RU2582198C1 - Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии - Google Patents

Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии Download PDF

Info

Publication number
RU2582198C1
RU2582198C1 RU2014146853/10A RU2014146853A RU2582198C1 RU 2582198 C1 RU2582198 C1 RU 2582198C1 RU 2014146853/10 A RU2014146853/10 A RU 2014146853/10A RU 2014146853 A RU2014146853 A RU 2014146853A RU 2582198 C1 RU2582198 C1 RU 2582198C1
Authority
RU
Russia
Prior art keywords
triphosphate
triphosphates
linker
labeled
fluorescently
Prior art date
Application number
RU2014146853/10A
Other languages
English (en)
Inventor
Вадим Владимирович Анненков
Дмитрий Владимирович Пышный
Елена Николаевна Даниловцева
Павел Евгеньевич Воробьев
Станислав Николаевич Зелинский
Ольга Никитична Верхозина
Михаил Александрович Грачев
Original Assignee
Федеральное государственное бюджетное учреждение науки Лимнологический институт Сибирского отделения Российской академии наук (ЛИН СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Лимнологический институт Сибирского отделения Российской академии наук (ЛИН СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Лимнологический институт Сибирского отделения Российской академии наук (ЛИН СО РАН)
Priority to RU2014146853/10A priority Critical patent/RU2582198C1/ru
Application granted granted Critical
Publication of RU2582198C1 publication Critical patent/RU2582198C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Настоящее изобретение относится к аналитической биоорганической химии. Предложенные флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты имеют общую формулу H-Л-Ф, где Н - модифицированный по конечному атому фосфора природный дезоксирибонуклеозидтрифосфат или рибонуклеозидтрифосфат, Л - линкерная группа, присоединенная к конечному атому фосфора и построенная на основе вторичных диаминов, Ф - репортерная флуоресцентная группа, присоединенная к линкеру посредством вторичной аминогруппы. При этом способ синтеза флуоресцентно-меченных нуклеотидов включает присоединение линкера к флуорофору, активацию трифосфатных групп путем превращения их в циклическую ангидридную форму, взаимодействие активированных трифосфатов с красителями, содержащими линкерную группу, и очистку целевых соединений. Предложенные флуоресцентно-меченные нуклеотиды могут быть использованы в методах одномолекулярного секвенирования, расширяя диапазон возможных условий его проведения. 3 з.п. ф-лы, 4 ил., 1 табл., 8 пр.

