RU2581089C1 - Способ глубокого сорбционного умягчение воды - Google Patents

Способ глубокого сорбционного умягчение воды Download PDF

Info

Publication number
RU2581089C1
RU2581089C1 RU2015114045/05A RU2015114045A RU2581089C1 RU 2581089 C1 RU2581089 C1 RU 2581089C1 RU 2015114045/05 A RU2015114045/05 A RU 2015114045/05A RU 2015114045 A RU2015114045 A RU 2015114045A RU 2581089 C1 RU2581089 C1 RU 2581089C1
Authority
RU
Russia
Prior art keywords
water
cations
sorption
adsorbent
mmol
Prior art date
Application number
RU2015114045/05A
Other languages
English (en)
Inventor
Людмила Евгеньевна Цыганкова
Владимир Ильич Вигдорович
Наталья Владимировна Шель
Артем Сергеевич Протасов
Марина Николаевна Есина
Александр Алексеевич Урядников
Ирина Валерьевна Морщинина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина"
Priority to RU2015114045/05A priority Critical patent/RU2581089C1/ru
Application granted granted Critical
Publication of RU2581089C1 publication Critical patent/RU2581089C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/083Mineral agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к способам очистки воды. Способ умягчения воды включает перемешивание воды с адсорбентом - 95% глауконитом, предварительно обработанным хлоридом натрия. Умягчению подвергают воду, содержащую до 840 мг/л NaHCO3 и до 850 мг/л NaNO3. Процесс проводят в две стадии при отношении объема воды в литрах к массе адсорбента в граммах, равном 1:10. Каждую стадию проводят при перемешивании воды со свежей порцией адсорбента в течение 20-40 минут. Изобретение обеспечивает получение умягченной воды с общей жесткостью не выше 0,015 ммоль-экв/л. 4 ил., 1 табл.

