RU2583186C2 - Турбинный двигатель с параллельными валами - Google Patents

Турбинный двигатель с параллельными валами Download PDF

Info

Publication number
RU2583186C2
RU2583186C2 RU2012115106/06A RU2012115106A RU2583186C2 RU 2583186 C2 RU2583186 C2 RU 2583186C2 RU 2012115106/06 A RU2012115106/06 A RU 2012115106/06A RU 2012115106 A RU2012115106 A RU 2012115106A RU 2583186 C2 RU2583186 C2 RU 2583186C2
Authority
RU
Russia
Prior art keywords
turbine
turbine engine
compressor
generator
drive shaft
Prior art date
Application number
RU2012115106/06A
Other languages
English (en)
Other versions
RU2012115106A (ru
Inventor
Антуан ДРАХСЛЕР
Ален Мишель ПЕРБО
Жоэль СИЛЕ
Original Assignee
Турбомека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Турбомека filed Critical Турбомека
Publication of RU2012115106A publication Critical patent/RU2012115106A/ru
Application granted granted Critical
Publication of RU2583186C2 publication Critical patent/RU2583186C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/02Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/045Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module
    • F02C3/05Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module the compressor and the turbine being of the radial flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • F02C3/103Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor the compressor being of the centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/145Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chamber being in the reverse flow-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/231Three-dimensional prismatic cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/311Arrangement of components according to the direction of their main axis or their axis of rotation the axes being in line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/312Arrangement of components according to the direction of their main axis or their axis of rotation the axes being parallel to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Турбинный двигатель со свободной турбиной содержит газогенератор, включающий в себя, по меньшей мере, один компрессор, питаемый воздухом, камеру сгорания, принимающую сжатый воздух от выхода упомянутого компрессора, и, по меньшей мере, одну генераторную турбину, механически связанную с упомянутым компрессором посредством приводного вала и приводимую в движение газами, получающимися при сгорании топлива в камере сгорания. Выход газов ориентирован в направлении компрессора. Турбинный двигатель содержит также свободную турбину, питаемую газами от сгорания после их прохода через генераторную турбину, которая приводит в движение силовой вал, не расположенный в продолжение приводного вала газогенератора и передающий мощность от турбинного двигателя через редуктор. генераторная турбина является турбиной аксиального типа. Камера сгорания имеет, по существу, цилиндрическую форму или форму усеченного конуса, расположена в продолжение оси генераторной турбины и содержит единственный инжектор. Изобретение направлено на уменьшение стоимости производства и уменьшение выбросов NOx. 2 н. и 11 з.п.ф-лы, 3 ил.