Description

Область техники
Изобретение относится к аналитической биоорганической химии, к области генной диагностики, в частности, для определения первичной последовательности нуклеиновых кислот (секвенирования).
Уровень техники
Методы секвенирования ДНК и РНК бурно развивались с момента их появления в 60-70-х годах XX века как важного раздела аналитической биоорганической химии и явились основой геномных исследований. Благодаря секвенированию определены и исследованы многие геномные последовательности и транскриптомы, изучены взаимодействия ДНК и белков [1]. Создание быстрых и дешевых методов секвенирования как можно меньшего количества ДНК является актуальной задачей. Одним из наиболее перспективных подходов является метод одномолекулярного секвенирования в режиме реального времени SMRT (single molecule real-time), разрабатываемый компанией Pacific Biosciences (США) [2]. Предложенный метод основан на проведении непрерывного синтеза одной молекулы ДНК с использованием гексафосфатов дезоксирибонуклеозидов, флуоресцентно-меченных четырьмя оптически различимыми флуорофорами, выполняющими роль репортерных групп. При этом необходимо, чтобы флуоресцентная метка была присоединена через некий линкер к терминальной части олигофосфатного фрагмента дезоксирибонуклеозида.
В настоящее время описано получение ряда нуклеотидов, флуоресцентно-меченных по фосфатному фрагменту. Общая схема синтеза включает два этапа:
1. Получение соединения линкер-олигофосфат-нуклеозид/дезоксинуклеозид. Для этого существуют два пути. В случае, если молекула должна содержать трифосфатный фрагмент, то линкер прикрепляют к коммерчески доступному природному трифосфату. Если требуется большее количество фосфатных звеньев, то сначала наращивают фосфатные звенья на одном из концов молекулы линкера и лишь затем связывают полученную молекулу с нужным трифосфатом.
2. Прикрепление к оставшемуся свободному концу линкера (как правило, это аминогруппа или спиртовый гидроксил) молекулы требуемого красителя. Для этого используют дорогостоящие коммерчески доступные красители, содержащие в своей структуре соответствующую высокореакционноспособную группу, как, например, -C(O)-O-Su (Su = сукцинимид).
В качестве линкеров используют аминоспиртовые фрагменты [3-5], диамины [6-8]. Цепь линкера может включать ненасыщенные связи [8], ароматические группы [8], участки полиэтиленгликоля [9-11], амидные группы [9, 12].
В качестве репортерных флуорофоров могут быть использованы фрагменты различной химической природы, активные в различных диапазонах длин волн, такие как: кумариновые соединения [10], родаминовые структуры [7, 8, 11, 13], производные флуоресцеина [8], а также цианиновые соединения [12, 14]. Родаминовые и флуоресцеиновые производные имеют обширную историю изучения и применения, обладают высоким квантовым выходом. Недостатком многих родаминовых и флуоресцеиновых красителей является существование в водных растворах различных равновесных форм, обладающих различными флуоресцентными характеристиками. На преобладание той или иной формы в растворе сильное влияние оказывает его pH [15, 16], что объясняется наличием в структуре красителей карбоксильной группы, способной в различной степени ионизироваться или замыкать либо спироамидный (для родамина), либо спиролактонный цикл (флуоресцеин в кислой среде):
Figure 00000001
Нейтральная спиролактонная форма не поглощает в видимой области спектра, тогда как в растворе при рН 12 флуоресцеин имеет максимальный квантовый выход 0,93 [17].
Наиболее близкими к предлагаемым соединениям являются меченые нуклеотиды, применяющиеся в методе одномолекулярного секвенирования [14], получаемые путем пятистадийного синтеза [18]. На первой стадии получают монофосфат из защищенного по аминогруппе 6-аминогексанола (Fmoc-HN-(CH2)6-OH, где Fmoc = 9-флуоренилметоксикарбонил) и хлорокиси фосфора. На второй стадии к имеющемуся фосфату присоединяют следующий фосфатный фрагмент реакцией с трибутиламмониевой солью фосфорной кислоты и 1,1-карбонилдиимидазолом. После необходимого удлинения фосфатной цепочки, связанной с линкером, продукт реакции обрабатывают триэтиламмониевой солью необходимого трифосфата, например, дГТФ (дезоксиаденозинтрифосфат) в присутствии 1,1-карбонилдиимидазола. При помощи водного раствора триэтиламина с полученного соединения снималается Fmoc-защита. На последнем этапе к полученному соединению (H2N-(СН2)6-O-гексафосфат-нуклеозид) привязывают требуемый флуорофор через амидную группировку. Для этого используют дорогостоящие коммерческие флуоресцентные красители с реакционноспособной сложноэфирной группой. Следует отметить, что на каждой стадии синтеза требуется очистка промежуточных соединений методом обращеннофазной высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ). Суммарный выход в двух заключительных стадиях (введение в молекулу фрагмента трифосфат-дезоксирибонуклеозид, а затем флуорофора) составляет менее 7% от теоретического.
Таким образом, недостатком известных флуоресцентно-меченных нуклеотидов является сложность их синтеза, включающего несколько реакционных стадий с участием полифосфатов, достаточно легко гидролизующихся в присутствии воды, что обусловливает необходимость сложной и дорогостоящей очистки продуктов реакции на каждой стадии. Флуоресцентные метки в известном способе вводят с использованием дорогостоящих коммерческих реагентов, обычно применяемых не столько для синтеза новых соединений, сколько для окрашивания биополимеров (белки, полисахариды и др.) или живых клеток, что требует существенно меньшего расхода реагента.
Раскрытие изобретения
Техническим результатом заявляемого изобретения является снижение стоимости флуоресцентно-меченных нуклеотидов, пригодных для использования в аналитической биоорганической химии, в частности в методах одномолекулярного секвенирования, расширение диапазона возможных условий проведения анализа этим методом.
