RU2580722C1 - Способ обработки поверхности фторсодержащей резины - Google Patents

Способ обработки поверхности фторсодержащей резины Download PDF

Info

Publication number
RU2580722C1
RU2580722C1 RU2014146840/05A RU2014146840A RU2580722C1 RU 2580722 C1 RU2580722 C1 RU 2580722C1 RU 2014146840/05 A RU2014146840/05 A RU 2014146840/05A RU 2014146840 A RU2014146840 A RU 2014146840A RU 2580722 C1 RU2580722 C1 RU 2580722C1
Authority
RU
Russia
Prior art keywords
rubber
fluorine
aluminum
minutes
containing rubber
Prior art date
Application number
RU2014146840/05A
Other languages
English (en)
Inventor
Ксения Константиновна Скрипаченко
Александр Иванович Шумилин
Сергей Яковлевич Пичхидзе
Владимир Александрович Кошуро
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority to RU2014146840/05A priority Critical patent/RU2580722C1/ru
Application granted granted Critical
Publication of RU2580722C1 publication Critical patent/RU2580722C1/ru

Links

Abstract

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления стекловолокнонаполненного политетрафторэтилена осуществляют нанесением на поверхность фторсодержащей резины слоя алюминия толщиной 5-10 нм посредством магнетронного распыления при плотности тока разряда 0,1-0,2 мА/см2 и скорости роста пленки алюминия 1-2 нм/с с последующей промывкой водным раствором смеси 3-5% азотной и 3-5% соляной кислот в течение 1-2 мин, затем водой в течение 1-2 мин и сушкой в течение 5-7 мин при температуре 70-90°С. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к технологии поверхностной обработки фторсодержащей вулканизованной резины для крепления ее к фторполимерам, а именно стекловолокнонаполненному политетрафторэтилену (Ф4С25: фторопласт-4, содержащий 25 вес.% стекловолокна), и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности.
Известно использование различных способов обработки поверхности резины перед склеиванием: физических (механических), химических, физико-химических (Вострокнутов Е.Г. и др. - В кн.: Машины и технология переработки каучуков, полимеров и резиновых смесей. Ярославль, ЯПИ, 1972, с. 26-32; Д.А. Кардашов, А.П. Петрова. Полимерные клеи. Создание и применение. - М.: Химия, 1983, с. 165-167).
При физическом способе обработки поверхности резины под склеивание используется абразивная обработка струйным методом и зачистка поверхностей шероховкой (рашпиль, стальная щетка) или шлифованием (шкурка). Для улучшения смачивания резины клеем и повышения прочности клеевых соединений проведение механической обработки обычно проводится в среде некоторых реагентов (например, мономера, растворителя, используемого в составе клея, и др.).
При химическом (электрохимическом) способе подготовки поверхности (травлении) резины изменяются ее химические и физические свойства. После травления обязательна промывка деталей проточной холодной водой до нейтральной реакции промывной воды. Сушку деталей после промывки производят в помещении обдувкой сжатым воздухом, нагретым от 50 до 110°С. Для подготовки поверхности резин используют серную кислоту H2SO4 с концентрацией 80-93%. Продолжительность выдержки при обработке поверхности зависит от типа резин и концентрации серной кислоты. Данный способ совершенно не пригоден для обработки резинотехнических изделий из фторполимеров ввиду их высокой кислотоустойчивости.
Известна технология поверхностной обработки вулканизованной резины (патент РФ №2144930 от 05.08.1999 / Способ модификации поверхности резинотехнических изделий // Тигашов М.А.; Гуринович Э.Г.; Куканов О.М.; Удовиченко С.Г.; Суханов В.Д.; Кочетков В.Н.; Грешняев В.А.). Модификацию поверхности изделий осуществляют путем обезжиривания тампонированием поверхности резиновых изделий в том же растворителе, в котором проводят последующую обработку поверхности раствором модификатора. Последний представляет собой 1,5-2,0%-ный раствор производных перфторполиоксаалкиленкарбоновых кислот или сульфокислот во фтор- или фторхлорсодержащем растворителе. Обработку проводят в течение 1-2 мин при температуре кипения раствора модификатора с последующей сушкой при 60-80°С в течение 1,5-2 ч в потоке воздуха.
Техническим результатом изобретения является придание антифрикционных свойств поверхности резинотехнических изделий и снижение многостадийности процесса модификации.
Известен способ модификации поверхности резинотехнических изделий путем обезжиривания поверхности и обработки ее раствором модификатора с последующей сушкой (авт. свид. SU №1700015 от 03.01.1989 / Способ модификации поверхности резиновых изделий // А.Н. Москвичев, С.Ф. Тумаков, С.А. Воронин, С.Ю. Дудкина, Н.Н. Чуваткин, Л.С. Богуславская, А.В. Карташов). Обезжиривание поверхности проводят в растворе эмульгатора (ОП-7, ОП-10) с последующей промывкой, сушкой и выдерживанием во фреоне для удаления влаги. При последующей обработке в качестве раствора модификатора используют растворы фторидов галогенов. После обработки раствором модификатора изделия промывают во фреоне, нейтрализуют остатки захваченного поверхностью и непрореагировавшего фторида галогена (например, BrF3) в водном растворе сульфита натрия, промывают и сушат. Данный способ позволяет повысить износостойкость изделия, придав поверхности антифрикционные свойства. Однако технологически способ достаточно сложен, а используемые химикаты токсичны.
