RU2581859C1 - Состав для обработки призабойной зоны пласта - Google Patents

Состав для обработки призабойной зоны пласта Download PDF

Info

Publication number
RU2581859C1
RU2581859C1 RU2015107903/03A RU2015107903A RU2581859C1 RU 2581859 C1 RU2581859 C1 RU 2581859C1 RU 2015107903/03 A RU2015107903/03 A RU 2015107903/03A RU 2015107903 A RU2015107903 A RU 2015107903A RU 2581859 C1 RU2581859 C1 RU 2581859C1
Authority
RU
Russia
Prior art keywords
trilon
surfactant
water
alkali metal
composition
Prior art date
Application number
RU2015107903/03A
Other languages
English (en)
Inventor
Риваль Нуретдинович Фахретдинов
Original Assignee
Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг" filed Critical Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг"
Priority to RU2015107903/03A priority Critical patent/RU2581859C1/ru
Application granted granted Critical
Publication of RU2581859C1 publication Critical patent/RU2581859C1/ru

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к составам для обработки - очистки призабойной зоны пласта - ПЗП. Наибольшее применение может найти на месторождениях, где бурение и вскрытие продуктивных пластов осуществляется на глинистых и безглинистых утяжеленных буровых растворах, в том числе содержащих соединения бария, например сульфат бария, или других тяжелых металлов, а также на месторождениях и залежах с аномально высоким пластовым давлением - АВПД и сверхглубоких скважинах. Технический результат - повышение эффективности состава за счет добавок ПАВ, что приводит к улучшению смачиваемости разрушаемой глинистой корки, содержащей соединения бария, и переводу ее в подвижное состояние за счет снижения межфазного натяжения и расклинивающего эффекта, что вызывает снижение адгезии бурового раствора с породой коллектора, его диспергацию и перевод в подвижное состояние и способствует последующему извлечению из призабойной зоны и ее очистке. Результат достигается за счет того, что состав для обработки призабойной зоны пласта, включающий трилон-Б, гидроксид щелочного металла и воду, дополнительно содержит поверхностно-активное вещество - ПАВ и получен приготовлением товарной формы - концентрата, включающим растворение 3,1 масс. % гидроксида щелочного металла в 46 масс. % воды, добавление при перемешивании 23,0 масс. % трилона-Б, нагрев до 60°C, добавление при перемешивании оставшейся части трилона-Б и затем последовательное добавление оставшейся части гидроксида щелочного металла и 3 масс. % ПАВ с последующим разбавлением полученного концентрата водой в соотношении 1:0,6-111 при следующем соотношении компонентов концентрата, масс. %: трилон-Б 45,0, гидроксид щелочного металла 6,0, ПАВ 3,0, вода - остальное. 5 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к составам для обработки - очистки призабойной зоны пласта - ПЗП. Наибольшее применение может найти на месторождениях, где бурение и вскрытие продуктивных пластов осуществляется на глинистых и безглинистых утяжеленных буровых растворах, в том числе содержащих соединения бария, например сульфат бария, или других тяжелых металлов, а также на месторождениях и залежах с аномально высоким пластовым давлением - АВПД - и сверхглубоких скважинах.
Основным методом восстановления естественной проницаемости коллектора ПЗП в добывающих скважинах является использование кислотной обработки. Использование кислотных обработок приводит к частичному растворению глинистой корки и другого кольматирующего материала, который поступает в ПЗП в ходе первичного вскрытия пласта при бурении.
Известен состав для обработки ПЗП для интенсификации притока жидкости, включающий водный раствор гипохлорита кальция - Са(ClO)2×2H2O с добавкой неионогенного ПАВ типа «дисолван» (патент РФ №2209957, 2003). Недостатком его является малая эффективность при воздействии на продуктивные пласты, вскрытые на полимерных и полимерглинистых буровых растворах, утяжеленных баритом, причем сильный окислитель - гипохлорит кальция - не способен растворить барит и действует только на полимерную составляющую.