Предлагаемые флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты имеют общую формулу Н-Л-Ф, где:
Н - модифицированный по конечному атому фосфора природный дезоксирибонуклеозидтрифосфат или рибонуклеозидтрифосфат,
Л - линкерная группа, присоединенная к конечному атому фосфора,
Ф - репортерная флуоресцентная группа.
Линкерная группа, построенная на основе вторичных диаминов, имеет формулу:
Figure 00000002
N,N′-диметил-1,3-диаминопропан (N2)
или может содержать третичную аминогруппу:
Figure 00000003
N1,N3-диметил-N1-[3-(метиламино)пропил]-1,3-пропандиамин (N3)
Флуоресцентная группа присоединена к линкеру посредством вторичной аминогруппы, а именно:
Figure 00000004
Figure 00000005
Figure 00000006
где пунктирной линией обозначено продолжение структуры линкера.
Новые флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты получают при осуществлении следующего способа.
1. Присоединяют линкер к флуорофору путем использования красителей, содержащих активный атом галогена (хлор или бром).
2. Активацию дезоксирибонуклеозидтрифосфатов или рибонуклеозидтрифосфатов проводят путем превращения их в циклическую ангидридную форму воздействием на них дициклогексилкарбодиимида.
3. Осуществляют взаимодействие активированных дезоксирибонуклеозидтрифосфатов или рибонуклеозидтрифосфатов с красителями, содержащими линкерную группу.
4. Проводят очистку целевых соединений осаждением, промывкой органическими растворителями и хроматографированием.
В качестве модифицированных по конечному атому фосфора природных дезоксирибонуклеозидтрифосфатов или рибонуклеозидтрифосфатов выступают соединения из следующего списка: аденозин-5′-трифосфат (АТФ), гуанозин-5′-трифосфат (ГТФ), цитидин-5′-трифосфат (ЦТФ), уридин-5′-трифосфат (УТФ), 2′-дезоксиаденозин-5′-трифосфат (дАТФ), 2′-дезоксигуанозин-5′-трифосфат (дГТФ), 2′-дезоксицитидин-5′-трифосфат (дЦТФ) и тимидин-5′-трифосфат (ТТФ).
Линкерная группа присоединена к конечному атому фосфора посредством фосфамидной связи:
Figure 00000007
, здесь пунктирными линиями показаны продолжение структуры трифосфатного фрагмента и линкера.
Репортерной флуоресцентной группой являются производные веществ из ряда триарилметановых (ксантеновых), цианиновых и нитробензофуразановых красителей: флуоресцеин, родамин Б, родамин 101, цианиновый краситель neo-Cy5 и 7-нитробензофуразан.
Краткое описание чертежей
Фиг. 1 - электрофореграмма, подтверждающая возможность получения полноразмерного продукта полимеризации ДНК при замене одного из нуклеозидтрифосфатов на его меченое производное (дАТФ-Су-5-N2);
Фиг. 2 - электрофореграмма, подтверждающая возможность получения полноразмерного продукта полимеризации ДНК при использовании только меченых нуклеозидтрифосфатов;
Фиг. 3 - схема для оценки возможной длины прочтения нуклеотидной последовательности при секвенировании ДНК с использованием меченых нуклеозидтрифосфатов;
Фиг. 4 - цифровой снимок флуоресценции полос ДНК в геле после электрофореза и окрашивания с наглядным результатом эксперимента по оценке длины прочтения нуклеотидной последовательности
Осуществление изобретения
Возможность использования новых меченых нуклеозидтрифосфатов в реакциях секвенирования, основанных на реакции синтеза ДНК, показана при проведении реакций удлинения праймеров с ДНК-зависимой ДНК-полимеразой и различными матрицами с использованием различных наборов, включающих как все 4 нуклеозидтрифосфата, меченных различными репортерными флуоресцентными группами, так и наборы, содержащие лишь один меченый нуклеозидтрифосфат.
Возможность осуществления способа иллюстрируют приведенные ниже примеры его проведения в лабораторных условиях. Примеры 1-4 описывают введение линкеров с концевой аминогруппой в различные флуоресцентные красители.
При этом в качестве прекурсоров используют коммерчески доступные красители типа родамина В, родамина 101 и флуоресцеина.
Пример 5 посвящен синтезу целевого продукта путем реакции полученных соединений с трифосфатными нуклеотидами. Примеры 6-8 показывают возможность использования новых меченых нуклеотидов в реакциях полимеризации, а именно при синтезе новых молекул ДНК с использованием существующих олиго- и полинуклеотидов в качестве матриц.
Пример 1
Синтез флуоресцентного красителя Flu-N2 (метиловый эфир O-{2-[(3-метиламинопропил)(метил)амино]этил} флуоресцеина) проводят по следующей схеме:
Figure 00000008
Figure 00000009
Прекурсор (Flu-Br - метиловый эфир О-[2-бромэтил] флуоресцеина) синтезируют по методике, опубликованной в [19]. Реакционную смесь из 0,153 г (0,338 ммоль) Flu-Br, 0,570 г (5,58 ммоль) N,N′-диметил-1,3-диаминопропана и 6 мл ацетонитрила перемешивают на магнитной мешалке при температуре 73-75°С в течение двух часов. После этого реакционную смесь выпаривают в вакууме водоструйного насоса до образования вязкой коричневой массы. Полученный остаток перемешивают с 3 мл хлористого метилена (ХМ) и 1,17 г 47%-ного водного раствора карбоната калия. Верхний коричневый слой ХМ отделяют от нижнего водного слоя, который, в свою очередь, экстрагируют ХМ (2×2 мл). Органические фазы объединяют и осушают безводным карбонатом калия. После отделения осушителя (фильтрование через бумажный фильтр) полученный раствор выпаривают досуха в вакууме водоструйного насоса. Остаток многократно растирают с н-гексаном. Растворитель отделяют от твердой фазы центрифугированием, и процедуру повторяют с новой порцией н-гексана. После высушивания твердого остатка в вакууме водоструйного насоса продукт подвергают флеш-хроматографической очистке на силикагеле. Элюент - изопропанол: 25%-ный водный триметиламин: хлористый метилен (объемное соотношение 90:10:5). Выход целевого продукта Flu-N2 составляет 0,0338 г или 21% от теоретического.
Пример 2