Description

2420-184715RU/072
Настоящее изобретение относится к области авиационной тяги и в особенности к турбинным двигателям с газогенератором и свободной турбиной.
Турбомашины обычно используются для обеспечения тяги летательных аппаратов и, в частности, для обеспечения тяги и подъемной силы летательных аппаратов с вращающимся винтом или вертолетов. Эти двигатели содержат газогенератор, образованный компрессором, кольцевой камерой сгорания и турбиной, называемой генераторной турбиной, которая приводит в движение компрессор с помощью вала, называемого генераторным валом. Газогенератор является обычно одноступенчатым, то есть он содержит только один компрессор и единственную турбину, соединенные между собой одним валом, но он может быть также многоступенчатым, то есть содержать несколько компрессоров и несколько турбин, при этом каждый компрессор связан с турбиной специальным валом. Выходящий из газогенератора газ направляется затем на вторую турбину, называемую свободной турбиной, которая соединена с силовым валом, не зависимого от одного или нескольких генераторных валов и который передает полезную мощность для тяги. Этот вал приводит в действие редуктор, связанный с основной коробкой передач вертолета (или ВТР), которая приводит в движение ступицу основного несущего винта и рулевого винта. Эта редукторная система обычно сочленена с коробкой приводов вспомогательных агрегатов для оборудования, необходимого для правильного функционирования двигателя или летательного аппарата.
С целью упрощения конструкции свободная турбина обычно размещена на выходе последней турбины генератора, и вал, который она приводит в движение, коаксиален валу газогенератора. Этот силовой вал может выходить сзади двигателя, либо, как в большинстве случаев, располагаться концентрично с валом газогенератора и выходить спереди. С целью уменьшения габаритов и/или облегчения доступа такая конструкция позволяет разместить редуктор и коробку приводов вспомогательных агрегатов на уровне воздухозаборника газогенератора.
Такие двигатели с концентрическими валами, как, например, двигатель, описанный в британском патенте GB 594207, имеют тот недостаток, что они сложны в изготовлении и, следовательно, представляют определенную трудность для их изготовления относительно недорогими. К этому добавляется сложность камеры сгорания вследствие ее кольцевой формы, что также мешает удешевлению производства; такая кольцевая форма требует значительного количества точек впрыска, что на двигателях малого размера усложняет установку устройств для уменьшения выбросов окислов азота NOx.
Целью настоящего изобретения является устранение указанных недостатков путем предложения турбинного двигателя малых размеров, который не имеет некоторых проблем известных турбинных двигателей и который имеет простую конструкцию для уменьшения стоимости производства и позволяет использовать устройства для уменьшения выбросов NOx.
Для достижения этой цели объектом изобретения является турбинный двигатель со свободной турбиной, содержащий газогенератор, включающий в себя, по меньшей мере, один питаемый воздухом компрессор, камеру сгорания, в которую с выхода упомянутого компрессора поступает сжатый воздух, и, по меньшей мере, одну генераторную турбину, механически связанную с упомянутым компрессором приводным валом и приводимую в движение газами - продуктами сгорания топлива, осуществляемого в упомянутой камере сгорания, и содержащий также свободную турбину, питаемую газами - продуктами сгорания после их прохода через упомянутую генераторную турбину, и которая приводит во вращение силовой вал, размещенный некоаксиально с приводным валом газогенератора и передающий мощность турбинного двигателя через редуктор, отличающийся тем, что камера сгорания представляет собой, по существу, камеру сгорания цилиндрической формы или формы усеченного конуса, коаксиальную с осью генераторной турбины и содержащую единственный инжектор.
Под коаксиальными валами понимают два вала, которые расположены в продолжение друг друга независимо от их относительного направления вращения.
Такое расположение валов обеспечивает свободу для размещения двух частей двигателя и позволяет выбрать камеру сгорания, называемую камерой с единой чашей, то есть имеющей, по существу, цилиндрическую форму или форму усеченного конуса с единственным инжектором, размещенным в центре этого цилиндра, что позволяет легко встроить инжекторную систему, обеспечивающую уменьшение образования окислов азота. Камера сгорания, коаксиальная с осью генераторной турбины, имеет то преимущество, что она не вызывает чрезмерного увеличения габаритных размеров, которое не соответствовало бы ни одной из искомых целей, а именно изготовлению турбинного двигателя малого размеров. Кроме того, газы с выхода камеры сгорания направляются непосредственно на турбину генератора, что не требует наличия днища камеры сгорания, которое, в противном случае, являлось бы необходимым для выравнивания потока газов и которое было бы необходимо охлаждать. Учитывая весьма высокую температуру газов на выходе камеры сгорания в современных двигателях, в предложенной конструкции устраняют эту операцию, которую было бы особенно трудно осуществить.
Предпочтительным образом силовой вал ориентирован параллельно упомянутому приводному валу. Такое расположение придает двигателю большую компактность. Еще более предпочтительно, редуктор сочленен с коробкой приводов вспомогательных агрегатов, при этом оба расположены в продольном направлении, по существу, на уровне воздухозаборника компрессора. Таким образом, компактность увеличивается еще больше, и система редуктор - коробка приводов вспомогательных агрегатов расположена в относительно холодной зоне.