Известен состав для интенсификации притока нефти из коллектора с АВПД, включающий закачку в пласт рабочего агента, состоящего из смеси каустической соды NaOH и глинокислоты [Ланчаков Г.А. Разработка и опыт применения комплексных щелочно-кислотных обработок призабойных зон эксплуатационных скважин с целью интенсификации притока. // Обз. информация. - Разработка и эксплуатация газовых и газоконденсатных месторождений. - М.: ИРЦ Газпром, 1995. - с. 11-13; с. 39-40]. Недостатком этого способа является низкая эффективность при воздействии на продуктивные пласты, вскрытые на полимерных или полимерглинистых буровых растворах, содержащие барит, так как рабочий агент действует в основном на глинистую составляющую бурового раствора и коллектора.
Известен способ химической обработки призабойной зоны пласта для интенсификации притока нефти, включающий закачку в пласт рабочего агента, состоящего из водного раствора гипохлорита кальция Са(ClO)2·2Н2O с добавкой неионогенного поверхностно-активного вещества - НПАВ типа «дисолван» [патент РФ №2209957. - М.: ФИПС, 2003]. Недостатком этого способа является то, что он малоэффективен при воздействии на продуктивные пласты, вскрытые на полимерных или полимерглинистых буровых растворах, утяжеленных баритом, и, в частности, сильный окислитель - гипохлорит кальция - не способен растворить барит и действует только на полимерную составляющую.
Наиболее близким техническим решением - прототипом является состав для обработки ПЗМ (патент РФ №2232879, Е21В 43/22, 2004), содержащий, масс. %: трилон-Б 0,035-28,0, гидроксид щелочного металла 0,05-7,0, вода остальное, полученный растворением гидроксида щелочного металла в воде, затем введением трилона-Б при перемешивании до полного растворения и введением оставшейся воды. Указанный состав эффективен только при циклической закачке его с использованием щелочного буферного раствора на метанольной или углеводородной основе при коэффициенте соотношения буферного раствора и состава, равном 1-1,5, и при длительной продолжительности выдержки как буферной жидкости, так и указанного состава, а также требует значительных объемов промывочных растворов, при этом возрастают длительность процесса и эксплуатационные затраты на его проведение. Содержание в растворе трилона-Б более 28,0 экономически и технологически неэффективно, так как при этом количество растворяющегося сульфата бария увеличивается весьма незначительно и возникают сложности при приготовлении растворов такой концентрации, к тому же при соответствующей концентрации растворов по щелочи требуются дополнительные затраты при регенерации. При содержании щелочи менее 0,05 в растворе падает растворяющая способность раствора, а при содержании в растворе щелочи более 7 также падает растворяющая способность способа.
Недостатком указанного состава является низкая степень взаимодействия состава со слежавшимися остатками барита, которые покрыты защитной пленкой из продуктов реакции, что не позволяет в полной степени очистить поровое пространство и обеспечить приток.
Задачей предлагаемого изобретения является повышение эффективности удаления остатков слежавшегося барита с повышением степени очистки порового пространства.
Указанная задача решается тем, состав для обработки призабойной зоны пласта, включающий трилон-Б, гидроксид щелочного металла и воду, дополнительно содержит поверхностно-активное вещество - ПАВ - и получен приготовлением товарной формы - концентрата, включающим растворение 3,1 масс. % гидроксида щелочного металла в 46 масс. % воды, добавление при перемешивании 23,0 масс. % трилона-Б, нагрев до 60°C, добавление при перемешивании оставшейся части трилона-Б и затем последовательное добавление оставшейся части гидроксида щелочного металла и 3 масс. % ПАВ с последующим разбавлением полученного концентрата водой в соотношении 1:0,6-111 при следующем соотношении компонентов концентрата, масс. %:
Figure 00000001
В заявленном составе основным действующим компонентом является трилон-Б (тетранатриевая соль этилендиаминтетрауксусной кислоты), получаемый синтетическим путем при взаимодействии цианистого натрия и формальдегида с раствором этилендиамина, обладающий способностью в щелочной среде как частично растворять, так и диспергировать (переводить во взвешенное состояние) соединения тяжелых металлов, в том числе бария. В свою очередь, введение ПАВ в щелочной среде способствует количественному переводу нерастворимых соединений бария при отношении трилона-Б к соединениям Ва+2 как 1:1. В качестве щелочного металла может быть использован любой известный щелочной металл, наиболее доступным является натрий. В качестве ПАВ возможно использование различных анионоактивных, катионоактивных, неионогенных ПАВ, в т.