Получение флуоресцентного красителя Rhod-B-N2 (2-(3-(диэтиламино)-6-(диэтилимино)-6Н-ксантен-9-ил)-N-метил-N-(3-(метиламино)пропил бензамид) проводят по следующей схеме:
Figure 00000010
Синтез красителя Rhod-B-N2 проводят по аналогии с методикой из [20]. К перемешиваемому раствору основания родамина Б (1,00 г, 2,26 ммоль) в 1,2-дихлорэтане (12 мл) в течение пяти минут прибавляют 0,6 мл хлорокиси фосфора. Полученный раствор кипятят под обратным холодильником четыре часа. Реакционную смесь после охлаждения выпаривают в вакууме. Полученный неочищенный хлорангидрид родамина Б растворяют в 66 мл 1,2-дихлорэтана. После этого в течение 140 минут 4 мл приготовленного раствора вводят при помощи шприца в перемешиваемую при комнатной температуре смесь 2,20 г (21,5 ммоль) N,N′-диметил-1,3-диаминопропана и 3 мл 1,2-дихлорэтана. Через 17 часов к реакционной смеси прибавляют 3,5 г 32%-ного раствора карбоната калия. Органический слой отделяют, а водный экстрагируют хлористым метиленом (2×2 мл). После осушения объединенных органических фаз безводным карбонатом калия раствор выпаривают досуха в вакууме водоструйного насоса, а остаток многократно растирают с диэтиловым эфиром. После декантации раствора продукт заливают новой порцией эфира и растирание повторяют. Полученную темную розовато-фиолетовую массу высушивают в вакууме и затем очищают методом флеш-хроматографии на обращеннофазном С18-силикагеле. Элюент: H2O/CH3CN/HCOOH = 63,2/36,7/0,1 (объемное соотношение). Выход Rhod-B-N2 составляет 0.316 г (формиат) или 21% от теоретического.
Пример 3
Флуоресцентный краситель Rhod-101-N2, имеющий следующую структурную формулу:
Figure 00000011
синтезируют из внутренней соли родамина 101 аналогично синтезу красителя Rhod-B-N2.
К перемешиваемому раствору внутренней соли родамина 101 (1,11 г, 2,26 ммоль) в 1,2-дихлорэтане (12 мл) в течение пяти минут прибавляют 0,6 мл хлорокиси фосфора. Полученный раствор кипятят под обратным холодильником четыре часа. Реакционную смесь после охлаждения выпаривают в вакууме. Полученный неочищенный хлорангидрид родамина 101 растворяют в 66 мл 1,2-дихлорэтана. После этого в течение 140 минут 4 мл приготовленного раствора вводят при помощи шприца в перемешиваемую при комнатной температуре смесь 2,20 г (21,5 ммоль) N,N′-диметил-1,3-диаминопропана и 3 мл 1,2-дихлорэтана. Через 17 часов к реакционной смеси прибавляют 3,5 г 32%-ного раствора карбоната калия. Органический слой отделяют, а водный экстрагируют хлористым метиленом (2×2 мл). После осушения объединенных органических фаз безводным карбонатом калия раствор выпаривают досуха в вакууме водоструйного насоса, а остаток многократно растирают с диэтиловым эфиром. После декантации раствора продукт заливают новой порцией эфира и растирание повторяют. Полученную темную розовато-фиолетовую массу высушивают в вакууме и затем очищают методом флеш-хроматографии на обращеннофазном С18-силикагеле. Элюент: H2O/CH3CN/HCOOH = 63,2/36,7/0,1 (объемное соотношение). Выход конечного продукта Rhod-101-N2 (формиат) составляет 0,161 г или 10% от теоретического.
Пример 4
Получение флуоресцентного красителя Cy5-N2 проводят по следующей схеме:
Figure 00000012
Figure 00000013
Исходный краситель neo-Су5-Cl получают согласно опубликованной методике [21]. К раствору 0,173 г (0,242 ммоль) Neo-Cy5-Cl (калийная соль) в 4 мл дистиллированной воды добавляют 0,380 г (3,72 ммоль) N,N′-диметил-1,3-диаминопропана. Полученную реакционную смесь оставляют в атмосфере аргона при комнатной температуре в темном месте на 20 часов. После чего растворитель выпаривают на роторном испарителе при подогреве теплой водяной баней (40°С), а остаток выдерживают в вакууме масляного насоса в течение одного часа. Полученную темную липкую массу тщательно растирают с 5 мл сухого диоксана. После декантации диоксановой фазы процедуру повторяют дважды с использованием диэтилового эфира (2×5 мл). Оставшийся продукт растворяют в 3,5 мл метанола (нерастворимую часть отделяют центрифугированием) и переосаждают из 10 мл диоксана. Выпавший осадок отделяют от раствора центрифугированием и трижды промывают диэтиловым эфиром (3×5 мл). Высушенный на водоструйном насосе продукт подвергают флеш-хроматографической очистке на силикагеле. Сначала элюирование проводят смесью ледяная уксусная кислота/дистиллированная вода 1:10 (по объему), затем дистиллированной водой и в конце смесью дистиллированная вода/ метанол/триэтиламин 1:1:1 (по объему). Выход Cy5-N2 составляет 0,0538 г или 29,9% от теоретического.
Следует отметить, что использование в качестве прекурсоров недорогих коммерчески доступных красителей типа родамина В, родамина 101 и флуоресцеина не только не ухудшает свойств целевого продукта, но также расширяет диапазон кислотности среды, в котором возможно проведение секвенирования. Так в трех из пяти предложенных соединений (производные родаминовой и флуоресцеиновой структур) имеющиеся карбоксильные группы находятся либо в форме вторичных амидов, либо в сложноэфирной форме, что исключает возможность процессов замыкания-раскрытия спиролактонного/спироамидного цикла и соответствующих нежелательных изменений флуоресцентных свойств данных соединений в ходе секвенирования.
Синтез флуоресцентно-меченных нуклеозидтрифосфатов приведен в примере 5.
Пример 5
Для синтеза используют трифосфаты, полученные из Aldrich, в натриевой форме: тимидин-5′-трифосфат (ТТФ), 2′-дезоксиаденозин-5′-трифосфат (дАТФ), 2′-дезоксицитидин-5′-трифосфат (дЦТФ), 2′-дезоксигуанозин-5′-трифосфат (дГТФ) и красители, синтезированные, как описано выше - Flu-N2, Rhod-B-N2, Rhod-101-N2 и Cy5-N2, а также NBD-N2 и NBD-N3, полученные в соответствии с [22].
Натриевые соли трифосфатов превращают в триэтиламмониевые соли путем катионного обмена, пропуская раствор солей (100 мг в 5 мл деионизованной воды) через 5 мл катионита КУ-2-8 (ГОСТ 20298-74) в триэтиламониевой форме. Полученные растворы высушивают лиофильно и переосаждают из н-бутилового спирта в эфир для получения солей трифосфатов в виде порошка.