Description

Изобретение относится к способам очистки воды, позволяющим снизить содержание в очищаемой воде солей жесткости, и может быть использовано в системах для подготовки воды в технологических процессах химических производств, нефтехимии, машиностроительной промышленности, производства изделий электронной техники, для научных целей, в медицине, а также для воды, питающей котлы высокого давления с естественной циркуляцией. Очистку воды проводят сорбцией 95%-ным концентратом глауконита Бондарского месторождения Тамбовской области, подвергнутого предшествующей солевой обработке раствором хлорида натрия. Удается достичь общей жесткости воды не более 0,015 ммоль-экв/л при раздельной и совместной сорбции катионов Ca(II) и Mg(II) из хлоридных растворов с их исходной концентрацией, превышающей нормативно допустимую в 25 раз, как в отсутствии, так и в присутствии до 840 мг/л NaHCO3 (10-2 моль/л HCO3-) и до 850 мг/л NaNO3 (10-2 моль/л NO3-).
Снижение постоянной жесткости воды является важной технической и экологической задачей. Особо жесткие требования предъявляются к питательной воде котлов. Так, для подобных устройств с естественной циркуляцией питательная вода, согласно [1], должна удовлетворять следующим нормам. Общая жесткость (не более):
для газотрубных и жаротрубных котлов, работающих на твердом топливе - 0,5 ммоль-экв/л,
для газотрубных и жаротрубных котлов, работающих на газообразном или жидком топливе - 0,03 ммоль-экв/л,
для водотрубных котлов с рабочим давлением до 13 кгс/см2 - 0,02 ммоль-экв/л,
для водотрубных котлов с рабочим давлением 13<p≤39 кгс/см2 - 0,015 ммоль-экв/л.
Требования к настоящему времени не ужесточились.
Глауконит, как природный минерал относится к слоистым силикатам с жесткой структурной ячейкой типа 2:1. В нем сетка октаэдров заключена между двумя сетками тетраэдров. Этот минерал характеризуется существенными различиями в количественном соотношении октаэдров, образующих его структуру и поэтому различной сорбционной способностью и емкостью в зависимости от того или иного месторождения. Химический состав глауконитов различных месторождений меняется в широких пределах: K2O 4,4…9,7%, Na2O 0…4,5%, Al2O3 5,5…22,6%, Fe2O3 6,1…27,9%, FeO 0,8…8,6%, MgO 0…4,5%, SiO2 47,6…52,9%, P2O5 0…3%, H2O 4,9…13,5%. Обычно концентрация основного продукта составляет 30-40 масс. %. Концентраты глауконита получают специальным обогащением.
Глауконит Бондарского месторождения Тамбовской области имеет следующий химический состав, масс. %: K2O - 9,5; Na2O - 4,1; Al2O3 - 14,8; Fe2O3 - 11,5; FeO - 5,3; SiO2 - 48,1; H2O - 6,7.
Его фракционный состав представлен в таблице.
Figure 00000001
В [2] предложен метод, включающий предварительное подщелачивание с осуществлением процесса в несколько стадий: подщелачивание (CaO, Na2CO3 или NaOH) до pH 8,5-10,5; отделение осадка и обработка гидроксидами многовалентных металлов и, наконец, регенерация гидроксидов. Иной способ [3] включает электрохимическую обработку воды, осветление при pH 11,0-11,5, фильтрацию и электродиализ с последующим вторичным осветлением. Этим способом удается достичь минимальной суммарной концентрации катионов жесткости 0,05 ммоль-экв/л.
Глубокой деминерализации воды можно достичь посредством двухстадийного осмоса, с последующим отводом пермеата на декарбонизацию и окончательную деминерализацию в фильтрах смешанного действия [4].
Известен способ для глубокой очистки воды от солей жесткости с помощью сильнокислотного стиролдивинилбензольного катионита, размещенного между двумя слоями инертных материалов. В качестве инертного материала, размещенного перед слоем катионита по ходу очищаемой воды, используют гранулированный материал, выбранный из полиэтилена, полипропилена, полистирола. В качестве инертного материала, размещенного после слоя катионита, используют материал на основе кремнезема. Композиция содержит упомянутые материалы при следующем соотношении (об.%): инертный материал, размещенный перед катеонитом, 4-6, катеонит 82-88, инертный материал, размещенный после катионита, 8-12. Изобретения обеспечивают одностадийную очистку при снижении жесткости воды до концентрации менее 0,01 мг-экв/л, снижение расхода соли для регенерации и снижение объема и минерализации образующихся сточных вод [5]. Недостатком метода является необходимость регенерации катионита, что создает большой объем кислых или нейтральных промывных вод, содержащих значительные концентрации хлорида натрия. Требуются серьезные дополнительные технологические решения для утилизации или обезвреживания таких вод. Предложенный способ глубокого умягчения воды не предусматривает умягчение вод, содержащих большие концентрации посторонних электролитов. Причем концентрация этих солей может многократно превышать исходное содержание катионов жесткости, что резко снижает эффективность сорбата.