Предпочтительно камера сгорания содержит инжектор с технологией LPP (Lean Premixed Prevaporised, для обедненной, предварительно смешанной и предварительно испаренной топливовоздушной смеси). Цилиндрическая или усеченная конусная форма камеры позволяет осуществить установку инжектора этого типа, который является относительно громоздким, но оптимальным для уменьшения выбросов окислов азота.
В варианте воплощения выход камеры сгорания ориентирован в направлении компрессора. Такое расположение способствует компактности двигателя.
Предпочтительно газы, являющиеся продуктом сгорания, поступают в кольцевой коллектор, расположенный на выходе генераторной турбины, для их перемещения в кольцевую распределительную камеру, расположенную на входе свободной турбины.
Предпочтительно, картер системы редуктор - коробка приводов вспомогательных агрегатов и картер газогенератора объединены в едином картере. Конструкция устройства смазки системы таким образом упрощается, и общий картер является более легким и менее дорогим.
В особом варианте воплощения газогенератор является многоступенчатым генератором, содержащим компрессор высокого давления и компрессор низкого давления, турбину высокого давления и турбину низкого давления, при этом упомянутые турбины приводят в движение упомянутые компрессоры с помощью соответственно приводного вала высокого давления и приводного вала низкого давления, причем силовой вал, приводимый в движение свободной турбиной, не коаксиален с приводным валом высокого давления упомянутого генератора, а камера сгорания коаксиальна с приводным валом высокого давления.
Предпочтительно в случае многоступенчатого турбинного двигателя силовой вал коаксиален с приводным валом низкого давления. Еще более предпочтительно, приводной вал низкого давления выполнен полым, и внутри него проходит силовой вал.
В особых вариантах воплощения турбинный двигатель снабжен высокоскоростным электрическим генератором переменного тока и/или теплообменником горячие газы/сжатый воздух между газами на выходе свободной турбины и воздухом на выходе из компрессора.
Изобретение касается также турбинного двигателя, содержащего, по меньшей мере, одно описанное выше устройство.
В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:
- фиг.1 схематично изображает в разрезе вид турбинного двигателя в соответствии с вариантом воплощения по изобретению;
- фиг.2 изображает принципиальную схему двухступенчатого турбинного двигателя со свободной турбиной, выполненного в соответствии с вариантом воплощения изобретения.
- фиг.3 схематично изображает канал для передачи газов между двумя частями турбинного двигателя по изобретению.
На фиг.1 изображен в разрезе турбинный двигатель со свободной турбиной, выполненный из двух расположенных встык частей, при этом первая часть содержит совокупность частей, образующих газогенератор, а вторая часть включает в себя элементы, образующие свободную турбину и редуктор. Первая часть содержит компрессор 1, представленный в данном случае центробежным компрессором, в который поступает воздух через всасывающее сопло 2, направляющее сжатый воздух в выходную улитку 3. Улитка размещена в виде короны вокруг компрессора с непрерывно возрастающим сечением для приема этого сжатого воздуха и подачи его через входные каналы 4 передачи в цилиндрическую камеру 5 сгорания, где он участвует в сгорании топлива, впрыскиваемого инжектором 6. Газы от этого сгорания подвергаются первому расширению в генераторной турбине 7, связанной с компрессором 1 генераторным валом 15, затем собираются в кольцевом коллекторе 8 для прохода во вторую часть двигателя. Вращающиеся детали газогенератора, требующие смазки, такие как подшипники или зубчатые колеса, размещены в картере двигателя 17.
Газы поступают из выходного кольцевого коллектора 8 турбины генератора 7 в расположенную на входе свободной турбины распределительную камеру 10 через выходной канал 9 передачи, схематично изображенный на фиг.1 и более детально на фиг.3.
Газы выходят из распределительной камеры 10, проходя через свободную турбину 11, где они подвергаются второму расширению, отдавая свою энергию свободной турбине. Свободная турбина установлена на силовом валу 12, который отбирает энергию газов. Этот силовой вал сочленен с редуктором 13 для уменьшения его частоты вращения и передачи мощности на главную коробку передач вертолета (не изображенную на чертеже) с помощью передающего вала 14. Система редуктор - коробка приводов вспомогательных агрегатов находится в картере коробки 16.
Обе части, образующие турбинный двигатель, размещены, как изображено на фиг.1, параллельно одна другой таким образом, что механические детали, требующие смазки, сгруппированы в одной зоне. Картер коробки 16 и картер газогенератора 17 образуют единый картер, что облегчает смазку системы этих деталей и позволяет уменьшить общую массу этого элемента.
Вследствие выбранной конструкции с разделением турбинного двигателя на две части, камера сгорания 5 не пересекается приводным валом 15, как в случае двигателя из известного уровня техники. Устранение недостатка, связанного с наличием этого вала, создает новые возможности для выбора формы, которую может принимать камера, и, в частности, она может принимать цилиндрическую форму, как изображено на фиг.1. Она имеет также ориентацию, противоположную ориентации двигателей из известного уровня техники с выходом газов, который ориентирован в направлении компрессора 1. Приводной вал может быть также значительно укорочен, что приводит к упрощению его изготовления и, в конечном итоге, к уменьшению его веса.