ч. таких неионогенных ПАВ, как неонол АФ9-12, ОП-10, анионогенных - Алдинол-50, Неонол РХП-20, Нефтенол МЛ, катионактивных - Нефтенол К, ИВВ-1, Неонол РХП-1. Можно предположить, что трилон-Б образует с молекулами ПАВ координационно ненасыщенные промежуточные комплексы, которые в свою очередь легко вступают во взаимодействие с солями Ва+2 и продуктами их реакции, переводя их в растворимые соединения. Кроме того, состав обладает ингибирующими свойствами по отношению к глинам и препятствует их набуханию, в связи с чем возможно проведение профилактической очистки скважины от возможного загрязнения сульфатредуцирующими и другими видами микроорганизмов, что увеличит положительный эффект от проведения на скважине мероприятия.
Состав готовят следующим образом. Первоначально растворяют 3,1 масс. % гидроксида щелочного металла, в данном случае натрия, в 46 масс. % воды, затем при непрерывном перемешивании добавляют 23 масс. % трилона-Б, производят нагрев до 60°C, после этого в раствор, непрерывно перемешивая, добавляют остаток трилона-Б в 22 масс. % до полного растворения и на завершающем этапе добавляют остаток гидроксида натрия в 2,9 масс. % и 3 масс. % ПАВ. Время приготовления товарной формы составляет 1 час. Полученный состав в виде водного раствора можно загружать в железнодорожные цистерны или использовать для длительного хранения. Затем концентрат разбавляют водой в соотношении 1:0,06-111 для получения требуемой концентрации компонентов исходя из состояния ПЗП.
Предлагаемая рабочая форма состава была испытана на морозостойкость прибором Баумана-Фрома (ГОСТ 18995.5-73). Определенная таким образом температура кристаллизации составила от -8° до -10°C, что затрудняет применение состава в части его сохранения в условиях крайнего Севера. Предлагаемая товарная форма состава была испытана на морозостойкость прибором Баумана-Фрома. Определенная таким образом температура кристаллизации составила -30°C, что позволяет хранить и применять товарную форму условиях Крайнего Севера.
Эффективность состава была подтверждена лабораторными исследованиями. Изучено влияние величины/степени диспергации соединений бария.
ПРИМЕРЫ
Пример 1 (Прототип)
Барит технический (BaSO4) - труднорастворимый реагент, используемый при бурении скважин для утяжеления буровых растворов. Активный реагент на основе трилона-Б, предлагаемый для использования с целью очистки призабойной зоны скважин от барита, имеющий состав (вес. %):
Figure 00000002
Цель испытаний: проверка возможности растворения и удаления соединений барита активным реагентом на основе трилона-Б.
Методика проведения исследований
В мерные стеклянные цилиндры помещалась навеска барита, добавлялось 30 мл активного реагента на основе трилона-Б, содержимое цилиндров перемешивалось и отстаивалось в течение 20 минут. После этого измерялась исходная высота выпавшего плотного осадка (нерастворимый в воде барит). Результаты фиксировались как базовые значения. Цилиндры с осадком в течение 40 часов выдерживались при температуре 80°C при периодическом помешивании. Через 40 часов замерялась высота выпавшего из раствора осадка.
Примечания:
1. Для проведения реакции с активным составом использовались навески с количеством барита, близким к расчетному, которое теоретически реагирует с трилоном-Б, содержащимся в 25-30 мл активного реагента. С учетом того что с 1 молекулой трилона-Б вступает в реакцию 1 молекула барита, расчетное количество барита составляет 2,8 г.
2. После обработки барита активным составом на основе трилона-Б на дне цилиндра наблюдался осадок, состоящий из 2-х слоев: нижний слой - плотный серый порошкообразный (барит, не прореагировавший с трилоном-Б, верхний слой - рыхлый, подвижный (легкоудаляемый продукт реакции).
Результаты исследований представлены в таблице 1.
Figure 00000003
Как следует из представленных данных (Табл. 1), при воздействии равного объема активного реагента на основе 15%-го трилона-Б (30 мл) количество растворенного барита за одно и то же время различно в зависимости от исходного содержания барита в растворе. Так, при исходном содержании барита, соответствующем расчетному по трилону-Б (позиция №3), за 40 часов в реакцию вступило около 59%. Однако при исходном содержании барита, превышающем расчетное примерно в 1,5 раза (позиция №4), реакция по трилону-Б прошла на 99,6%. Отмеченный факт согласуется с существующей в теории закономерностью: скорость реакции зависит от исходной концентрации реагентов и снижается при их уменьшении. Следовательно, при постоянной концентрации трилона-Б в активном растворе для более полного прохождения реакции с небольшими количествами барита время реакции следует увеличить.