Известен способ обработки поверхности пористых резин (авт. свид. SU №943262 от 15.01.80 / Способ предклеевой обработки поверхности пористых резин // Карпова Л.К., Косинцева Г.А., Каблов В.Ф., Огрель С.М., Целкович М.Г.). Предлагаемый способ осуществляется на образцах пористых подошвенных резин, прикрепляемых друг к другу с помощью резинового клея на основе хлоропренового каучука. Предклеевая обработка поверхности проводится путем нанесения металлической щеткой отверстий диаметром 2 мм. Резиновый клей на основе хлоропренового каучука не пригоден для склеивания фторсодержащей резины и политетрафторэтилена (ПТФЭ).
Известно использование карбофункциональных кремний-органических производных, в частности 3-аминопропилтриэтоксисилана (АГМ-9), для обработки поверхностей полимеров (Моцарев Г.В., Соболевский М.В., Розенберг В.Р. Карбофункциональные органосиланы и органосилоксаны. - М.: Химия, 1990, с. 124; Новицкая С.П., Нудельман З.Н., Донцов А.А. Фторэластомеры. М.: Химия, 1988. - с. 180). Однако при этом наблюдается низкая прочность соединения резины и ПТФЭ.
Известно введение в состав резины модифицирующей добавки Р-152 (четвертичной аммонийной соли 1,8-диазобицикло[5,4,0]-ундецена-7 и новолачной смолы) для увеличения адгезии резин на основе фтор- и эпихлоргидринкаучуков (Нудельман З.Н. Фторкаучуки: основы, переработка, применение. М.: ООО ПИФ РИАС, 2007. - 364 с).
Известен способ химический способ обработки поверхности ПТФЭ, который обеспечивает равномерность обработки ПТФЭ и высокую адгезионную прочность (Ковачич Л. Склеивание металлов и пластмасс: пер. со словац. /Под ред. А.С Фрейдина. - М.: Химия, 1985. - 240 с.). Сущность способа заключается в обработке ПТФЭ в течение 5-15 минут при 20°С раствором натрий-нафталинового комплекса в тетрагидрофуране. Затем ПТФЭ промывают ацетоном, водой и сушат. Данный способ после усовершенствования был применен для усиления адгезии стекловолокнонаполненного ПТФЭ и фторсодержащей резины (патент РФ №2400493 от 27.08.2008 / Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена // Зуев А.В., Панова Л.Г., Пичхидзе С.Я.; патент РФ №2446198 от 27.12.2010 / Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена // Таганова В.А., Пичхидзе С.Я.). Способ технологически сложен ввиду достаточной горючести используемых реагентов.
Известны способы модификации поверхности резинотехнических изделий в интересах уменьшения коэффициента трения путем прививки к их поверхности фторорганических соединений в тлеющем разряде (авт. свид. SU №988836 от 25.09.1979 / Способ поверхностной модификации резинотехнических изделий // Духовской Е.А., Клейман A.M., Пономарев А.Н., Силин А.А., Скок В.М., Тальрозе В.Л., Хомяков А.В.), нанесения полимерной композиции, включающей фторкаучук и антифрикционный наполнитель, с использованием предварительной обработки изделия в плазме тлеющего разряда (авт. свид. SU №1656851 от 15.06.1994 / Способ получения антифрикционного покрытия на поверхности резинотехнического изделия // Хмеленко Т.М., Пономарев А.Н., Абдрашитов Э.Ф.), смачивания поверхности фторкеросином, термообработки, обработки в тлеющем разряде и последующего нанесения слоя полимера (авт. свид. SU №1081183. - 1984 / Способ поверхностной модификации резинотехнических изделий // Хомяков А.В., Тальрозе В.Л., Тихомиров Л.А., Силин А.А., Пономарев А.Н., Клейман A.M., Залавков В.А., Духовской Е.А.). Обработка полимеров (ленты из высокомолекулярного полиэтилена и наполненного ПТФЭ) тлеющим разрядом в вакууме проводится при следующих параметрах процесса: остаточное давление 13-27 Па, напряжение 1100 В, сила тока 0,29-0,39 А, продолжительность 25-30 с. Все эти способы позволяют производить эффективную модификацию поверхности резиновых изделий, но осуществление их технологически сложно из-за использования стадии обработки поверхности в тлеющем разряде.
Для повышения адгезии фторполимеров, в частности ПТФЭ, обычно используются приемы модифицирования его поверхности плазмой. Под действием плазмы поверхность ПТФЭ очищается от загрязнений и происходит ее гидрофилизация, что приводит к увеличению прочности связи при склеивании (Данилин Б.С. Применение низкотемпературной плазмы для травления и очистки материалов. - М.: Энергоатомиздат, 1987. - 264 с.; Трофименко К.А., Кучеева Е.А. Плазмохимическая модификация поверхности тефлона. XXX Гагаринские чтения. Тезисы докладов международной молодежной научной конференции, т. 6., М.: ЛАТМЭС, 2004. - с. 23-24). Однако в данном случае наблюдается недостаточная прочность соединения резины и ПТФЭ.
Наиболее близким к предлагаемому способу является способ подготовки поверхности полимерных материалов перед склеиванием: поверхность изделий из полимеров подвергают механической обработке электрокорундом и последующему воздействию тлеющего разряда в установке "Булат-6" при напряжении 1000 В и давлении в камере 1*10-2 -1*10-3 мм рт. ст. в течение 15±5 мин. Склеивание фторопласта с резиной проводили клеем после высушивания под давлением 0,2 кгс/см в течение суток (Патент РФ на изобретение №2126810 от 01.08.1997 / Способ подготовки поверхности полимерных материалов перед склеиванием // Н.В. Булатова, М.Х. Нурутдинов, В.И. Ермаков - прототип).
Недостатками известных способов являются низкая прочность соединения резины и фторполимеров, технологическая сложность и длительность процесса склеивания (не менее 24 часов).
Задачей изобретения является достижение высокой прочности крепления фторсодержащей резины к поверхности стекловолокнонаполненного политетрафторэтилена при сокращении времени технологического процесса.
Техническим результатом является повышение адгезионной прочности соединения резины и стекловолокнонаполненного политетрафторэтилена, при сокращении времени процесса склеивания.