Со ссылкой на фиг.2 ниже будет описан второй вариант воплощения, в соответствии с которым изобретение используется в двухступенчатом турбинном двигателе. Два генераторных вала 15 и 25 ступеней низкого и высокого давления газогенератора, в данном случае, не коаксиальны. Вал ступени низкого давления 25 является полым, и сквозь него проходит силовой вал 12 свободной турбины.
Функционирование этого турбинного двигателя второго варианта воплощения аналогично предыдущему функционированию первого варианта воплощения с воздухом, который всасывается во входное сопло, затем сжимается в компрессоре низкого давления (или ВР) 21. Этот воздух затем поступает по первому входному каналу 24 передачи в компрессор высокого давления (или НР) 1. После второго сжатия, осуществляемого в компрессоре НР, он поступает по второму входному каналу 4 передачи в цилиндрическую камеру 5 сгорания и участвует в сгорании топлива, вводимого в эту камеру инжектором 6. После сгорания газы расширяются в турбине 7 высокого давления, механически связанной с компрессором НР 1 приводным валом НР 15, и проходят по выходному каналу 9 передачи в распределительную камеру, расположенную на входе турбины ВР. Из этой распределительной камеры они проходят через турбину ВР 27, которая приводит в движение компрессор ВР 21 посредством вала ВР 25. На выходе из турбины ВР они направляются в свободную турбину 11, которая приводит в движение силовой вал 12, как было указано выше.
В конструкции, изображенной на фиг.2, силовой вал 12 проходит сквозь полый приводной вал 25 ВР для входа в редуктор 13. Напротив, приводной вал НР вращается отдельно, будучи механически не зависимым от двух других валов. В данном случае, обеспечение вращения силового вала 12 внутри приводного вала ВР 25 не представляет неудобств, как в случаях одноступенчатых турбинных двигателей из известного уровня техники с коаксиальными валами, так как скорость вращения вала ВР относительно мала и сравнима по величине со скоростью вращения силового вала 12.
Турбинный двигатель, объект настоящего изобретения, обладает также, кроме того, следующими характеристиками:
- газогенератор расположен по линии вала, а свободная турбина по второй линии вала, не коаксиальной с первой,
- камера сгорания, называемая камерой с единой чашей, то есть, по существу, цилиндрической формы или в форме усеченного конуса с единственным инжектором, расположена с выходной стороны газогенератора в соответствии с направлением потока газов,
- единый картер для вращающихся смазываемых деталей газогенератора и для основной коробки передач.
Описанная выше конструкция создает определенные преимущества.
Она создает благоприятные условия для «низкой стоимости» турбинного двигателя путем выбора, прежде всего, общего картера для смазываемых частей газогенератора, редуктора и коробки приводов вспомогательных агрегатов, затем камеры сгорания с единой чашей и, наконец, отсутствия концентрических валов (или в случае двух ступеней только двух концентрических валов вместо трех).
Установка двигателя в вертолет облегчается выбором газогенератора, расположенного параллельно системе, соединенной со свободной турбиной и более усовершенствованной установкой системы, образованной свободной турбиной и редуктором. Таким образом обеспечивается лучшая компактность турбинного двигателя, чем компактность двигателя из известного уровня техники. Кроме того, такая установка осуществляется при сохранении, как в известном уровне техники с коаксиальными валами, размещения редуктора в холодной зоне вертолета при его расположении со стороны воздухозаборника в газогенераторе, а не со стороны выхлопной трубы.
Конструкция из двух частей является легко разделяемой, одна часть для газогенератора и одна для свободной турбины и привода вспомогательных агрегатов, и придает турбинному двигателю модульную архитектуру, которая облегчает ремонт и уменьшает стоимость технического обслуживания.
Приводной вал 15 газогенератора (или приводной вал НР в случае многоступенчатого двигателя), который не пересекается другим валом, может иметь уменьшенный диаметр и вследствие этого быть оптимизирован с точки зрения механической устойчивости и массы.
Наконец, двигатель содержит воздухозаборник и выпускное устройство, ориентированные по оси относительно двигателя, что исключает улитки для выпрямления газовых потоков и потери кпд, которые бы они вызывали.
Такая конструкция двигателя является, кроме того, совместимой с различными вспомогательными агрегатами, улучшающими работу турбинных двигателей, такого как высокосоростной генератор переменного тока или стартер-генератор переменного тока, который позволяет уменьшить удельный расход на 2-3%, инжектор 6 с технологией LLP (Leah Premixed Prevaporised) для уменьшения выбросов NOx, который является относительно объемным, но использование которого становится возможным благодаря размеру и цилиндрической форме или форме усеченного конуса камеры 5 сгорания, либо также теплообменник, расположенный на выходе выхлопных газов, который уменьшает удельный расход, примерно, на 10% благодаря нагреву воздуха на выходе компрессора 1 (или компрессора ВР 21 в случае многоступенчатого турбинного двигателя). Общее расположение турбинного двигателя с параллельными валами с учетом введения силового вала внутрь газогенератора и смещения вспомогательных агрегатов от оси этого генератора значительно облегчает установку таких устройств.
Хотя изобретение было описано в отношении нескольких вариантов особого воплощения, очевидно, что оно ими не ограничено и включает все технические эквиваленты описанных средств, а также их комбинаций, если последние входят в рамки изобретения.