По результатам исследований необходимо отметить (Табл. 1):
1. Активный состав на основе трилона-Б (трилон-Б - 15%, NaOH - 2%, вода - остальное) может быть использован для удаления из призабойной зоны скважин труднорастворимого барита, который применялся в процессе бурения.
2. При применении активного реагента на основе трилона-Б для растворения барита в растворе образуются рыхлые легкоподвижные хлопья, удаление которых необходимо предусмотреть при проведении обработок скважин.
3. При постоянной концентрации трилона-Б в активном реагенте время прохождения реакции зависит от количества барита находящегося в зоне реакции.
За 40 часов 1 тонна активного реагента может растворить:
- при исходном содержании барита, соответствующем расчетному по реакции (94 кг), - не менее 59 кг барита (выход реакции 59%);
- при исходном содержании барита, соответствующем 1,8 от расчетного (180 кг), - не менее 99 кг барита (выход реакции 99%).
Пример 2.
Барит технический (BaSO4) - труднорастворимый реагент, используемый при бурении скважин для утяжеления буровых растворов. Активный реагент на основе трилона-Б, предлагаемый для использования с целью очистки призабойной зоны скважин от слежавшегося барита, имеющий состав (весовые %):
Figure 00000004
Цель испытаний:
Проверка полноты растворения и удаления барита активным реагентом на основе трилона-Б, содержащим различные количества ПАВ (катионактивный ПАВ на основе четвертичной аммониевой соли).
Методика проведения исследований соответствует Примеру 1. Концентрат разбавляют водой в соотношении 1:2.
Результаты исследований представлены в таблице 2.
Figure 00000005
Оптимальным является полученный заявленным путем раствор трилона-Б, содержащий КПАВ в концентрации 1%.
Время реакции составило 6 часов при температуре 80°C. Вес прореагировавшего барита определяли по соотношению исходной высоты его навески и высоты оставшегося нижнего слоя.
Как следует из представленных данных (Табл. 2), при воздействии равных объемов активного реагента на основе 15%-го трилона-Б с различным содержанием катионактивного ПАВ изменяется количество прореагировавшего барита.
Добавка ПАВ (катионактивный) в активный раствор на основе трилона-Б дает увеличение его растворяющей способности по отношению к бариту в сравнении с вариантом предлагаемом в прототипе.
Введение катионактивного ПАВ в концентрации 1-5% повышает эффективность реакции на 20-30%.
Пример 3.
Барит технический (BaSO4) - труднорастворимый реагент, используемый при бурении скважин для утяжеления буровых растворов. Активный реагент на основе трилона-Б, предлагаемый для использования с целью очистки призабойной зоны скважин от барита, имеющий состав (весовые %):
Figure 00000006
Figure 00000007
Цель испытаний:
Проверка полноты растворения и удаления барита активным реагентом на основе трилона-Б, содержащим различные количества ПАВ (анионактивный и неионогенный).
Методика проведения исследований соответствует примеру 1:
Результаты исследований представлены в таблицах 3 и 4.
Figure 00000008
Оптимальным является полученный заявленным путем раствор трилона-Б, содержащий АПАВ в концентрации 3%.
Figure 00000009
Figure 00000010
Оптимальным является полученный заявленным путем раствор трилона-Б, содержащий НПАВ в концентрации 5%.
Время реакции составляло 6 часов при температуре 80°C. Вес прореагировавшего барита определяли по соотношению исходной высоты его навески и высоты оставшегося нижнего слоя.
Как следует из данных, представленных в таблицах 3 и 4, при воздействии одинакового объема активного реагента на основе 15%-го трилона-Б с различным содержанием ПАВ изменяется количество прореагировавшего барита. Также изменяется количество прореагировавшего барита от типа ПАВ.
Таким образом, из результатов, представленных в таблицах 3 и 4, следует:
Добавка ПАВ (анионактивный ПАВ или неионогенный ПАВ) в активный раствор на основе трилона-Б также дает изменение его растворяющей способности по отношению к бариту.
Оптимальной концентрацией анионактивного ПАВ, дающей увеличение растворяющей способности активного реагента на основе трилона-Б по отношению к бариту, является 3%. При этом эффективность реакции повышается на 26%.