Целью изобретения является снижение общей жесткости воды до 0,015 ммоль-экв/л при раздельной и совместной сорбции катионов Ca(II) и Mg(II) из хлоридных растворов с их исходной концентрацией, превышающей нормативно допустимую в 25 раз, как в отсутствии, так и в присутствии до 840 мг/л NaHCO3 (10-2 моль/л HCO3-) и до 850 мг/л NaNO3 (10-2 моль/л NO3-) за счет применения экологически чистого, технологичного, доступного сорбента - 95%-ного концентрата глауконита Бондарского месторождения Тамбовской области, подвергнутого предшествующей солевой обработке раствором хлорида натрия.
Отличительными признаками предлагаемого способа являются использование в качестве сорбента 95%-ного концентрата глауконита Бондарского месторождения Тамбовской области, подвергнутого предшествующей солевой обработке раствором хлорида натрия, низкая себестоимость адсорбента и снижение общей жесткости воды до 0,015 ммоль-экв/л при раздельной и совместной сорбции катионов Ca(II) и Mg(II) из хлоридных растворов, как в отсутствии, так и в присутствии до 840 мг/л NaHCO3 (10-2 моль/л HCO3-) и до 850 мг/л NaNO3 (10-2 моль/л NO3-).
Указанные отличительные признаки предлагаемого способа определяют его новизну и изобретательский уровень в сравнении с известным уровнем техники.
Технической задачей является разработка способа глубокого сорбционного умягчения воды для питания котлов и воды оборотного водоснабжения. Данная техническая задача решается тем, что удаление солей жесткости проводят 95%-м концентратом глауканита Бондарского месторождения Тамбовской области, подвергнутом солевой обработке раствором хлорида натрия, из хлоридных растворов с их исходной концентрацией, превышающей нормативно допустимую в 25 раз как в отсутствии, так и в присутствии до 840 мг/л NaHCO3 (10-2 моль/л HCO3-) и до 850 мг/л NaNO3 (10-2 моль/л N03-).
Проводить сорбцию на исходном концентрате глауконита без предварительной подготовки невозможно, так как из него рабочим раствором экстрагируется большое количество катионов Mg2+ или Ca2+. В [6] рекомендуется перевод глинистых минералов в натриевую форму многократной обработкой раствором NaCl. Авторы указывают, что такая форма сорбента наиболее хорошо диспергируется при перемешивании, а катионы Na+ наиболее легко заменяются ионами иной природы. С целью отмывки сорбента от подвижных катионов щелочноземельных металлов предварительно в работе была апробирована его обработка дистиллированной водой, 0,1 М HCl, 1 М, 3 М и 5 М растворами NaCl. В результате этих экспериментов избран следующий способ подготовки сорбента. Исходный 95%-ный концентрат глауконита в течение часа обрабатывали 3 М раствором NaCl при перемешивании магнитной мешалкой и сушили при 80-90°C. Такой сорбент характеризуется отрицательной реакцией системы на Mg(II) и Ca(II) при суспензировании его в дистиллированной воде и показывает стабильные результаты.
Стандартные среды с катионами Mg2+ готовили растворением металлического магния марки МГ-1 в растворе соляной кислоты с последующим выпариванием избытка HCl и H2O и количественным переносом продукта из фарфорового тигля в заданный объем дистиллированной воды с отрицательной реакцией на Ca2+ и Mg2+. Хлоридные среды, содержащие катион Ca(II), получены введением в фиксированный объем дистиллированной воды заданной массы безводного CaCl2 (квалификация ч.д.а.). Затем растворы MgCl2 и CaCl2 смешивали в заданном объемном соотношении для получения среды с рабочими концентрациями сорбируемых катионов. Сорбцию проводили при комнатной температуре 95%-ным концентратом глауконита ГБМТО (ТУ 2164-002-03039858-08) из 0,1 л модельного раствора с фиксированной массой сорбента (1 г), перемешиваемого магнитной мешалкой. Суммарное содержание катионов кальция и магния в исходной среде и по завершению эксперимента фиксировали комплексонометрическим титрованием раствором Трилона Б в присутствии эриохрома черного Т, применяемого в качестве индикатора в виде порошка в смеси с NaCl (х.ч.) с их соотношением 1:100. Использована методика титрования в соответствии с [7].
После определения суммарной концентрации Mg(II) и Ca(II) (в ммоль-экв/л) оксалатом аммония осаждали Ca(II), согласно [8], и оценивали оставшуюся массу катионов магния (II) прямым титрованием, а кальция (II) - из разности. Использование методики аналитического разделения катионов Mg(II) и Ca(II), предложенной в [9], в основе которой лежит осаждение ионов Mg2+ щелочью за счет достижения pH гидратообразования (Mg(OH)2), приводит к тем же результатам. В качестве посторонних электролитов использовали NaHCO3 и NaNO3 квалификации «ч.д.а.».
Глубину извлечения катионов оценивали при комнатной температуре посредством коэффициента извлечения ρ, представляющею собой отношение разности масс катионов в исходном растворе и в среде по завершению эксперимента к их начальной величине. Для повышения глубины извлечения катионов использовали стадийную сорбционную очистку рабочих растворов. С этой целью после первой стадии сорбции раствор направляли на вторую, проводимую со свежей порцией сорбента с той же удельной массой (на единицу объема раствора).