Claims (13)

1. Турбинный двигатель со свободной турбиной, содержащий газогенератор, включающий в себя, по меньшей мере, один компрессор (1), питаемый воздухом, камеру (5) сгорания, принимающую сжатый воздух от выхода упомянутого компрессора (1), и, по меньшей мере, одну генераторную турбину (7), механически связанную с упомянутым компрессором (1) посредством приводного вала (15) и приводимую в движение газами, получающимися при сгорании топлива в упомянутой камере (5) сгорания, причем выход газов ориентирован в направлении компрессора, при этом турбинный двигатель содержит также свободную турбину (11), питаемую газами от упомянутого сгорания после их прохода через упомянутую генераторную турбину (7) и которая приводит в движение силовой вал (12), не расположенный в продолжение приводного вала (15) газогенератора и передающий мощность от турбинного двигателя через редуктор (13), отличающийся тем, что генераторная турбина (7) является турбиной аксиального типа, и тем, что камера (5) сгорания имеет, по существу, цилиндрическую форму или форму усеченного конуса, расположена в продолжение оси генераторной турбины и содержит единственный инжектор (6).
2. Турбинный двигатель по п. 1, в котором силовой вал (12) ориентирован параллельно упомянутому приводному валу (15).
3. Турбинный двигатель по п. 2, в котором редуктор соединен с коробкой приводов вспомогательных агрегатов, при этом оба размещены, по существу, в продольном направлении на уровне воздухозаборника компрессора (1).
4. Турбинный двигатель по п. 3, в котором картер системы «коробка (16) приводов вспомогательных агрегатов - картер (17) газогенератора» объединены в единый картер.
5. Турбинный двигатель по п. 1, в котором камера (5) сгорания содержит инжектор (6) с технологией LPP (Lean Premixed Prevaporised - бедная предварительно перемешанная топливовоздушная смесь).
6. Турбинный двигатель по п. 1, в котором выход камеры (5) сгорания ориентирован в направлении компрессора (1).
7. Турбинный двигатель по п. 1, в котором газы, являющиеся продуктами сгорания, отводятся в кольцевой коллектор (8), расположенный на выходе генераторной турбины (7), для их перемещения в кольцевую распределительную камеру (10), расположенную на входе свободной турбины (11).
8. Турбинный двигатель по п. 1, в котором газогенератор является многоступенчатым и содержит компрессор (1) высокого давления и компрессор (21) низкого давления, турбину (7) высокого давления и турбину (27) низкого давления, при этом упомянутые турбины приводят в движение упомянутые компрессоры с помощью соответственно приводного вала (15) высокого давления и приводного вала (25) низкого давления, а силовой вал (12), приводимый в движение свободной турбиной (11), не расположен в продолжение приводного вала (15) высокого давления упомянутого генератора, причем турбина (7) высокого давления является турбиной аксиального типа, и тем, что камера сгорания расположена в продолжение приводного вала (15) высокого давления.
9. Турбинный двигатель по п. 8, в котором приводной вал (25) низкого давления является полым и сквозь него проходит силовой вал (12).
10. Турбинный двигатель по п. 9, в котором силовой вал (12) и приводной вал (25) низкого давления являются концентрическими.
11. Турбинный двигатель по п. 1, в котором установлен высокоскоростной генератор переменного тока.
12. Турбинный двигатель по п. 1, снабженный теплообменником горячие газы - сжатый воздух между газами на выходе свободной турбины (11) и воздухом на выходе компрессора (1).
13. Летательный аппарат, приводимый в движение с помощью турбинного двигателя по одному из предыдущих пунктов.
RU2012115106/06A 2009-09-17 2010-09-29 Турбинный двигатель с параллельными валами RU2583186C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0956412 2009-09-17
FR0956412A FR2950109B1 (fr) 2009-09-17 2009-09-17 Turbomoteur a arbres paralleles
PCT/FR2010/052057 WO2011033244A1 (fr) 2009-09-17 2010-09-29 Turbomoteur a arbres paralleles