Активацию трифосфатов проводят путем перевода их в циклическую форму аналогично [23]. 10 мг сухой триэтиламмониевой соли трифосфата растворяют в 0,15 мл сухого ДМСО, затем добавляют 0,01 мл сухого пиридина. Вакуумируют при давлении 1 мм рт.ст. в течение 1 часа. После вакуумирования к соли трифосфата добавляют 18 мг дициклогексилкарбодиимида (ДСС), растворяют и выдерживают 1 час на шейкере. Выпавший осадок мочевины отфильтровывают.
Отфильтрованный раствор трифосфата в ДМСО смешивают с раствором красителя в метаноле и выдерживают 1 час на шейкере (табл. 1). Затем высаживают в 1% раствор LiCl в ацетоне, отмывают ацетоном, смесью ацетона с метанолом - 2:1 и сушат лиофильно. Конкретные загрузки реагентов для различных трифосфатов и красителей представлены в табл. 1.
Очистку полученных меченых трифосфатов проводят с помощью ВЭЖХ на хроматографе Милихром 02 с УФ детекцией (колонка 2,0×75 мм, ProntoSil 120-5-C18AQ). Объем пробы 50-70 мкл. Подвижная фаза: элюент А - буфер 20 мМ ацетат аммония (рН 5,5) (для ТТФ-Flu-N2 и дЦТФ-R-101-N2) или буфер 20 мМ формиат аммония (рН 7,5) (для АТФ-NBD-N2, АТФ-NBD-N3, дАТФ-RB-N2, дГТФ-RB-N2 и дАТФ-Су-5-N2); элюент Б - ацетонитрил. Градиент растворителей применяют в следующей последовательности: от 10% Б до 50% Б в течение 7,5 мин, затем 50% Б в течение 10,5 мин, со скоростью 0,150 мл/мин (температура колонки 35°С). УФ детектирование проводят на 220, 250, 264, 286, 360 нм. Времена удерживания для АТФ-NBD-N2 - 2,5 мин, АТФ-NBD-N3 - 3,5 мин, ТТФ-Flu-N2 - 5,5 мин; дАТФ-NBD-N3 - 4.6 мин; дЦТФ-R-101-N2 - 8 мин; дГТФ-RB-N2 - 8 мин; дАТФ-Су-5-N2 - 5 мин. Для подтверждения чистоты полученных фракций проводят аналитическое рехроматографирование.
Структуру полученных соединений подтверждают данными масс-спектрометрического анализа с прямым вводом вещества. Используют хромато-масс-спектрометр Agilent 6210 TOF LC/MS (времяпролетный жидкостной хроматограф/масс-спектрометр) в режиме электрораспыления.
Скорость потока подвижной фазы 0,1 мл/мин, в качестве подвижных фаз использовали 0,1% НСООН в воде (в режиме катионов) и 5 мМ NH4HCO3 в воде (в режиме анионов). Условия записи масс-спектров следующие: диапазон регистрируемых m/z от 100 до 2000, время сканирования 1 с, напряжение на капиляре 3500 В, температура газа 325°С, ток азота 5 л/мин. Пробы растворяют в деионизованной воде. Объем пробы 2 мкл.
Молекулярные массы соединений (m/z) составляют:
ТТФ-Flu-N2 (М - молекулярная масса соединения в форме кислоты) [М-Н]- вычислено: М 937,186; C38H44N4O18P3; найдено: М 937,189; вычислено: [М-2Н]2- 468,089; найдено: 468,082.
дЦТФ-Rhod-101-N2 (М - молекулярная масса соединения, с учетом элиминирования ОН- группы из дезоксирибоксильного фрагмента) [М]+ вычислено: 1008,322; C46H57N7O13P3; найдено: 1008,323.
дГТФ-Rhod-B-N2 (М - молекулярная масса соединения в форме кислоты) [М+Н]2+ вычислено: 508,665; C43H58N9O14P3; найдено: М 508,661.
дАТФ-Су-5-N2 (М - молекулярная масса соединения в форме кислоты) [М]- вычислено: 1213,305; C47H64N10O18P3S2; найдено: 1213,302; [М-2Н]2- вычислено: 606,149; найдено: М 606,145.
дАТФ-NBD-N3 (М - молекулярная масса соединения в форме кислоты) [М+Н]+ вычислено: 811,193; C25H39N11O14P3; найдено: М 811,190; [М-Н]- вычислено: 809,182; C25H37N11O14P3; найдено: 809,188.
АТФ-NBD-N2 (М - молекулярная масса соединения в форме кислоты) [М+Н]+ вычислено: 755,110; C21H30N10O15P3; найдено: М 755,111; [М-Н]- вычислено: 753,094; C21H28N10O15P3; найдено: М 753,092.
АТФ-NBD-N3 (М - молекулярная масса соединения в форме кислоты) [М+Н]+ вычислено: 826,184; C25H39N11O15P3; найдено: М 826,189; [М-Н]- вычислено: 824,168; C25H37N11O15P3; найдено: 824,158. [М-2Н]2- вычислено: 411,580; C25H36N11O15P3; найдено: М 411,582.
АТФ-Rhod-B-N2 (М - молекулярная масса соединения в форме кислоты) [М]+ вычислено: 1016,324; C43H57N9O14P3; найдено: 1016,326; [М+Н]2+ вычислено: 508,665; C43H58N9O14P3; найдено: 508,667. [М-2Н]- вычислено: 1014,308; C43H55N9O14P3; найдено: 1014,302.
Подтверждение применимости меченых нуклеозидтрифосфатов в качестве субстратов ДНК-полимеразы приведено в Примере 6.
Пример 6
Полимеразную цепную реакцию (ПЦР) проводят при использовании модельной ДНК-матрицы, меченого праймера, набора из трех природных (3 дНТФ) и одного меченого (дНТФ-Х) трифосфата. В полном наборе должны быть представлены все четыре дезоксинуклеозидтрифосфата. Например, если тестируется меченый ТТФ, то должны присутствовать природные дАТФ, дЦТФ и дГТФ.
Figure 00000014
Раствор меченого трифосфата предварительно обрабатывают термоинактивируемой щелочной фосфатазой. Для этого в реакционную смесь объемом 10 мкл, содержащую 3,2·10-4 М модифицированного дНТФ, 10 мМ Трис-HCl рН 8,5, 10 мМ MgCl2, 100 мМ NaCl, 1 мМ DTT, прибавляют 1 ед. акт. термолабильной щелочной фосфатазы и выдерживают в течение 17 ч при 25°С.
В реакционную смесь объемом 10 мкл, содержащую 3·10-5 М матрицы, 1·10-5М праймера, содержащего флуоресцентную метку (Су5), 2·10-4 М немодифицированных дНТФ, 1·10-4 М меченого дНТФ-Х, обработанного щелочной фосфатазой, 10 мМ Трис-HCl рН 8,8, 50 мМ KCl, 0,1% Tween 20, прибавляют 1 ед. акт. Taq-полимеразы. Выдерживают в течение 3 мин при 95°С, затем проводят реакцию при 50°С в течение 1 ч. Реакцию останавливают прибавлением 0,5 мл 2% раствора LiClO4 в ацетоне, центрифугируют 3 мин при 13200 об/мин, удаляют супернатант и промывают осадок 0,5 мл ацетона с повторным центрифугированием. Осадок растворяют в 5 мкл 95% формамида с лидерными красителями (0,05% бромфенолового синего и 0,05% ксиленцианола FF), полученные пробы анализируют с помощью денатурирующего электрофореза в 15% полиакриламидном геле.