Поставленная задача решается тем, что на поверхность фторсодержащей резины посредством магнетронного распыления наносят слой алюминия толщиной 5…10 нм с последующей промывкой поверхности для удаления избытка алюминия и сушкой.
Промывку поверхности осуществляют водным раствором смеси 3..5%-ной азотной и 3…5%-ной соляной кислот в течение 1-2 мин, а затем водой в течение 1-2 мин.
Сушку осуществляют при температуре 70-90°С в течение 5-7 мин.
Магнетронное распыление алюминия осуществляют при плотности тока разряда 0,1…0,2 мА/см2 и скорости роста пленки алюминия 1-2 нм/с.
Пример осуществления способа.
Для повышения адгезионных характеристик, в результате физической модификации поверхности фторполимера (ФП) использовалось магнетронное распыление (MP) металла (алюминия). Алюминий на образцы фторсодержащей резины 420-264 В/5 перекисной вулканизации на основе фтористого каучука СКФ-264 В/5 [Кочеткова Г.В., Логинов Б.А. Новые марки отечественных каучуков. Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И.Менделеева), 2008, т. LII, №3, с. 23-25; Васильев О.М., Пичхидзе С.Я., Юровский B.C., Устинова Т.П., Кононенко С.Г. / Эластомерные композиции на основе фторкаучуков перекисной вулканизации для автомобилей ВАЗ // Пластические массы, №1, 2009. - С. 52-53] наносился с помощью магнетронно-распылительной системы (МРС) на основе вакуумного универсального поста ВУП-4 при давлении аргона 10-12 Па, разности потенциалов между катодом и анодом 150-200 В, плотности тока разряда 0,1…0,2 мА/см2. Скорость роста пленки металла составляла 1-2 нм/с, наносился слой алюминия толщиной от 5 до 10 нм. Для промывки поверхности от избытка алюминия изготавливали водный раствор смеси азотной и соляной кислот, для чего 3 г азотной кислоты HNO3 и 3 г соляной кислоты растворяли в 94 г воды. Промывку водным раствором смеси кислот осуществляли в течение 1-2 мин. Затем для удаления избытка кислот, поверхность промывали водой в течение 1-2 мин. и сушили в течение 5-7 мин. при температуре 70-90°С. Для удаления избытка смеси водного раствора кислот с модифицированной поверхности резины (нейтрализации поверхности) также может быть использован раствор щелочи, например, 3…5%-ный водный раствор NAOH, а в качестве водного раствора смеси кислот - азотной HNO3 и плавиковой HF.
Плазменную обработку поверхности резины по прототипу проводили на установке "Булат-6". Параметры обработки: напряжение 800 - 1000 В, давление в камере 1*10-2 - 1*10-3 мм рт. ст. После механической обработки и обработки тлеющим разрядом склеивание полимеров проводили клеем «Лейконат», табл. 1. Такая обработка поверхности обусловливает образование химически активных свободных радикалов. В результате химических реакций с участием этих радикалов на поверхности резины появляются полярные группы, образуются непредельные связи, способствующие при взаимодействии с компонентами клея образованию привитых сополимеров.
В заявленном техническом решении соединение фторсодержащей резины с образцами стекловолокнонаполненного ПТФЭ марки Ф4С25 проводили в вулканизационном прессе при 165-170°С в течение 5-6 минут.
Определение прочности адгезионного взаимодействия резин и стекловолокнонаполненного ПТФЭ марки Ф4С25 проводилось по ГОСТ 6768-75 [ГОСТ 6768-75. Резина и прорезиненная ткань. Метод определения прочности связи между слоями при расслоении. М.: ИПК стандартов. - 6 с].
Оценка адгезионной прочности соединений контрольных образцов из фторсодержащей резины 420-264 В/5 с нанесенным на поверхность слоем алюминия и Ф4С25 выполнена методом межслоевого расслаивания на универсальной испытательной машине ИР 5082-100. При этом определялось усилие, необходимое для разделения слоев резины и Ф4С25. Испытывался образец шириной (25±0,5) мм, толщиной 4 мм и длиной, обеспечивающей расслоение на участке не менее 100 мм, скорость перемещения подвижного захвата 100 мм/мин. Адгезионная прочность соединения увеличивается при использовании поверхностно модифицированной алюминием резины и Ф4С25. Результаты исследования приведены в табл. 1.
Figure 00000001
Анализ результатов показал, что прочность связи «резина-Ф4С25» после нанесения на резину магнетронно-распыленного алюминия слоем 5-10 нм примерно в два раза превышает значение прочности связи при обработке «холодной» плазмой или без обработки. Технический результат изобретения не достигается при нанесении слоя алюминия толщиной меньше 5 нм ввиду неполноты модифицирования поверхности фторсодержащей резины, а более 10 нм - экономически нецелесообразен ввиду перерасхода алюминия и наблюдения максимума по адгезионной прочности с Ф4С25. Смеси водной 3…5%-ной азотной и 3…5%-ной соляной кислот достаточно для обработки поверхности резины после напыления, более высокая концентрация смеси кислот экономически нецелесообразна, а меньшая концентрация приводит к неполному удалению избытка алюминия. Промывки водой в течение 1-2 мин. достаточно для удаления избытка смеси водного раствора кислот. Последующая сушка в течение 5-7 мин при температуре 70-90°С необходима для полного удаления влаги с поверхности резины, что приводит к увеличению прочности связи при склеивании фторсодержащей резины и стекловолокнонаполненного ПТФЭ. В целом данный процесс (подготовка поверхности резины и склеивание) по продолжительности проходит в течение одного часа, что значительно меньше известного способа-прототипа.
Таким образом, прочность связи стекловолокнонаполненного ПТФЭ с резиной 420-264 В/5 на основе фтористого каучука СКФ-264 В/5 может быть повышена дополнительной модификацией поверхности фторсодержащей резины магнетронным распылением алюминия.