Оптимальной концентрацией неионогенного ПАВ, дающей увеличение растворяющей способности активного реагента на основе трилона-Б по отношению к бариту, является 5%. При этом эффективность реакции повышается на 25%.
Результаты лабораторных исследований свидетельствуют о том, что добавки различных типов ПАВ (катионактивных, анионактивных и неионогенных) при указанном пути получения состава увеличивают растворяющие и диспергирующие свойства состава-прототипа и такие составы могут быть рекомендованы к применению в различных условиях. Также добавка ПАВ приводит к гидрофобизации коллектора, что повышает его фазовую проницаемость по нефти повышает дебит скважины.
Таким образом, заявленный состав обеспечивает повышение эффективности проводимой на скважине обработки за счет улучшения смачиваемости разрушаемой глинистой корки, содержащей соли бария, и перевода их в подвижное состояние за счет снижения межфазного натяжения и расклинивающего эффекта, что вызывает снижение адгезии бурового раствора с породой коллектора, его диспергацию и перевод в подвижное состояние, а также способствует последующему извлечению из призабойной зоны и повышению степени ее очистки.
Пример. 4
Цель испытания: получение морозостойкой товарной формы.
Методика проведения исследований: в стеклянную колбу объемом 250 мл заливается 40 г воды и 2,7 г каустической соды. Рабочая масса перемешивается до полного растворения. Затем в колбу при постоянном перемешивании добавляется порционно трилон-Б в количестве 20 г. Этим способом достигается максимальное насыщение, которое получили в известных способах. Смесь нагревается на водяной бане и в реакционную массу порционно догружается трилон-Б до момента прекращения его растворения. На последнем этапе (третьем) в раствор добавляется каустическая сода и ПАВ до получения соотношения по трилону-Б 15:2:1.
Результаты эксперимента приведены в таблице 5.
Figure 00000011
Figure 00000012
Как следует из данных, представленных в таблице 5, при нагревании водного раствора каустической соды с трилоном-Б повышается растворимость последнего. При нагреве выше 60°C изменение предельной концентрации незначительно, т.е. раствор приблизился к своему максимальному насыщению по трилону-Б.
Предлагаемая товарная форма состава была испытана на морозостойкость прибором Баумана-Фрома (ГОСТ 18995.5-73). Температура кристаллизации раствора составила -30°C, что позволит хранить товарную форму состава и применять в условиях крайнего Севера.
Таким образом, для получения товарной формы с концентрацией трилона-Б 45% масс., гидроксида щелочного металла 6% масс. и ПАВ 3% масс. необходимо: первоначально растворить 3,1% масс. гидроксида щелочного металла в 46% масс. воды, непрерывно помешивая добавить 23,0% масс. трилона-Б, произвести нагрев раствора до 60°C, после этого непрерывно помешивая добавить остаток трилона-Б в 22,0% масс. и на завершающем этапе добавить остаток гидроксида щелочного металла 2,9% масс. и ПАВ 3% масс. Время приготовления товарной формы составляет 1 час.
Товарная форма предлагаемого состава для снижения экономических затрат на доставку от базы производства до места применения и хранения содержит трилон-Б - 45%, гидроксид щелочного металла - 6%, ПАВ - 3%, остальное вода. В этом случае для получения рабочего состава с содержанием основного действующего вещества - трилона-Б - в диапазоне масс. % 0,035-28,0 необходимо провести разбавление товарной формы водой при соотношении 1:0,6-111.
С целью повышения эффективности применения исходного состава на основе трилона-Б, предлагаемого для удаления труднорастворимого осадка барита из нефтяных скважин, целесообразно использовать активный состав на основе трилона-Б, содержащий ПАВ (весовые %):
Figure 00000013
При этом необходимо предусмотреть операцию удаления образующегося рыхлого осадка (продукта реакции барита и предлагаемого состава). Добавление ПАВ (0,1-5%) в рекомендованный исходный состав на основе трилона-Б не только повысит эффективность его применения для удаления из скважин соединений барита, но и позволит при этом ингибировать набухание глин и провести профилактическую очистку призабойной зоны скважины от возможного загрязнения сульфатредуцирующими и другими видами микроорганизмов, что увеличит положительный эффект от проведенного на скважине мероприятия.