После проведения денатурирующего 15% ПААГ электрофореза сканируют гель при длине волны возбуждения 635 нм и регистрируют флуоресценцию при длине волны 695 нм с помощью сканера Molecular Imager FX ProPlus (BioRad, США). Вывод о применимости меченого трифосфата делают на основании наличия в полосе геля специфического пятна, соответствующего по подвижности пятну полноразмерного продукта, получаемого в присутствии всех четырех немеченых трифосфатов.
Данные по меченому трифосфату дАТФ-Су-5-N2 показаны на Фиг. 1.
Дорожка 1 - реакция проведена, как описано в примере, дорожка 2 - реакция проведена в присутствии только ТТФ, дЦТФ, дГТФ, трифосфат А (меченый или немеченый) отсутствует, дорожка 3 - реакция проведена без матрицы, дорожка 4 - использованы только немеченые трифосфаты - ТТФ, дЦТФ, дГТФ и дАТФ. В дорожке 1 наблюдается такой же полноразмерный продукт, как и в дорожке 4, что свидетельствует о применимости трифосфата дАТФ-Су-5-N2 в реакции полимеризации ДНК Taq-полимеразой.
Подтверждение возможности получения полноразмерного продукта полимеризации ДНК при использовании только меченых трифосфатов приведено в Примере 7.
Пример 7.
ИТ TP проводят по следующей схеме:
Figure 00000015
Растворы меченых нуклеозидтрифосфатов ТТФ-Flu-N2, дАТФ-Су-5-N2, дЦТФ-Rhod-101-N2, дГТФ-Rhod-B-N2, дАТФ-NBD-N3 обрабатывают щелочной фосфатазой, как описано в примере 6. Готовят эквимолярные смеси четырех меченых трифосфатов следующего состава: ТТФ-Flu-N2, дАТФ-Су-5-N2, дЦТФ-Rhod-101-N2, nTTO-Rhod-B-N2 (смесь 1); ТТФ-Flu-N2, дАТФ-NBD-N3, дСТФ-Rhod-101-N2, дГТФ-Rhod-B-N2 (смесь 2). В реакционную смесь объемом 10 мкл, содержащую 3·10-5 М матрицы, 1·10-5 М праймера, меченого по 5′-концу остатком 32Р-фосфорной кислоты, по 1·10-4 М меченых дНТФ (концентрация 1·10-4 М по каждому трифосфату достигается добавлением определенного количества смеси 1 или 2), 10 мМ Трис-HCl рН 8,8, 50 мМ KCl, 0,1% Tween 20, прибавляют 1 ед. акт. Taq-полимеразы. Смесь выдерживают в течение 3 мин при 95°С, затем проводят реакцию при 50°С в течение 1 ч. Реакцию останавливают прибавлением 0,5 мл 2% раствора LiClO4 в ацетоне, центрифугируют 3 мин при 13200 об/мин, удаляют супернатант и промывают осадок 0,5 мл ацетона с повторным центрифугированием. Осадок растворяют в 5 мкл 95% формамида с лидерными красителями (0,05% бромфенолового синего и 0,05% ксиленцианола FF), полученные пробы анализируют с помощью денатурирующего электрофореза в 15% полиакриламидном геле, гель высушивают и радиоавтографируют.
На Фиг. 2. приведены результаты применения различных смесей меченых трифосфатов в качестве субстратов для Taq-полимеразы.
Дорожка 1 - реакция проведена со смесью 1, дорожка 2 - реакция проведена со смесью 2, дорожка 3 - реакция проведена без матрицы, дорожка 4 - реакция проведена с природными трифосфатами, не содержащими флуоресцентных меток.
В примере 8 дана оценка возможной длины прочтения нуклеотидной последовательности при секвенировании ДНК с использованием меченых трифосфатов.
Пример 8
Оценку возможной длины прочтения нуклеотидной последовательности при секвенировании ДНК с использованием меченых трифосфатов проводят по схеме, изображенной на Фиг. 3.
В качестве матрицы используют кольцевую одноцепочечную ДНК бактериофага М13. Проводят полимеризацию ДНК, используя только меченые трифосфаты (после предварительной обработки щелочной фосфатазой). В процессе реакции ДНК-полимераза достраивает вторую цепь ДНК. По завершении реакции удаляют оставшийся одноцепочечным участок с помощью S1 нуклеазы и оценивают длину оставшегося двуцепочечного участка с помощью электрофореза в присутствии набора стандартов длины двуцепочечной ДНК.
Для проведения реакции в реакционную смесь объемом 10 мкл, содержащую 4·10-8 М ДНК фага М13, 1·10-7 М праймера, по 1·10-4 М меченых дПТФ (ТТФ-Flu-N2, дАТФ-Су-5-N2, дЦТФ-Rhod-101-N2, дГТФ-Rhod-B-N2), обработанных щелочной фосфатазой, 10 мМ Трис-HCl рН 8,8, 50 мМ KCl, 0,1% Tween 20, прибавляют 1 ед. акт. Taq-полимеразы. Выдерживают в течение 3 мин при 95°С, затем проводят реакцию в течение 2 ч при 50°С. Из реакционной смеси отбирают аликвоту 5 мкл, прибавляют 0,5 мл 2% раствора LiClO4 в ацетоне, центрифугируют 3 мин при 13200 об/мин, удаляют супернатант и промывают осадок 0,5 мл ацетона с повторным центрифугированием. К оставшемуся объему прибавляют 5 мкл раствора, содержащего 80 мМ ацетата натрия, 600 мМ NaCl, 100 ед. акт. S1 нуклеазы, выдерживают 10 мин при 37°С и упаривают на вакуумном испарителе при 20°С. Полученные пробы растворяют в 10% водном глицерине с лидерными красителями (0,05% бромфенолового синего и 0,05% ксиленцианола FF) и анализируют с помощью нативного электрофореза в 6% полиакриламидном геле.
Гель окрашивают раствором этидия бромида (5 мкг/мл) и регистрируют флуоресценцию с помощью цифровой видеокамеры при возбуждении ультрафиолетовым излучением (λ=254 нм).
На Фиг. 4 приведен цифровой снимок флуоресценции полос ДНК в геле после электрофореза и окрашивания с наглядным результатом эксперимента по оценке длины прочтения нуклеотидной последовательности.
Дорожка 1 содержит набор стандартов длины двуцепочечной ДНК, дорожка 2 - реакция проведена, как описано в данном примере, включая обработку S1 нуклеазой, дорожка 3 - реакция проведена без последующей обработки S1 нуклеазой. Как видно по расположению пятна в дорожке 2 относительно стандарта в дорожке 1, длина продукта полимеризации достигает 3000 п.о.
Использование новых меченых нуклеотидов в реакциях секвенирования, показанных в приведенных выше примерах, не ограничивают сферу их применения.