Для оценки совместной сорбции катионов Ca(II) и Mg(II) в отсутствии постороннего электролита использован модельный раствор, приготовленный на дистиллированной воде (модель высокоминерализованной воды), содержащей 0,125 ммоль-экв/л CaCl2 и 0,125 ммоль-экв/л MgCl2. В первых 20- и 40-минутной стадиях ρi катионов не превышает 71% (фигура 1). Причем указанная величина достигается лишь в последнем случае для Ca(II). Над квадратами на гистограмах на всех приведенных фигурах указана цифра, характеризующая оставшуюся концентрацию катионов жесткости в растворе после завершения сорбции (ммоль-экв/л).
Далее условия сорбции ужесточили, увеличив вдвое исходную концентрацию катионов Ca(II) и вводя гидрокарбонат натрия, что обусловлено обычно большим содержанием в воде анионов НСО3-.
Присутствие гидрокарбонат ионов заметно снижает эффективность сорбции Ca(II) и Mg(II) в первых стадиях (фигура 1), но позволяет достичь необходимой максимально допустимой жесткости воды в последующем процессе (фигура 2). Таким образом, в этом случае можно ограничиться двумя последовательными 20-минутными стадиями.
Увеличение концентрации гидрокарбоната натрия в 10 раз практически не позволяет получить нужную глубину извлечения катионов жесткости при использовании двух последовательных 20-минутных стадий сорбции, но посредством двух последовательных равновесных 40-минутных стадий удается достичь необходимого уровня жесткости (фигура 3).
Наличие 2,4*10-3 моль/л NaNO3, что позволяет сохранить неизменной ионную силу раствора, в тех же условиях, позволяет практически нацело сорбировать глауконитом катионы Ca(II) и Mg(II) при его неизменной удельной массе не только посредством двух последовательных стадий, но и в процессе первой из них, позволяющей достичь установления равновесия (τ=40 мин, фигура 4) и снизить суммарную жесткость в 18 раз.
Из приведенных данных видно, что посредством сорбционного умягчения воды с использованием концентрата глауконита удается понизить ее общую жесткость за счет извлечения катионов Ca(II) и Mg(II) в 25 и более раз, доведя ее до нормативно-допустимой (0,015 ммоль-экв/л) применительно к требованиям эксплуатации котлов высокого давления с естественной циркуляцией. Использование концентрата глауконита для умягчения питательной воды котлов с естественной циркуляцией эффективно и при содержании в ней гидрокарбонат ионов до 840 мг/л (10-2 моль/л) и нитрат ионов до 850 мг/л (10-2 моль/л NO3-). Сорбционное умягчение питательной воды целесообразно проводить в две последовательные стадии с использованием в качестве сорбента природного глауконита, переведенного в Na-форму посредством предшествующей солевой обработке раствором хлорида натрия.
Краткое описание чертежей
Фигура 1. Глубина извлечения катионов жесткости из хлоридных растворов с 0,125 ммоль-экв/л Ca(II) и 0,125 ммоль-экв/л Mg(II). Продолжительность сорбции, мин: 1…6-20; 7…12-40. Стадии сорбции: 1…3 и 7…9 - первая; 4…6 и 10…12 - первая и вторая. Сорбированные катионы: 1, 4, 7 и 10 - Ca(II); 2, 5, 8 и 11 - Mg(II); 3, 6, 9 и 12 - Ca(II)+Mg(II). Удельная масса сорбента - 1 г/0,1 л, ρ - процент.
Фигура 2. Влияние продолжительности (τс) и числа стадий на глубину сорбции катионов Ca2+ (1, 4, 7 и 10), Mg2+ (2, 5, 8 и 11) и Са2+ и Mg2+ совместно (3, 6, 9 и 12) концентратом глауконита из раствора, содержащего 0,25 М CaCl2+0,125 М MgCl2+10-3 М NaHCO3. Масса сорбента - 1 г/0,1 л раствора, ρ - процент.
Фигура 3. Влияние продолжительности (τс) и числа стадий на глубину сорбции катионов Ca2+ (1, 4, 7 и 10), Mg2+ (2, 5, 8 и 11) и Ca2+ и Mg2+ совместно (3, 6, 9 и 12) концентратом глауконита из раствора, содержащего 0,25 М CaCl2+0,125 М MgCl2+10-2 М NaHCO3. Масса сорбента - 1 г/0,1 л раствора.
Фигура 4. Степень извлечения катионов из раствора с 0,25 ммоль-экв/л Ca(II) и 0,25 ммоль-экв/л Mg(II) в присутствии 2,4*10-3 моль/л NaNO3. Продолжительность сорбции, мин: 1…6-20, 7…12-40. Стадии сорбции: 1…3 и 7…9 - первая; 4…6 и 10…12 - первая и вторая. 1, 4, 7 и 10 - Ca(II); 2, 5, 8, 11 - Mg(II); 3, 6, 9 и 12 - Ca(II)+Mg(II). Удельная масса сорбента-1 г/0,1 л.
Источники информации
1. Сборник правил и руководящих материалов по котлонадзору. (Требования к питательной воде). М.: Недра. 1977. 480 с.
2. Патент РФ 2001114498. Способ очистки и умягчения воды. Магунов И.Р., Магунов Р.Л. Опубл. 05.2000.
3. Патент РФ 94025655. Способ очистки воды. Тризин Ю.Т., Цыганков В.И. Опубл. 06.1996.
4. Патент РФ 2281257. Способ получения глубоко деминерализованной воды. Янковский Н.А., Степанов В.А. Опубл. 08.2006.
5. Патент РФ 2462290. Композиция фильтрующих материалов, установка и способ для глубокой очистки воды от солей жесткости. Митченко Т.Е., Митченко А.А. Опубл. 09.2012.
6. Тарасевич Ю.И., Овчаренко Ф.Д. Адсорбция на глинистых минералах. Киев. Наукова думка. 1975. 352 с.
7. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия. 1970. 360 с.
8. Гиллебранд В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. М: Химия. 1966. 1112 с.
9. ГОСТ Р 52407-2005. Национальный стандарт Российской Федерации. Вода питьевая. Методы определения жесткости.

