и охлаждают с помощью промывочной башни, чтобы снизить температуру газифицированного газа до 50-55°C, уменьшить содержание пыли до менее 50 мг/м3, и газифицированный газ содержит СО, H2 и N2.
Очищенный сингаз со стадии 3) разделяется на два равных потока, содержащих первый подаваемый газ и второй подаваемый газ, которые соответственно входят в первый реактор первичного метанирования и второй реактор первичного метанирования; первый подаваемый газ сначала смешивается с технологическим газом и затем поступает в каталитический слой первого реактора первичного метанирования для реакции метанирования, его температуру регулируют до 300-330°C; температура на выходе газовой смеси составляет 600-630°C; перегретый пар промежуточного давления образуется с помощью первого котла-утилизатора отработанного тепла и первого пароперегревателя; технологический газ из первого пароперегревателя смешивается со вторым подаваемым газом и затем поступает во второй реактор первичного метанирования для осуществления реакции метанирования при 300-330°C; температура на выходе технологического газа из второго реактора первичного метанирования составляет 600-630°C; технологический газ из второго реактора первичного метанирования проходит через второй котел-утилизатор отработанного тепла и второй пароперегреватель с образованием перегретого пара промежуточного давления; технологический газ из второго реактора первичного метанирования разделяется на два потока: один поток составляет 30-40% и поступает в первый реактор первичного метанирования через рециркуляционный компрессор; другой поток составляет 60-70% и входит в первый реактор вторичного метанирования; технологический газ охлаждается до 270-290°C и входит в первый реактор вторичного метанирования для дополнительной реакции метанирования; температура на выходе газовой смеси из первого реактора вторичного метанирования составляет 440-460°C и температура на входе подаваемого газа второго реактора вторичного метанирования составляет 270-290°C; и перегретый пар промежуточного давления, образованный в результате реакции метанирования, транспортируется к паровой турбине.
Давление перегретого пара промежуточного давления, который образуется с помощью первого/второго котла-утилизатора отработанного тепла и первого/второго пароперегревателя в секции первичного метанирования, составляет 4,5-5 МПа.
В реакции метанирования на стадии 3) используется высокая концентрация никеля в качестве катализатора при температуре реакции 270-630°С, давлении 1-3 МПа и формуле реакции CO+3H2=CH4+H2О, ΔH0θ=-206 кДж/моль.
После того как технологический газ из второго реактора первичного метанирования охлаждается с помощью второго котла-утилизатора отработанного тепла и второго пароперегревателя, первый поток, поступающий в первый реактор первичного метанирования через рециркуляционный компрессор, составляет 60-70% и второй поток, входящий в первый реактор вторичного метанирования, составляет 30-40%.
Система парогазовой когенерации, основанная на газификации и метанировании биомассы, включает: секцию газификации, секцию конверсии, секцию очистки, секцию метанирования и секцию концентрирования метана; котел-утилизатор отработанного тепла предусмотрен в соединении с верхней частью газификатора секции газификации; отходящее тепло неочищенного газифицированного газа из газификатора утилизируется котлом-утилизатором отработанного тепла с образованием на выходе перегретого пара промежуточного давления, который транспортируется к паровой турбине; внешний термостатный высокотемпературный нагреватель предусмотрен в сегменте выпуска газифицированного газа газификатора для сохранения температуры газификации внутри газификатора на уровне 1500-1800°C; и температура неочищенного газифицированного газа из газификатора регулируется при 1200-1500°C.
Секция метанирования включает секцию первичного метанирования и секцию вторичного метанирования; секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; выход из второго реактора первичного метанирования снабжен двумя отводными линиями: одна отводная линия соединена со входом первого реактора первичного метанирования, так что технологический газ в ней смешивается со свежим подаваемым газом и затем входит в первый реактор первичного метанирования; другая отводная линия соединена с секцией вторичного метанирования, которая содержит первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно; и второй реактор вторичного метанирования соединен с секцией концентрирования метана.
Теплота реакции газовой смеси на выходе из первого реактора первичного метанирования утилизируется с помощью первого котла-утилизатора отработанного тепла и первого пароперегревателя, и теплота реакции газовой смеси на выходе из второго реактора первичного метанирования утилизируется вторым котлом-утилизатором отработанного тепла и вторым пароперегревателем; и образованный в них перегретый пар промежуточного давления транспортируется к паровой турбине.