Новые нуклеотиды, содержащие репортерные флуоресцентные группы, присоединенные к фосфатной части нуклеотидов, могут быть использованы в ряде других приложений аналитической биоорганической химии, в различных масштабных вариантах. В нанореакторах, представляющих собой безмодовые волноводы, при регистрации флуоресцентного сигнала от меченого трифосфата, удерживаемого иммобилизованным ферментом, таким как ДНК-полимераза, РНК-лигаза или полинуклеотидкиназа, наблюдение аналитического сигнала может свидетельствовать об эффективной гибридизации зонда с матрицей. В традиционном микроварианте аналитическим сигналом, возникающим в результате действия трифосфат-зависимых ферментов обмена нуклеиновых кислот, может являться изменение спектра флуоресценции в результате отщепления мононуклеотида от флуорофорсодержащего ди-(три-)фосфата. В этом случае возможно использование меченых полифосфатов с ДНК-полимеразами для оценки эффективности гибридизации с использованием праймера в качестве специфичного зонда, для микросеквенирования (выявления точечных мутаций). Также возможно выявление эффективности гибридизации тандемных зондов с помощью лигаз с использованием флуоресцентно-меченного АТФ.
Новые меченые нуклеозидтрифосфаты при невысокой стоимости обладают рядом преимуществ, одним из которых является исключение нежелательных изменений флуоресцентных свойств соединений при изменении условий проведения секвенирования.
Описание настоящего изобретения и его преимущества, изложенные выше, служат для более детальной иллюстрации сущности изобретения, но не для ограничения сфер его применения.
Источники информации
1. Shadt, Е.Е. A window into third-generation sequencing /. Shadt, E.E., Turner, S., Kasarskis, A. A. // Human Mol. Genet. - 2010. - V. 19. - N 2. - P. R227-R240.
2. Jonas Korlach. Real-Time DNA Sequencing from Single Polymerase / Jonas Korlach, Keith P. Bjornson, Bidhan P. Chaudhuri, et al. //Molecules Methods in Enzymology. - 2010. - Vol. 472. - Pages 431-455.
3. Заявка 2009/0018324 US A1. Labeled nucleotide analogs and uses therefor / Yue Xu, Jeffrey Wegener, Arek Bibillo; Заявл. 15.05.2008; Опубл. 15.01.2009.
4. Заявка 2011/0059450 US A1. Labeled nucleotide analogs and uses therefore / Yue Xu, Jeffrey Wegener, Arek Bibillo; Заявл. 09.07.2010, Опубл. 10.03.2011.
5. Заявка 2012/0028248 US A1. Engineered fluorescent dye labeled nucleotide analogs for DNA sequencing / Gene Shen, Paul Peluso, Arkadusz Bibillo. - Заявл. 25.05.2011; Опубл. 02.02.2012.
6. Заявка 2010/0317005 US A1. Modified nucleotides and methods for making and use same / Susan H. Hardin, Hongyi Wang, Brent A. Mulder, Nathan K. Agnew, Tommie L. Lincecum, JR. - Заявл. 15.05.2010, опубл. 20.05.2010.
7. Заявка 2009/014612 WO A2. Modified nucleotides, methods for making and using same / Wang, Hongyi, GAO, Xiaolian, YU, Peilin, Reddy, Mitsu S., Hardin, Susan H., Lincecum, Tommie, Jr., Williams, Amy, Deluge, Norha, Belosludtsev, Yuri, MENCHEN, Steve M., LAM, Joe Y.L., CHEN, Jer-Kang. - Заявл. 15.07.2008; опубл. 29.01.2009.
8. Shiv Kumar. Terminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by dna polymerases / Shiv Kumar, Anup Sood, Jeffery Wegener et. al. // Nucleosides, Nucleotides, and Nucleic Acids. - 2005. - V. 24 (5-7). - Pp. 401-408.
9. Заявка 2011/0311964 US A1. Labeled reactants and their uses / Jeffrey Wegener, Jonas Korlach. - Заявл. 25.05.2011; опубл. 22.12.2011.
10. Патент 2010/057185 WO A1. Phospholink nucleotides for sequencing applications / Korlach, Jonas - Заявл. 17.11.2009; опубл. 22.12.2011.
11. Bambi Reynolds. Synthesis and stability of novel terminal phosphate-labeled nucleotides / Bambi Reynolds, Rachel Miller, John G. Williams, and Jon P. Anderson. // Nucleosides, Nucleotides, and Nucleic Acids - 2008 - V. 27 - Pp. 18-30.
12. Заявка 2013/0071849 US A1. Fret-labeled compounds and uses therefor / Xiangxu Kong, Gene Shen. - Заявл. 22.03.2012; опубл. 21.03.2013.
13. Заявка 2009100382 WO A1. Cis reactive oxygen quenchers integrated into linkers / Robin Emig, Xiangxu Kong, Geoffrey Otto, Gene Shen - Заявл. 06.02.2009; Опубл. 13.08.2009.
14. Real-Time DNA Sequencing from Single Polymerase Molecules // Science. - 2009. - Vol. 323. - no. 5910. - Pp. 133-138.
15. Monique M. Martin. The pH dependence of fluorescein fluorescence / Monique M. Martin and Lars Lindqvist // Journal of Luminescence. - 1975. - 10. - Pp. 381-390.
16. R.W. Ramette. Rhodamine В Equilibria /. R.W. Ramette, E.B. Sandell // J. Am. Chem. Soc. - 1956. - 78 (19). - Pp. 4872-4878.
17. G. Weber. Fluorescence excitation spectrum of organic compounds in solution. Part 1. - Systems with quantum yield independent of the exciting wavelength / G. Weber and F.W.J. Teale // Trans. Faraday Soc - 1958. - V. 54. - Pp. 640-648.
18. Jonas Korlach. Long, Processive enzymatic dna synthesis using 100% dye-labeled terminal phosphate-linked nucleotides / Jonas Korlach, Arek Bibillo, Jeffrey Wegener et. al. // Nucleosides, Nucleotides and Nucleic Acids - 2008. - V. 27. - Pp. 1072-1083.
19. Xiao-Lan Du. Design and synthesis of a novel fluorescent reagent, 6-oxy-(ethylpiperazine)-9-(2′-methoxycarbonyl) fluorescein, for carboxylic acids and its application in food samples using high-performance liquid chromatography/. Xiao-Lan Du, Hua-Shan Zhang, Ying-Hua Deng, Hong Wang // Journal of Chromatography. - 2008. - V. 1178. - Pp. 92-100.
20. Ji Young Kwon. A Highly Selective Fluorescent Chemosensor for Pb2+ / Ji Young Kwon, Yun Jung Jang, Yoon Ju Lee et. al. // J. Am. Chem. Soc. - 2005. - V. 127. - Pp. 10107-10111.
21. Alexei Toutchkine. Facile Synthesis of Thiol-Reactive Cy3 and Cy5 Derivatives with Enhanced Water Solubility / Alexei Toutchkine, Perihan Nalbant, and Klaus M. Hahn // Bioconjugate Chem. - 2002. - Vol. 13. - No. 3. - Pp. 387-391.
22. Danilovtseva E.N. New fluorescent derivatives of oligopropylamines /. Danilovtseva E.N., Verkhozina O.N., Zelinskiy S.N., Ivanov N.A., Tsiganov P. Yu., Basharina T.N., Annenkov V.V. // ARKIVOC. - 2013. - (iii): 266-281.
23. Зарытова В.Ф. Синтез алкилирующих производных - амидов аденозинтрифосфорной кислоты / Зарытова В.Ф., Кнорре Д.Г., Курбатов В.А., Лебедев А.В., Самуков В.В., Шишкин Г.В. // Биоорганическая химия. - 1975. - Т. 1. - №6. - С. 793-799.
Figure 00000016