Publications (2)

Publication Number Publication Date
RU2012115106A RU2012115106A (ru) 2013-10-27
RU2583186C2 true RU2583186C2 (ru) 2016-05-10

Family

ID=42145186

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115106/06A RU2583186C2 (ru) 2009-09-17 2010-09-29 Турбинный двигатель с параллельными валами

Country Status (11)

Country Link
US (1) US9297305B2 (ru)
EP (1) EP2478198B1 (ru)
JP (1) JP5686811B2 (ru)
KR (1) KR101779627B1 (ru)
CN (1) CN102822473A (ru)
CA (1) CA2774453C (ru)
FR (1) FR2950109B1 (ru)
IN (1) IN2012DN02042A (ru)
PL (1) PL2478198T3 (ru)
RU (1) RU2583186C2 (ru)
WO (1) WO2011033244A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786896C2 (ru) * 2018-11-22 2022-12-26 Сафран Эркрафт Энджинз Силовая установка летательного аппарата и способ работы такой установки

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217370B2 (en) 2011-02-18 2015-12-22 Dynamo Micropower Corporation Fluid flow devices with vertically simple geometry and methods of making the same
FR2979964B1 (fr) * 2011-09-08 2014-04-11 Turbomeca Amortissement des vibrations d'un pignon par patch viscoelastique
FR3007069B1 (fr) * 2013-06-12 2015-07-17 Snecma Tourillon pour turbine haute pression, et turboreacteur incluant un tel tourillon
FR3015574B1 (fr) * 2013-12-20 2019-05-03 Safran Helicopter Engines Procede de commande automatique du regime de fonctionnement d'un turbomoteur d'un helicoptere, dispositif de commande correspondant et helicoptere equipe d'un tel dispositif
US10030580B2 (en) 2014-04-11 2018-07-24 Dynamo Micropower Corporation Micro gas turbine systems and uses thereof
US10202856B2 (en) * 2014-09-02 2019-02-12 United Technologies Corporation Decoupled gas turbine engine
NL2013537B1 (en) * 2014-09-26 2016-09-29 Innecs B V Apparatus for expanding a compressed combustion gas.
FR3035447B1 (fr) * 2015-04-27 2017-04-14 Turbomeca Turbomoteur pour un aeronef equipe d'un centreur a activation automatique
US9611787B2 (en) 2015-05-18 2017-04-04 General Electric Company Accessory apparatus and method of assembling accessories with a turbine engine
US10794273B2 (en) * 2015-07-01 2020-10-06 Raytheon Technologies Corporation Advanced distributed engine architecture-design alternative
EP3350076A4 (en) 2015-09-15 2019-05-08 Sikorsky Aircraft Corporation DRIVE SYSTEM ASSEMBLY FOR ROTATING AIRPLANE
US10883424B2 (en) 2016-07-19 2021-01-05 Pratt & Whitney Canada Corp. Multi-spool gas turbine engine architecture
US11035293B2 (en) 2016-09-15 2021-06-15 Pratt & Whitney Canada Corp. Reverse flow gas turbine engine with offset RGB
US10533559B2 (en) * 2016-12-20 2020-01-14 Pratt & Whitney Canada Corp. Reverse flow engine architecture
US10738709B2 (en) 2017-02-09 2020-08-11 Pratt & Whitney Canada Corp. Multi-spool gas turbine engine
US10808624B2 (en) 2017-02-09 2020-10-20 Pratt & Whitney Canada Corp. Turbine rotor with low over-speed requirements
US10215052B2 (en) 2017-03-14 2019-02-26 Pratt & Whitney Canada Corp. Inter-shaft bearing arrangement
US10746188B2 (en) 2017-03-14 2020-08-18 Pratt & Whitney Canada Corp. Inter-shaft bearing connected to a compressor boost system