Claims (1)

  1. Способ глубокого умягчения воды, включающий перемешивание воды с адсорбентом - 95% глауконитом, предварительно подвергнутым обработке хлоридом натрия, отличающийся тем, что умягчению подвергают воду, содержащую до 840 мг/л NaHCO3 и до 850 мг/л NaNO3, процесс проводят в две последовательные стадии из расчета отношения объема воды в литрах к массе адсорбента в граммах, равном 1:10, при этом каждую из стадий проводят при перемешивании воды со свежей порцией адсорбента в течение 20-40 минут, обеспечивая получение умягченной воды с общей жесткостью не выше 0,015 ммоль-экв/л.
RU2015114045/05A 2015-04-15 2015-04-15 Способ глубокого сорбционного умягчение воды RU2581089C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015114045/05A RU2581089C1 (ru) 2015-04-15 2015-04-15 Способ глубокого сорбционного умягчение воды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015114045/05A RU2581089C1 (ru) 2015-04-15 2015-04-15 Способ глубокого сорбционного умягчение воды

Publications (1)

Publication Number Publication Date
RU2581089C1 true RU2581089C1 (ru) 2016-04-10

Family

ID=55794403

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015114045/05A RU2581089C1 (ru) 2015-04-15 2015-04-15 Способ глубокого сорбционного умягчение воды

Country Status (1)