Изобретение имеет следующие преимущества: (1) газификатор использует внешний термостатный высокотемпературный источник тепла, который может значительно повышать содержание активных компонентов СО и Н2 и повышать эффективность газификации биомассы; (2) как правило, при газификации биомассы образуется большое количество смолы. Высокая температура секции газификации может существенно уменьшить образование смолы, улучшить конверсию углерода и сберечь затраты на устройство удаления смолы. (3) Реакция метанирования достигает 100% степени конверсии CO, 99% степени конверсии H2 и одновременно образует большое количество побочного продукта (перегретого пара промежуточного давления) и уменьшает энергопотребление рециркуляционного компрессора в традиционной реакции метанирования; (4) Самое большое преимущество изобретения заключается в том, что оно может не только превращать энергию биомассы в чистый и удобный для использования природный газ с высокой теплотворной способностью, но также эффективно утилизирует большое количество тепла, высвободившегося в результате газификации и метанирования биомассы, в виде образования высококачественного перегретого пара.
Краткое описание чертежей
На фиг. 1 представлена технологическая схема способа парогазовой когенерации на основе газификации и метанирования биомассы по изобретению;
На фиг. 2 представлена принципиальная схема секции газификации по изобретению; и
На фиг. 3 представлена принципиальная схема секции метанирования по изобретению.
Подробное описание вариантов осуществления
Изобретение далее проиллюстрировано более подробно с учетом чертежей и вариантов осуществления, которые не предназначены для ограничения защищаемого объема изобретения.
Как показано на фиг. 1, фиг. 2 и фиг. 3:
Стадия 1): Рисовая солома, стебли зерновых культур и другая биомасса высушивалась, измельчалась и сортировалась. Сырье биомассы с диаметром или максимальной длиной менее 2 мм непосредственно транспортировалось в газификатор с высокотемпературным слоем воздушной подачи с помощью шнекового питателя. Давление в газификаторе составляло 1-3 МПа. Внешний термостатный высокотемпературный нагреватель предусмотрен в сегменте выпуска газифицированного газа из газификатора биомассы для сохранения температуры газификации внутри газификатора на уровне 1500-1800°С и обеспечения интенсивности газификации, качества газифицированного газа и усиленного процесса теплопередачи. В качестве газифицирующего агента предварительно смешивались перегретый водяной пар и кислород и затем в полной мере смешивались с обработанной биомассой. Смесь инжектировалась в газификатор с помощью специального сопла со скоростью 100-120 м/с для газификации в параллельном потоке. В связи с малым размером частиц и сильной способностью теплопередачи слоя с воздушной подачей сырье нагревалось до температуры печи сразу после того, как оно поступало в печь. Почти одновременно происходили испарение влаги, разложение летучих веществ, крекинг смолы, сжигание углерода и газификация. Зола, содержащая щелочные металлы, превращалась в жидкий шлак и затем непосредственно отводилась. Мелкие частицы биомассы находились в реакционной зоне менее 3 с, быстро газифицировались до плавления и, соответственно, разделялись потоком газа высокой скорости без явлений слипания и когезии и т.д. Неочищенный газифицированный газ из верхней боковой части газификатора регулировали при температуре 1200-1500°C. Верхняя часть газификатора соединена с котлом-утилизатором отработанного тепла. Неочищенный газифицированный газ из газификатора поступает в котел-утилизатор отработанного тепла для утилизации отходящего тепла и производит большое количество пара. После утилизации тепла температура газифицированного газа падает до 220-280°C. Затем большая часть пыли и водяного пара в газифицированном газе очищалась и охлаждалась с помощью двухступенчатых циклонных сепараторов и промывочной башни так, чтобы снизить температуру газифицированного газа до примерно 50-55°С, снизить содержание пыли до менее 50 мг/м3 и создать газифицированный газ, содержащий преимущественно СО, H2 и N2.
Стадия 2): После промывки и удаления пыли неочищенный газифицированный газ поступал в процесс конверсии с устойчивостью к сере, при этом отношение H2, СО и СО2 в нем доводили до отношения водород/углерод 3:1, и подавляющее большинство органической серы в нем превращалось в неорганическую серу. Затем газ очищали и промывали метанолом при низкой температуре, так что метанол использовался для удаления нежелательного CО2 и всех сульфидов реакции метанирования технологического газа, и состав технологического газа достигал соответствия требованиям производства метана. Метанол, богатый CО2, H2S и COS, регенерировали с помощью мгновенного испарения при пониженном давлении и десорбции азотом и т.д. и его охлаждающую способность восстанавливали для повторного использования.