US11788464B2 (en) * 2019-05-30 2023-10-17 Joseph Michael Teets Advanced 2-spool turboprop engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB124430A (en) * 1913-12-08 1920-05-20 Raoul Edouard Badin Improvements in Apparatus for Indicating Liquid Levels from a Distance.
US2755621A (en) * 1951-07-04 1956-07-24 Parsons & Marine Eng Turbine Gas turbine installations with output turbine by-pass matching the output turbine pressure drop
US3818695A (en) * 1971-08-02 1974-06-25 Rylewski Eugeniusz Gas turbine
FR2491137A1 (fr) * 1980-09-29 1982-04-02 Kronogard Sven Olof Mecanisme de turbines a gaz
RU2002165C1 (ru) * 1989-06-06 1993-10-30 Асеа Браун Бовери АГ (сн) Камера сгорани газовой турбины

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB594207B (en) 1945-06-28 1947-11-05 David Macleish Smith Improvements in internal combustion turbine plant for propulsion
US2933892A (en) * 1957-05-14 1960-04-26 United Aircraft Corp Angular free turbine rotor drive
FR1530430A (fr) * 1966-01-22 1968-06-28 Productions Ind Et De Distrib Turbo-machine à gaz ou analogue et ses diverses applications
FR1467556A (fr) * 1966-02-07 1967-01-27 Caterpillar Tractor Co Moteur à turbine à gaz
US3635019A (en) * 1970-01-20 1972-01-18 Turbokonsult Ab Gas turbine power plant
DE2744899C3 (de) * 1977-10-06 1982-02-11 Kernforschungsanlage Jülich GmbH, 5170 Jülich Gasturbinenanlage für den Antrieb von Fahrzeugen
GB2117052B (en) * 1982-03-20 1985-03-27 Penny Turbines Ltd Noel Gas turbine engine
US4704861A (en) * 1984-05-15 1987-11-10 A/S Kongsberg Vapenfabrikk Apparatus for mounting, and for maintaining running clearance in, a double entry radial compressor
DE161562T1 (de) * 1984-05-15 1986-04-10 Aktieselskabet Kongsberg Vaepenfabrikk, Kongsberg Einrichtung zum aufbau und zur erhaltung des arbeitsspieles von einem radialen verdichter mit doppeltem einlass.
DE3642506A1 (de) * 1986-12-12 1988-06-23 Mtu Muenchen Gmbh Gasturbinenanlage
US4825645A (en) * 1987-09-08 1989-05-02 General Motors Corporation Power turbine and reduction gear assembly
DE69109173T2 (de) * 1990-03-05 1995-08-31 Rolf Jan Mowill Hochdruck-Zweiwellengasturbine mit Radialrotoren.
US5572862A (en) * 1993-07-07 1996-11-12 Mowill Rolf Jan Convectively cooled, single stage, fully premixed fuel/air combustor for gas turbine engine modules
JP3030689B2 (ja) * 1995-09-08 2000-04-10 本田技研工業株式会社 ガスタービンエンジン
JPH10184386A (ja) * 1996-12-27 1998-07-14 Daihatsu Diesel Mfg Co Ltd ガスタービン装置
US6526757B2 (en) * 2001-02-13 2003-03-04 Robin Mackay Multi pressure mode gas turbine
US6606864B2 (en) 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
JP2003120326A (ja) * 2001-10-19 2003-04-23 Ishikawajima Harima Heavy Ind Co Ltd ターボシャフトエンジン
US6735954B2 (en) * 2001-12-21 2004-05-18 Pratt & Whitney Canada Corp. Offset drive for gas turbine engine
US6931856B2 (en) * 2003-09-12 2005-08-23 Mes International, Inc. Multi-spool turbogenerator system and control method
US7500365B2 (en) * 2005-05-05 2009-03-10 United Technologies Corporation Accessory gearbox