Country Link
RU (1) RU2581089C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978941A (zh) * 2021-03-05 2021-06-18 中国矿业大学 一种油田采出水的除垢工艺
CN115010276A (zh) * 2021-03-05 2022-09-06 中国石油化工股份有限公司 油田采出水的防结垢方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU38908A1 (ru) * 1933-04-19 1934-09-30 С.А. Дуров Способ см гчени вод помощью обработки их глауконитами или пермутитами
US2139299A (en) * 1936-04-06 1938-12-06 Permutit Co Altered glauconite and method of altering
RU2397808C1 (ru) * 2009-01-11 2010-08-27 Сергей Викторович Ярцев Способ очистки сточных вод от ртути
RU2483027C1 (ru) * 2011-11-25 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина") Способ очистки промышленных сточных и питьевых вод на глауконите от катионов железа (ii)
RU2534108C2 (ru) * 2013-02-12 2014-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" Способ сорбционной очистки проточных промышленных сточных и питьевых вод на глауконите от катионов меди
RU2537313C2 (ru) * 2013-04-15 2014-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU38908A1 (ru) * 1933-04-19 1934-09-30 С.А. Дуров Способ см гчени вод помощью обработки их глауконитами или пермутитами
US2139299A (en) * 1936-04-06 1938-12-06 Permutit Co Altered glauconite and method of altering
RU2397808C1 (ru) * 2009-01-11 2010-08-27 Сергей Викторович Ярцев Способ очистки сточных вод от ртути
RU2483027C1 (ru) * 2011-11-25 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина") Способ очистки промышленных сточных и питьевых вод на глауконите от катионов железа (ii)
RU2534108C2 (ru) * 2013-02-12 2014-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" Способ сорбционной очистки проточных промышленных сточных и питьевых вод на глауконите от катионов меди
RU2537313C2 (ru) * 2013-04-15 2014-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RU 2137717 C1, (20.09.1999. *
ВИГДОРОВИЧ В.И. и др. "Закономерности сорбции катионов Ca и Mg концентратом глауконита ГБМТО", Сорбционные и хроматографические процессы, 2014, т.14, вып.2, стр.286-295. *
ГРИГОРЬЕВА Е.А. "Сорбционные свойств глауконита Каринского месторождения" автореф. на соиск уч. степ. конд. хим. наук" Челябинск, 2004. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978941A (zh) * 2021-03-05 2021-06-18 中国矿业大学 一种油田采出水的除垢工艺
CN115010276A (zh) * 2021-03-05 2022-09-06 中国石油化工股份有限公司 油田采出水的防结垢方法

Similar Documents

Publication Publication Date Title
CN102282106B (zh) 淡化废水的利用
US9744518B2 (en) Method of removing strontium cations from a water stream using an amorphous titanium silicate
WO2014153965A1 (zh) 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
CN111547804A (zh) 工业废水用复合型除氟剂、制备方法及进行工业废水除氟的方法
CN103068742A (zh) 水脱盐和处理系统及方法
Trus et al. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination
RU2581089C1 (ru) Способ глубокого сорбционного умягчение воды
CN103523860A (zh) 一种采用Friedel盐或Kuzel盐除去水溶液中有害阴离子的方法
RU2688593C1 (ru) Способ сорбционного извлечения лития из литийсодержащих хлоридных рассолов
Gomelya et al. Study of using the anionites in low-waste processes of water purification from phosphates
RU2537313C2 (ru) Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)
US20170247270A1 (en) Water treatment methods
RU2528692C2 (ru) Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов
CN107601729A (zh) 用于钢铁行业浓盐废水零排放处理工艺及系统
Urano et al. Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 4. Recovery of phosphate and aluminum from desorbing solution
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
US20150251928A1 (en) Ion exchange methods for treating water hardness
Khan et al. An overview of conventional and advanced water defluoridation techniques
Holub et al. Application of ion-exchange resins for removing sulphate ions from acidic solutions
Liu et al. A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed
RU2257265C1 (ru) Способ регенерации слабокислотных карбоксильных катионитов
RU2656311C1 (ru) Способ очистки воды хозяйственно-питьевого назначения от соединений лития
Puzyrnaya et al. Removal of phosphate ions from aqueous solutions Zn/Al-and Mg/Fe-by layered doubled hydroxides
RU2691052C1 (ru) Способ очистки высокоминерализованных кислых сточных вод водоподготовительной установки от сульфатов
Alekseev Waste from water softening stations for treatment wastewater containing dyes