Claims (1)

  1. Состав для обработки призабойной зоны пласта на основе хелатного комплекса, включающий трилон-Б, гидроксид щелочного металла и воду, отличающийся тем, что дополнительно содержит поверхностно-активное вещество - ПАВ и приготовлен из товарной формы (концентрата), полученной путем растворения 3,1 масс. % гидроксида щелочного металла в 46 масс. % воды, с последующим добавлением при перемешивании 23,0 масс. % трилона-Б, нагреве до 60°C, добавлении при перемешивании оставшейся части трилона-Б, последовательном добавлении оставшейся части гидроксида щелочного металла и 3 масс. % ПАВ путем разбавления концентрата водой в соотношении 1:0,6-111 при следующем соотношении компонентов концентрата, масс. %:
    Трилон-Б 45,0 Гидроксид щелочного металла 6,0 ПАВ 3,0 Вода остальное
RU2015107903/03A 2015-03-10 2015-03-10 Состав для обработки призабойной зоны пласта RU2581859C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015107903/03A RU2581859C1 (ru) 2015-03-10 2015-03-10 Состав для обработки призабойной зоны пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015107903/03A RU2581859C1 (ru) 2015-03-10 2015-03-10 Состав для обработки призабойной зоны пласта

Publications (1)

Publication Number Publication Date
RU2581859C1 true RU2581859C1 (ru) 2016-04-20

Family

ID=56195034

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015107903/03A RU2581859C1 (ru) 2015-03-10 2015-03-10 Состав для обработки призабойной зоны пласта

Country Status (1)

Country Link
RU (1) RU2581859C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681132C1 (ru) * 2018-01-22 2019-03-04 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Состав для химической обработки прискважинной зоны пласта
RU2717851C1 (ru) * 2019-08-02 2020-03-26 Публичное акционерное общество "Газпром" Реагентный состав для растворения сульфатного кольматанта
RU2720120C2 (ru) * 2018-10-08 2020-04-24 Общество с ограниченной ответственностью "Газпром добыча Краснодар" Композиция пав для поддержания стабильной эксплуатации обводняющихся газовых и газоконденсатных скважин в условиях падающей добычи
RU2731302C1 (ru) * 2019-07-02 2020-09-01 Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг" Состав для обработки призабойной зоны карбонатного коллектора
RU2759749C1 (ru) * 2020-11-12 2021-11-17 Публичное акционерное общество "Газпром" Реагентный состав для разрушения сульфатных отложений в газовых скважинах подземных хранилищ газа
RU2775634C1 (ru) * 2021-12-14 2022-07-05 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Состав для растворения осадка сульфата бария

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232879C1 (ru) * 2003-01-04 2004-07-20 Закрытое акционерное общество "Октопус" Способ обработки призабойной зоны пласта
RU2475638C1 (ru) * 2011-08-12 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ обработки призабойной зоны терригенного нефтяного пласта
RU2494136C1 (ru) * 2012-03-07 2013-09-27 Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") Поверхностно-активный кислотный состав для обработки карбонатных коллекторов
RU2552434C1 (ru) * 2014-04-17 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук Состав для удаления отложений из нефтяных скважин и призабойной зоны пласта

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232879C1 (ru) * 2003-01-04 2004-07-20 Закрытое акционерное общество "Октопус" Способ обработки призабойной зоны пласта
RU2475638C1 (ru) * 2011-08-12 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ обработки призабойной зоны терригенного нефтяного пласта
RU2494136C1 (ru) * 2012-03-07 2013-09-27 Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") Поверхностно-активный кислотный состав для обработки карбонатных коллекторов
RU2552434C1 (ru) * 2014-04-17 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук Состав для удаления отложений из нефтяных скважин и призабойной зоны пласта