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB124430A (en) * 1913-12-08 1920-05-20 Raoul Edouard Badin Improvements in Apparatus for Indicating Liquid Levels from a Distance.
US2755621A (en) * 1951-07-04 1956-07-24 Parsons & Marine Eng Turbine Gas turbine installations with output turbine by-pass matching the output turbine pressure drop
US3818695A (en) * 1971-08-02 1974-06-25 Rylewski Eugeniusz Gas turbine
FR2491137A1 (fr) * 1980-09-29 1982-04-02 Kronogard Sven Olof Mecanisme de turbines a gaz
RU2002165C1 (ru) * 1989-06-06 1993-10-30 Асеа Браун Бовери АГ (сн) Камера сгорани газовой турбины

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАСЛОВ П.А. Судовые газотурбинные установки, Ленинград, Судостроение, 1973, стр. 106-107, рис. 52. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786896C2 (ru) * 2018-11-22 2022-12-26 Сафран Эркрафт Энджинз Силовая установка летательного аппарата и способ работы такой установки

Also Published As

Publication number Publication date
CA2774453C (fr) 2018-01-02
KR101779627B1 (ko) 2017-09-18
CA2774453A1 (fr) 2011-03-24
EP2478198B1 (fr) 2017-06-21
FR2950109A1 (fr) 2011-03-18
KR20130047681A (ko) 2013-05-08
IN2012DN02042A (ru) 2015-08-21
JP2013527357A (ja) 2013-06-27
EP2478198A1 (fr) 2012-07-25
FR2950109B1 (fr) 2012-07-27
WO2011033244A1 (fr) 2011-03-24
RU2012115106A (ru) 2013-10-27
CN102822473A (zh) 2012-12-12
US20120167591A1 (en) 2012-07-05
JP5686811B2 (ja) 2015-03-18
US9297305B2 (en) 2016-03-29
PL2478198T3 (pl) 2017-10-31

Similar Documents

Publication Publication Date Title
RU2583186C2 (ru) Турбинный двигатель с параллельными валами
US11041443B2 (en) Multi-spool gas turbine engine architecture
US11041444B2 (en) Gas turbine engine with differential gearbox
US10883424B2 (en) Multi-spool gas turbine engine architecture
US11125239B2 (en) Reverse flow engine architecture
US8192141B1 (en) Dual compression rotor
US9796264B2 (en) Driveshaft for the gearbox of auxiliary machines of a turbojet engine
US2504181A (en) Double compound independent rotor
US20100223904A1 (en) Gas turbine engine
US20100192595A1 (en) Gas turbine engine assembly and methods of assembling same
US20210229796A1 (en) Planetary gearbox for gas turbine engine
US20200141327A1 (en) Auxiliary power unit
US20220074349A1 (en) Split compressor gas turbine engine
US8075438B2 (en) Apparatus and method for transmitting a rotary input into counter-rotating outputs
US20190345949A1 (en) Aircraft propulsion system
US9982676B2 (en) Split axial-centrifugal compressor
EP0452642B1 (en) High efficiency, twin spool, radial-high pressure, gas turbine engine
EP0381755A1 (en) High pressure intercooled turbine engine
CN103089437A (zh) 燃气叶轮机
GB2426290A (en) Intake and exhaust arrangement in a gas turbine engine

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190930