Стадия 3) метанирование: Очищенный сингаз со стадии 2) при скорректированном отношении водород/углерод мог разделяться на два приблизительно равных потока, которые поступали соответственно в первый реактор первичного метанирования и второй реактор первичного метанирования. Подаваемый газ, поступающий в первый реактор метанирования, сначала смешивался с газовым рециркулятом. Газовая смесь при 300-330°C поступала в каталитический слой адиабатического реактора, где осуществлялась экзотермическая реакция метанирования. Температура на выходе горячего газа составляла примерно 600-630°C, и горячий газ использовался для получения перегретого пара промежуточного давления в первом котле-утилизаторе отработанного тепла и для перегрева перегретого пара промежуточного давления в первом пароперегревателе. Технологический газ из первого пароперегревателя смешивался с другим потоком свежего подаваемого газа. Газовая смесь при 300-330°C поступала во второй реактор метанирования для дополнительной реакции метанирования.
Температура на выходе газа из второго реактора первичного метанирования составляла примерно 600-630°C, что использовалось для получения пара во втором котле-утилизаторе отработанного тепла и предварительного нагревания газового рециркулята во втором пароперегревателе. Горячий технологический газ из второго котла-утилизатора отработанного тепла разделялся на два потока: один поток составлял 30-40% и поступал в первый реактор первичного метанирования через рециркуляционный компрессор; другой поток составлял 60-70% и поступал в первый реактор вторичного метанирования.
Температура на входе подаваемого газа во второй реактор вторичного метанирования составляла 270-290°C, и дополнительная реакция метанирования осуществлялась во втором реакторе вторичного метанирования для достижения соответствия техническим требованиям ЗПГ-продукта. Перегретый пар промежуточного давления, образованный в результате реакции метанирования, транспортировался к паровой турбине.
Давление перегретого пара промежуточного давления, полученного с помощью котла-утилизатора отработанного тепла и пароперегревателя при утилизации тепла реакции на стадии первичного метанирования, составляло 4,5-5 МПа.
Метанирование осуществлялось при высокой концентрации никеля в качестве катализатора при температуре реакции 270-630°C, давлении 1-3 МПа и по реакции CO+3H2=CH4+H2О, ΔH0θ=-206 кДж/моль.
Стадия 4) концентрирование метана: После концентрирования метана с помощью адсорбции неочищенного природного газа при переменном давлении получали заменитель природного газа, соответствующий национальному стандарту. Как правило, природный газ поступает в городской газопровод как газ бытового назначения и может также поступать в газовую турбину для выработки электроэнергии в случае ее нехватки.
Как показано на фиг. 1, способ и система парогазовой когенерации, основанные на газификации и метанировании биомассы, включают секцию газификации, секцию конверсии, секцию очистки, секцию метанирования и секцию концентрирования метана.
Как показано на фиг. 2, котел-утилизатор отработанного тепла предусмотрен в соединении с верхней частью газификатора секции газификации. Перегретый пар промежуточного давления образуется котлом-утилизатором отработанного тепла с помощью утилизации отходящего тепла неочищенного газифицированного газа из газификатора и транспортируется к паровой турбине. Внешний термостатный высокотемпературный нагреватель предусмотрен в сегменте выпуска газифицированного газа из газификатора биомассы для сохранения температуры газификации внутри газификатора на уровне 1500-1800°С. Неочищенный газифицированный газ из газификатора регулируют при температуре 1200-1500°C.
Как показано на фиг. 3, секция метанирования включает секцию первичного метанирования и секцию вторичного метанирования. Секция первичного метанирования состоит из двух реакторов, соединенных последовательно, с двумя реакторами, соединенными параллельно на каждой ступени. Выход из второго реактора первичного метанирования снабжен двумя отводными линиями: одна отводная линия соединена со входом первого реактора первичного метанирования, так что технологический газ в ней смешивается со свежим подаваемым газом и затем входит в первый реактор первичного метанирования; другая отводная линия соединена с секцией вторичного метанирования, которая содержит первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно. Второй реактор вторичного метанирования соединен с секцией концентрирования метана. После второй ступени первичного метанирования часть технологического газа возвращается ко входу первого реактора первичного метанирования, смешивается со свежим подаваемым газом и далее поступает в первый реактор первичного метанирования, чтобы снизить концентрацию реагента на входе реактора первичного метанирования. С другой стороны, рециркулят технологического газа используют для нагрева инертной среды для регулирования температуры слоя катализатора. Подавляющая часть реакции метанирования завершается на стадии первичного метанирования. Температура реакции вторичного метанирования ниже, чем температура реакции первичного метанирования. Данная стадия состоит из двух реакторов вторичного метанирования, соединенных последовательно, и конвертирует небольшое количество непрореагировавшего СО и большую часть CO2 в СН4. Полученный газ со стадии метанирования транспортируется на стадию концентрирования метана.