Claims (4)

1. Флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты в качестве флуоресцентно-меченных нуклеотидов имеют следующую общую формулу:
Н-Л-Ф,
где Н - модифицированный по конечному атому фосфора природный дезоксирибонуклеозидтрифосфат или рибонуклеозидтрифосфат,
Л - линкерная группа, присоединенная к конечному атому фосфора,
Ф - репортерная флуоресцентная группа,
в которых линкерная группа, построенная на основе вторичных диаминов, имеет формулу:
Figure 00000017

N,N′-диметил-1,3-диаминопропан (N2)
и может содержать третичную аминогруппу:
Figure 00000018

N1,N3-диметил-N1-[3-(метиламино)пропил]-1,3-пропандиамин (N3),
при этом флуоресцентная группа присоединена к линкеру посредством вторичной аминогруппы:
Figure 00000019

Figure 00000020

Figure 00000021

где пунктирной линией обозначено продолжение структуры линкера,
при этом способ получения флуоресцентно-меченных нуклеотидов осуществляют при помощи следующих последовательных стадий:
- вначале присоединяют линкер к флуорофору путем использования красителей, содержащих активный атом галогена (хлор или бром);
- затем проводят активацию трифосфатных групп путем превращения их в циклическую ангидридную форму воздействием дициклогексилкарбодиимида;
- осуществляют взаимодействие активированных трифосфатов с красителями, содержащими линкерную группу;
- проводят очистку целевых соединений осаждением, промывкой органическими растворителями и хроматографированием.
2. Флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты по п. 1, в которых в качестве модифицированных по конечному атому фосфора природных дезоксирибонуклеозидтрифосфатов или рибонуклеозидтрифосфатов выбраны соединения из следующего списка: аденозин-5′-трифосфат (АТФ), гуанозин-5′-трифосфат (ГТФ), цитидин-5′-трифосфат (ЦТФ), уридин-5′-трифосфат (УТФ), 2′-дезоксиаденозин-5′-трифосфат (дАТФ), 2′-дезоксигуанозин-5′-трифосфат (дГТФ), 2′-дезоксицитидин-5′-трифосфат (дЦТФ) и тимидин-5′-трифосфат (ТТФ).
3. Флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты по п. 1, в которых линкерная группа присоединена к конечному атому фосфора посредством фосфамидной связи:
Figure 00000022
,
где пунктирными линиями обозначены продолжение структуры трифосфатного фрагмента и линкера.
4. Флуоресцентно-меченные дезоксирибонуклеозидтрифосфаты и рибонуклеозидтрифосфаты по п. 1, в которых в качестве репортерной флуоресцентной группы выступают производные веществ из ряда триарилметановых (ксантеновых) красителей, цианиновых красителей, нитробензофуразановых красителей: флуоресцеин, родамин Б, родамин 101, цианиновый краситель neo-Су5, 7-нитробензофуразан.
RU2014146853/10A 2014-11-20 2014-11-20 Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии RU2582198C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146853/10A RU2582198C1 (ru) 2014-11-20 2014-11-20 Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146853/10A RU2582198C1 (ru) 2014-11-20 2014-11-20 Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии

Publications (1)

Publication Number Publication Date
RU2582198C1 true RU2582198C1 (ru) 2016-04-20

Family

ID=56195247

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146853/10A RU2582198C1 (ru) 2014-11-20 2014-11-20 Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии

Country Status (1)

Country Link
RU (1) RU2582198C1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070073A1 (en) * 1999-05-19 2000-11-23 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
WO2003020734A2 (en) * 2001-08-29 2003-03-13 Amersham Biosciences Corp Labeled nucleoside polyphosphates
US20080091005A1 (en) * 2006-07-20 2008-04-17 Visigen Biotechnologies, Inc. Modified nucleotides, methods for making and using same
US20090018324A1 (en) * 2005-09-29 2009-01-15 Pacific Biosciences Of California, Inc. Labeled nucleotide analogs and uses therefor
WO2009114182A1 (en) * 2008-03-13 2009-09-17 Pacific Biosciences Of California, Inc. Labeled reactants and their uses
WO2010017487A1 (en) * 2008-08-08 2010-02-11 President And Fellows Of Harvard College Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
WO2010057185A1 (en) * 2008-11-17 2010-05-20 Pacific Biosciences Of California, Inc. Phospholink nucleotides for sequencing applications
US20100317005A1 (en) * 2000-07-07 2010-12-16 Life Technologies Corporation Modified Nucleotides and Methods for Making and Use Same
RU2009121089A (ru) * 2006-12-05 2011-01-20 Лазержен, Инкорпорэйтед (Сша) (Us) Фоторасщепляющиеся меченые нуклеотиды и нуклеозиды и меченые нуклеотиды и нуклеозиды, и способы их использования в секвенировании днк

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070073A1 (en) * 1999-05-19 2000-11-23 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
US20100317005A1 (en) * 2000-07-07 2010-12-16 Life Technologies Corporation Modified Nucleotides and Methods for Making and Use Same
WO2003020734A2 (en) * 2001-08-29 2003-03-13 Amersham Biosciences Corp Labeled nucleoside polyphosphates
US20090018324A1 (en) * 2005-09-29 2009-01-15 Pacific Biosciences Of California, Inc. Labeled nucleotide analogs and uses therefor
US20080091005A1 (en) * 2006-07-20 2008-04-17 Visigen Biotechnologies, Inc. Modified nucleotides, methods for making and using same
RU2009121089A (ru) * 2006-12-05 2011-01-20 Лазержен, Инкорпорэйтед (Сша) (Us) Фоторасщепляющиеся меченые нуклеотиды и нуклеозиды и меченые нуклеотиды и нуклеозиды, и способы их использования в секвенировании днк
WO2009114182A1 (en) * 2008-03-13 2009-09-17 Pacific Biosciences Of California, Inc. Labeled reactants and their uses
WO2010017487A1 (en) * 2008-08-08 2010-02-11 President And Fellows Of Harvard College Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides
WO2010057185A1 (en) * 2008-11-17 2010-05-20 Pacific Biosciences Of California, Inc. Phospholink nucleotides for sequencing applications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Korlach J. и соавторы. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides, nucleotides and nucleic acids. 2008. V.27. P.1072-1083. *
Kumar Sh. и соавторы. Тerminal phosphate labeled nucleotides: synthesis, applications, and linker effect on incorporation by dna polymerases. Nucleosides, Nucleotides, and Nucleic Acids. 2005. Т.24. N5-7. Р.401-408. *
Пышный Д.В. и соавторы. Влияние структуры азинов, присоединенных к 5'-концевому фосфату олигонуклеотида, на термодинамику образования комплементарных комплексов. Биоорганическая химия. 1999. Т.25. N1. С.40-55. *

Similar Documents

Publication Publication Date Title
EP3663290B1 (en) Polymethine compounds and their use as fluorescent labels
JP5146957B2 (ja) 核酸の複製の方法及び新規人工塩基対
CA3060885C (en) Secondary amine-substituted coumarin compounds and their uses as fluorescent labels
EP2964612B1 (en) Polymethine compounds and their use as fluorescent labels
EP3297997B1 (en) Polymethine compounds with long stokes shifts and their use as fluorescent labels
AU2018298847B2 (en) Short pendant arm linkers for nucleotides in sequencing applications
CN111741967A (zh) 核苷类似物、制备方法及应用
EP3140285B1 (en) Polymethine compounds and their use as fluorescent labels
US8993784B2 (en) Polymethine compounds and their use as fluorescent labels
RU2582198C1 (ru) Аналоги природных дезоксирибонуклеозидтрифосфатов и рибонуклеозидтрифосфатов, содержащие репортёрные флуоресцентные группы, для использования в аналитической биоорганической химии
Senthilvelan et al. Synthesis of acridine-1, 8-dione substituted (E)-5-(3-aminoallyl)-uridine-5′-triphosphate: a new potential fluorogenic molecular probe
RU2699522C2 (ru) Способ ферментативного получения модифицированных ДНК для создания реагентов, специфично связывающихся с гидрофобными участками высокомолекулярных органических соединений
JPH03210197A (ja) 蛍光標識dnaの調製方法及びキット
CN102180926A (zh) 3’硫代-次黄嘌呤脱氧核苷亚磷酸酰胺单体及其应用