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681132C1 (ru) * 2018-01-22 2019-03-04 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Состав для химической обработки прискважинной зоны пласта
RU2720120C2 (ru) * 2018-10-08 2020-04-24 Общество с ограниченной ответственностью "Газпром добыча Краснодар" Композиция пав для поддержания стабильной эксплуатации обводняющихся газовых и газоконденсатных скважин в условиях падающей добычи
RU2731302C1 (ru) * 2019-07-02 2020-09-01 Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг" Состав для обработки призабойной зоны карбонатного коллектора
RU2717851C1 (ru) * 2019-08-02 2020-03-26 Публичное акционерное общество "Газпром" Реагентный состав для растворения сульфатного кольматанта
RU2759749C1 (ru) * 2020-11-12 2021-11-17 Публичное акционерное общество "Газпром" Реагентный состав для разрушения сульфатных отложений в газовых скважинах подземных хранилищ газа
RU2775634C1 (ru) * 2021-12-14 2022-07-05 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Состав для растворения осадка сульфата бария

Similar Documents

Publication Publication Date Title
RU2581859C1 (ru) Состав для обработки призабойной зоны пласта
CA1086933A (en) Method of acidizing an underground formation and a buffer-regulated mud acid for use in such method
EA011222B1 (ru) Добавки к жидкости для гидроразрыва пласта в виде сухой смеси
BR112017010367B1 (pt) Método para produção de petróleo
AU2011329885A1 (en) Foamers for downhole injection
EP0965657A1 (en) Corrosion inhibiting compositions
JP2007039693A (ja) アミンn−オキシド系界面活性剤
CA3038556A1 (en) Composition useful in sulfate scale removal
RU2320852C2 (ru) Способ предотвращения солеотложения в нефтегазопромысловом оборудовании
RU2681132C1 (ru) Состав для химической обработки прискважинной зоны пласта
CA1095816A (en) Formulation for the dissolution of gypsum
RU2659055C1 (ru) Способ получения и применения длительно действующих реагентов для защиты добывающих нефтяных скважин и сопряженного технологического оборудования от коррозии и солеотложения
RU2614994C1 (ru) Состав для кислотной обработки призабойной зоны терригенного пласта
RU2312880C1 (ru) Стабилизатор коллекторских свойств нефтяного пласта
RU2301248C1 (ru) Базовая основа состава для кислотной обработки терригенного коллектора и разглинизации призабойной зоны пласта
RU2423405C1 (ru) Состав для приготовления технологических жидкостей без твердой фазы с высокой плотностью
RU2291181C1 (ru) СОСТАВ ДЛЯ ПРИГОТОВЛЕНИЯ ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ БЕЗ ТВЕРДОЙ ФАЗЫ (ПЛОТНОСТЬЮ ДО 1600 кг/м3 ) ДЛЯ ЗАКАНЧИВАНИЯ И РЕМОНТА НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН
RU2203411C1 (ru) Термохимический состав для удаления асфальтеносмолопарафиновых отложений
RU2778752C1 (ru) Тяжелая жидкость глушения без твердой фазы плотностью до 1450 кг/м3
RU2558072C1 (ru) Сухая смесь для приготовления жидкости глушения
RU2759749C1 (ru) Реагентный состав для разрушения сульфатных отложений в газовых скважинах подземных хранилищ газа
RU2758371C1 (ru) Состав для удаления солеотложений сульфатов бария и кальция и способ его применения
RU2657918C1 (ru) Реагент для удаления конденсационной жидкости из газовых скважин
RU2813763C1 (ru) Тяжёлая технологическая жидкость, состав и способ для её приготовления, способ глушения скважин тяжелой технологической жидкостью
RU2319724C2 (ru) Кислотная система для очистки фильтровой части скважин и призабойной зоны пласта (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170311

NF4A Reinstatement of patent

Effective date: 20180315

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190311

NF4A Reinstatement of patent

Effective date: 20200713