Теплота реакции газовой смеси на выходе из первого реактора первичного метанирования утилизируется с помощью первого котла-утилизатора отработанного тепла и пароперегревателя, и теплота реакции газовой смеси на выходе из второго реактора первичного метанирования утилизируется вторым котлом-утилизатором отработанного тепла и пароперегревателем. Образованный в них перегретый пар промежуточного давления транспортируется к паровой турбине.
Пример 1
Расчет общей производительности системы при нормальной загрузке сырья биомассы 1000 т/сут.
В примере 1 в качестве газифицируемой биомассы использовали сухую рисовую солому. Ее состав и теплотворная способность приведены в таблице 1.
Таблица 1
Состав и теплотворная способность биомассы
Пункты Состав Единица измерения Рисовая солома
Теплотворная способность Qar, низшая МДж/кг 11,346
Элементы Углерод, Car % 37,162
Водород, Har % 2,748
Кислород, Oar % 35,136
Азот, Nar % 0,905
Сера, Sar % 0,029
В примере 1 поступление биомассы составляет 1000 т/сут, и для газификации используется газифицирующий агент, содержащий 93% об. кислорода.
Таблица 3
Вещественный баланс и параметры производительности газового продукта
Пример 1
Газифицированный газ Конвертированный газ Сингаз Газовый продукт
Скорость поступления, Nм3 43960 53320 29300 7350
Объемное содержание, %
CO 43,41% 12,03% 20,36% 0,01
H2 16,42% 37,30% 67,53% 0,30
N2 5,77% 4,76% 8,04% 1,17
CO2 21,19% 41,23% 1,88% 1,13
CH4 1,92% 1,59% 2,16% 96,13
H2О 9,29% 1,45% 0,03% 1,26
С24 1,92% 1,59% 0,00% 0,00
Энергетическая ценность сингаза, ккал/м3 2579 8227
Выход сингаза, м3/сут 176400
Эффективность химического синтеза из биомассы в сингаз (химическая энергия ЗПГ/ химическая энергия биомассы) 47%
Пар в результате метанирования, 450°С, 4,7 МПа (т/ч) 21,45
Пример 2
Поступление биомассы составляет 1000 т/сут, и для газификации используется газифицирующий агент, содержащий 98 об.% кислорода.
Таблица 2
Вещественный баланс и параметры производительности газового продукта
Пример 2
Газифицированный газ Конвертированный газ Сингаз Газовый продукт
Скорость поступления, Nм3 51140 64640 39670 10190
Объемное содержание, %
CO 52,10% 14,46% 21,91% 0,01%
H2 22,81% 44,81% 72,66% 0,20%
N2 2,02% 1,60% 2,48% 2,00%
СО2 12,55% 36,70% 1,79% 0,28%
СН4 1,17% 0,92% 1,13% 96,47%
H2О 9,27% 1,45% 0,02% 1,03%
С24 0,02% 0,01%
Энергетическая ценность сингаза, ккал/м3 8256 8227
Выход сингаза, м3/сут 244560
Эффективность химического синтеза из биомассы в сингаз (химическая энергия ЗПГ/ химическая энергия биомассы) 64%
Пар в результате метанирования, 450°С, 4,7 МПа (т/ч) 30,90

Claims (10)

1. Способ парогазовой когенерации на основе газификации и метанирования биомассы, включающий:
1) газификацию биомассы: смешивание кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине;
2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и элюирование неочищенного газифицированного газа с использованием низкотемпературного метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз;
3) метанирование: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4; и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и
4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.
2. Способ по п. 1, отличающийся тем, что смесь на стадии 1) вводится через сопло в газификатор со слоем воздушной подачи со скоростью 100-120 м/с для газификации в параллельном потоке.
3. Способ по п. 1 или 2, отличающийся тем, что неочищенный газифицированный газ из верхней боковой части газификатора на стадии 1) регулируют для получения температуры 1200-1500°C; отходящую теплоту неочищенного газифицированного газа утилизируют с помощью котла-утилизатора отработанного тепла для образования перегретого пара промежуточного давления, часть которого смешивают с кислородом, который является газифицирующим агентом, и остальную часть направляют в паровую турбину; после утилизации тепла температура газифицированного газа падает до 220-280°C; газифицированный газ очищают с помощью двухступенчатого циклонного сепаратора для удаления пыли и охлаждают с помощью промывочной башни, чтобы снизить температуру газифицированного газа до 50-55°C, снизить содержание пыли до менее 50 мг/м3, и газифицированный газ содержит СО, H2 и N2.
4. Способ по п. 1 или 2, отличающийся тем, что очищенный сингаз со стадии 3) разделяют на два равных потока, содержащих первый подаваемый газ и второй подаваемый газ, которые соответственно входят в первый реактор первичного метанирования и второй реактор первичного метанирования; первый подаваемый газ сначала смешивается с технологическим газом и затем поступает в каталитический слой первого реактора первичного метанирования для реакции метанирования, его температуру регулируют на 300-330°C; температура на выходе газовой смеси составляет 600-630°C; перегретый пар промежуточного давления образуется с помощью первого котла-утилизатора отработанного тепла и первого пароперегревателя; технологический газ из первого пароперегревателя смешивается со вторым подаваемым газом и затем поступает во второй реактор первичного метанирования для осуществления реакции метанирования при 300-330°C; температура на выходе технологического газа из второго реактора первичного метанирования составляет 600-630°C; технологический газ из второго реактора первичного метанирования проходит через второй котел-утилизатор отработанного тепла и второй пароперегреватель с образованием перегретого пара промежуточного давления; технологический газ из второго реактора первичного метанирования разделяется на два потока: один поток составляет 30-40% и поступает в первый реактор первичного метанирования через рециркуляционный компрессор; другой поток составляет 60-70% и входит в первый реактор вторичного метанирования; технологический газ охлаждается до 270-290°C и входит в первый реактор вторичного метанирования для дополнительной реакции метанирования; температура на выходе газовой смеси из первого реактора вторичного метанирования составляет 440-460°C, и температура на входе подаваемого газа второго реактора вторичного метанирования составляет 270-290°C; и перегретый пар промежуточного давления, образованный в результате реакции метанирования, транспортируется к паровой турбине.
5. Способ по п. 4, отличающийся тем, что давление перегретого пара промежуточного давления, который образуется с помощью первого/второго котла-утилизатора отработанного тепла и первого/второго пароперегревателя в секции первичного метанирования, составляет 4,5-5 МПа.
6. Способ по п. 1 или 2, отличающийся тем, что в реакции метанирования на стадии 3) используется высокая концентрация никеля в качестве катализатора при температуре реакции 270-630°С, давлении 1-3 МПа и формуле реакции CO+3H2=CH4+H2О, ΔH0θ=-206 кДж/моль.
7. Способ по п. 4, отличающийся тем, что после того как технологический газ из второго реактора первичного метанирования охлаждается с помощью второго котла-утилизатора отработанного тепла и второго пароперегревателя, первый поток, поступающий в первый реактор первичного метанирования через рециркуляционный компрессор, составляет 60-70%; и второй поток, входящий в первый реактор вторичного метанирования, составляет 30-40%.
8. Система парогазовой когенерации, основанная на газификации и метанировании биомассы, использующая способ по любому из пп. 1-7, включающая: секцию газификации, секцию конверсии, секцию очистки, секцию метанирования и секцию концентрирования метана; котел-утилизатор отработанного тепла предусмотрен в верхней части газификатора секции газификации; отходящее тепло неочищенного газифицированного газа из газификатора утилизируется котлом-утилизатором отработанного тепла с образованием на выходе перегретого пара промежуточного давления, который транспортируется к паровой турбине; внешний термостатный высокотемпературный нагреватель предусмотрен в сегменте выпуска газифицированного газа газификатора для сохранения температуры газификации внутри газификатора на уровне 1500-1800°C; и температура неочищенного газифицированного газа из газификатора регулируется при 1200-1500°C.
9. Система по п. 8, отличающаяся тем, что секция метанирования включает секцию первичного метанирования и секцию вторичного метанирования; секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; выход из второго реактора первичного метанирования снабжен двумя отводными линиями: одна отводная линия соединена со входом первого реактора первичного метанирования, так что технологический газ в ней смешивается со свежим подаваемым газом и затем входит в первый реактор первичного метанирования; другая отводная линия соединена с секцией вторичного метанирования, которая содержит первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно; и второй реактор вторичного метанирования соединен с секцией концентрирования метана.
10. Система по п. 9, отличающаяся тем, что теплота реакции газовой смеси на выходе из первого реактора первичного метанирования утилизируется с помощью первого котла-утилизатора отработанного тепла и первого пароперегревателя, и теплота реакции газовой смеси на выходе из второго реактора первичного метанирования утилизируется вторым котлом-утилизатором отработанного тепла и вторым пароперегревателем; и образованный в них перегретый пар промежуточного давления транспортируется к паровой турбине.
RU2014147727/04A 2012-04-27 2013-04-16 Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы RU2583785C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210128134.2A CN102660339B (zh) 2012-04-27 2012-04-27 基于生物质气化与甲烷化的燃气-蒸汽高效联产工艺及系统
CN201210128134.2 2012-04-27
PCT/CN2013/074232 WO2013159662A1 (zh) 2012-04-27 2013-04-16 基于生物质气化与甲烷化的燃气-蒸汽高效联产工艺及系统

Publications (1)

Publication Number Publication Date
RU2583785C1 true RU2583785C1 (ru) 2016-05-10

Family

ID=46769923

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014147727/04A RU2583785C1 (ru) 2012-04-27 2013-04-16 Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы

Country Status (16)

Country Link
US (2) US9593286B2 (ru)
EP (1) EP2843031A4 (ru)
JP (1) JP5959721B2 (ru)
KR (1) KR101739494B1 (ru)
CN (1) CN102660339B (ru)
AP (1) AP2014008078A0 (ru)
AU (1) AU2013252316B2 (ru)
BR (1) BR112014026705A2 (ru)
CA (1) CA2871701A1 (ru)
IN (1) IN2014MN02282A (ru)
MX (1) MX362684B (ru)
MY (1) MY170247A (ru)
RU (1) RU2583785C1 (ru)
SG (1) SG11201406918UA (ru)
WO (1) WO2013159662A1 (ru)
ZA (1) ZA201408643B (ru)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660339B (zh) * 2012-04-27 2014-04-30 阳光凯迪新能源集团有限公司 基于生物质气化与甲烷化的燃气-蒸汽高效联产工艺及系统
CN103740423A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 由合成气制替代天然气的方法
CN103740424A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 由合成气生产替代天然气的方法
CN103740428B (zh) * 2012-10-17 2016-07-13 中国石油化工股份有限公司 合成气甲烷化制替代天然气的方法
CN103773526A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 生产替代天然气的方法
CN103849442A (zh) * 2012-11-28 2014-06-11 中国石油化工股份有限公司 一种利用合成气制备天然气的方法
CN103242922A (zh) * 2013-05-31 2013-08-14 青岛新奥胶城燃气有限公司 生物质燃烧制备燃气的方法
FR3012468B1 (fr) * 2013-10-28 2016-03-11 Gdf Suez Dispositif et procede de production de gaz naturel de substitution et reseau le comportant
CN103897743B (zh) * 2014-03-28 2016-02-03 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统与方法
CN103937572B (zh) * 2014-04-14 2015-11-18 中国五环工程有限公司 气流床气化的甲烷化工艺
CN104235814A (zh) * 2014-10-09 2014-12-24 北京天达京丰技术开发有限公司 一种不洁净水蒸汽的回收再利用方法
EP3018190A1 (en) * 2014-11-04 2016-05-11 Haldor Topsøe A/S Process for production of methane rich gas
CN105597518B (zh) * 2014-11-07 2018-06-08 上海东化环境工程有限公司 低温甲醇洗单元co2尾气与co2产品气联合处理工艺
CN104449921A (zh) * 2014-11-17 2015-03-25 山东永泰化工有限公司 一种生物质天然气制备方法
GB201503606D0 (en) * 2015-03-03 2015-04-15 Johnson Matthey Davy Technologies Ltd Process
GB201503607D0 (en) * 2015-03-03 2015-04-15 Johnson Matthey Davy Technologies Ltd Process
CN104774663B (zh) * 2015-04-27 2017-08-29 中国五环工程有限公司 一步法煤制合成天然气及其系统
GB2539021A (en) * 2015-06-04 2016-12-07 Advanced Plasma Power Ltd Process for producing a substitute natural gas
CN105000534B (zh) * 2015-07-02 2017-04-12 西北化工研究院 一种以料浆气化与天然气转化为基础联合制备合成气的方法
CN105733718B (zh) * 2016-04-14 2018-08-21 中石化南京工程有限公司 一种合成气甲烷化多联产方法及装置
CN105905869B (zh) * 2016-04-14 2018-02-06 中石化南京工程有限公司 一种煤制氢co变换多联产方法及装置
IT201600111822A1 (it) 2016-11-07 2018-05-07 Reset S R L Impianto di cogenerazione a biomassa legnosa per la produzione in continuo di calore ed elettricità.
CN107445785A (zh) * 2016-11-29 2017-12-08 中国神华能源股份有限公司 甲烷的合成方法与合成系统
ES2768350T3 (es) * 2017-02-23 2020-06-22 B A T Services Sistema de metanación y método para la conversión de material carbonoso en metano
CN109207220B (zh) * 2017-06-29 2020-10-30 中国石油化工股份有限公司 一种煤基合成气制备合成天然气的甲烷化工艺
KR101981591B1 (ko) 2017-08-29 2019-05-23 (주)지엔씨에너지 바이오가스를 이용한 열병합발전 시스템
JP6786054B2 (ja) * 2017-12-18 2020-11-18 株式会社豊田中央研究所 メタンの製造装置及びそれを用いたメタンの製造方法
KR102111001B1 (ko) 2018-07-18 2020-05-15 한국생산기술연구원 바이오촤를 이용한 수처리 시스템
CN109139158B (zh) * 2018-08-06 2021-04-20 山东电力工程咨询院有限公司 利用生物质气显热和烟气蒸发减排脱硫废水的系统和方法
CN108774554B (zh) * 2018-08-08 2023-10-27 中国五环工程有限公司 无循环的完全甲烷化集成工艺及系统
IT201800009364A1 (it) * 2018-10-11 2020-04-11 Nextchem Srl “metodo ed apparato per produrre bio-metano da rifiuti, preferibilmente rifiuti industriali od urbani, ed i loro prodotti derivati”
CN111100717A (zh) * 2018-10-26 2020-05-05 苏州盖沃净化科技有限公司 一种煤气制天然气的方法及装置
CN109797018A (zh) * 2019-02-28 2019-05-24 河南理工大学 一种生产生物质合成天然气的改进方法
CN110055106B (zh) * 2019-04-03 2020-06-30 浙江天禄环境科技有限公司 一种低阶煤分质利用多联产制备甲醇和油的方法
CN112322366B (zh) * 2020-11-13 2022-02-01 北京建筑大学 一种太阳能生物质混合气化制备天然气的方法
CN114836249A (zh) * 2022-04-13 2022-08-02 山东钢铁集团日照有限公司 一种焦炉煤气甲烷化投料方法
CN117125673B (zh) * 2023-08-22 2024-02-13 山东福富新材料科技有限公司 一种大规模碳捕集系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2287010C2 (ru) * 2001-07-09 2006-11-10 Калдерон Сингэз Компани Экологически чистый способ получения энергии из угля (варианты)
RU2314378C2 (ru) * 2002-07-22 2008-01-10 Ой Мется-Ботния Аб Способ и установка для получения тепловой и электрической энергии
CN101812339A (zh) * 2010-04-15 2010-08-25 大唐国际化工技术研究院有限公司 生产合成天然气的方法、装置及其产物天然气
RU2009114209A (ru) * 2008-04-16 2010-10-20 Метанол Касале С.А. (Ch) Способ и устройство для производства заменителя природного газа

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966633A (en) * 1974-09-23 1976-06-29 Cogas Development Company Waste water processing
GB1544245A (en) * 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
DK142624B (da) * 1978-04-13 1980-12-01 Topsoe Haldor As Fremgangsmåde til fremstilling af en metanrig gas.
JPH09302365A (ja) * 1996-05-16 1997-11-25 Osaka Gas Eng Kk 代替天然ガスの製造方法
CN100582201C (zh) * 2007-06-22 2010-01-20 清华大学 基于煤气化与甲烷化的电-替代天然气联产系统及工艺
CN101245262B (zh) * 2008-01-23 2011-03-30 清华大学 基于煤气化与甲烷化的燃气-蒸汽联合循环系统及工艺
WO2010078254A2 (en) * 2008-12-31 2010-07-08 Shell Oil Company Adiabatic reactor and a process and a system for producing a methane-rich gas in such adiabatic reactor
CN102317237A (zh) * 2008-12-31 2012-01-11 国际壳牌研究有限公司 制备富甲烷气体的方法
US8024930B2 (en) * 2009-01-06 2011-09-27 General Electric Company Heat integration in coal gasification and methanation reaction process
WO2010099626A1 (en) * 2009-03-05 2010-09-10 G4 Insights Inc. Process and system for thermochemical conversion of biomass
EP2261308B1 (en) * 2009-05-07 2013-06-19 Haldor Topsøe A/S Process for the production of natural gas
US8354082B2 (en) * 2010-03-17 2013-01-15 General Electric Company System for heat integration with methanation system
US8420031B2 (en) * 2010-10-19 2013-04-16 General Electric Company System and method of substitute natural gas production
KR101032178B1 (ko) * 2011-01-24 2011-05-02 박정봉 탄소질 공급원료를 합성가스로 개질하는 가스화 시스템 및 이를 이용한 가스화 방법
JP5583062B2 (ja) * 2011-03-17 2014-09-03 三菱重工業株式会社 炭化水素原料ガス化炉
CN102660339B (zh) * 2012-04-27 2014-04-30 阳光凯迪新能源集团有限公司 基于生物质气化与甲烷化的燃气-蒸汽高效联产工艺及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2287010C2 (ru) * 2001-07-09 2006-11-10 Калдерон Сингэз Компани Экологически чистый способ получения энергии из угля (варианты)
RU2314378C2 (ru) * 2002-07-22 2008-01-10 Ой Мется-Ботния Аб Способ и установка для получения тепловой и электрической энергии
RU2009114209A (ru) * 2008-04-16 2010-10-20 Метанол Касале С.А. (Ch) Способ и устройство для производства заменителя природного газа
CN101812339A (zh) * 2010-04-15 2010-08-25 大唐国际化工技术研究院有限公司 生产合成天然气的方法、装置及其产物天然气

Also Published As

Publication number Publication date
IN2014MN02282A (ru) 2015-08-07
KR101739494B1 (ko) 2017-05-24
EP2843031A1 (en) 2015-03-04
US20170152454A1 (en) 2017-06-01
AU2013252316A1 (en) 2014-12-04
WO2013159662A1 (zh) 2013-10-31
US9593286B2 (en) 2017-03-14
BR112014026705A2 (pt) 2017-06-27
EP2843031A4 (en) 2015-12-30
CA2871701A1 (en) 2013-10-31
AP2014008078A0 (en) 2014-11-30
AU2013252316B2 (en) 2016-07-21
ZA201408643B (en) 2015-12-23
MX2014012990A (es) 2015-08-14
SG11201406918UA (en) 2015-01-29
US20150040479A1 (en) 2015-02-12
MY170247A (en) 2019-07-12
JP5959721B2 (ja) 2016-08-02
CN102660339A (zh) 2012-09-12
CN102660339B (zh) 2014-04-30
MX362684B (es) 2019-01-31
US10113125B2 (en) 2018-10-30
KR20150001832A (ko) 2015-01-06
JP2015519427A (ja) 2015-07-09

Similar Documents

Publication Publication Date Title
RU2583785C1 (ru) Способ и система эффективной парогазовой когенерации, основанные на газификации и метанировании биомассы
US10208948B2 (en) Solid fuel grade gasification-combustion dual bed poly-generation system and method thereof
DK1931753T3 (en) PROCESS FOR THE GENERATION OF METHANE AND / OR FROM BIOMASS methane hydrates
US8187568B2 (en) Method and plant for the production of synthesis gas from biogas
CN102079685A (zh) 两级气化炉煤气化制甲烷的方法
KR20100116540A (ko) 대체 천연 가스 발생을 위한 방법 및 장치
CA2793930A1 (en) Process and system for producing synthesis gas from biomass by carbonization
KR20150027830A (ko) 산소없이 이산화탄소의 사이클링에 의한 바이오매스 가스화용 방법 및 장치
CN109181776B (zh) 一种集成燃料电池发电的煤基多联产系统及方法
CN112725034A (zh) 一种耦合生物质气化的可再生能源电转气系统
CN105062526A (zh) 一种煤热解气化多联产系统及其热解气化方法
CN104987891B (zh) 一种基于煤炭碳氢组分分级气化的替代燃料/化工产品生产系统
CN104987892B (zh) 一种分级气化化工未反应气适度循环型化工‑动力多联产系统
CN1118544C (zh) 煤基两段组合式气化工艺及其装置
CN111718757A (zh) 一种火电厂煤热解气制氢系统及方法
CN203096004U (zh) 一种基于煤炭的碳氢组分分级转化的发电系统
CN109054902A (zh) 一种煤制热电甲醇的耦合工艺
CN109652147A (zh) 循环流化床热解-气化装置及方法
CN106929107B (zh) 以碎焦气化联合焦炉气部分氧化和干重整制化工产品系统
CN103031154A (zh) Bgl气化炉或碎煤加压熔渣气化炉直连非催化部分氧化炉制取合成气或氢气的方法及装置
WO2012058903A1 (zh) 一种利用秸秆气制备合成天然气的方法
CN211394378U (zh) 一种火电厂煤热解气制氢系统
CN211111887U (zh) 一种火电厂煤热解气制氢系统
CN218478710U (zh) 基于高浓度氧气-水蒸气气化的中热值生物燃气生产装置
CN216073699U (zh) 一种生物质气化系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190417