Claims (4)

1. Способ обработки поверхности фторсодержащей резины для крепления стекловолокнонаполненного политетрафторэтилена, заключающийся в нанесении на поверхность фторсодержащей резины слоя алюминия толщиной 5-10 нм посредством магнетронного распыления с последующей промывкой поверхности для удаления избытка алюминия и сушкой.
2. Способ по п. 1, характеризующийся тем, что промывку поверхности осуществляют водным раствором смеси 3-5%-ной азотной и 3-5%-ной соляной кислот в течение 1-2 мин, а затем водой в течение 1-2 мин.
3. Способ по п. 1, характеризующийся тем, что сушку осуществляют при температуре 70-90°C в течение 5-7 мин.
4. Способ по п. 1, характеризующийся тем, что магнетронное распыление алюминия осуществляют при плотности тока разряда 0,1-0,2 мА/см2 и скорости роста пленки алюминия 1-2 нм/с.
RU2014146840/05A 2014-11-20 2014-11-20 Способ обработки поверхности фторсодержащей резины RU2580722C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146840/05A RU2580722C1 (ru) 2014-11-20 2014-11-20 Способ обработки поверхности фторсодержащей резины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146840/05A RU2580722C1 (ru) 2014-11-20 2014-11-20 Способ обработки поверхности фторсодержащей резины

Publications (1)

Publication Number Publication Date
RU2580722C1 true RU2580722C1 (ru) 2016-04-10

Family

ID=55794246

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146840/05A RU2580722C1 (ru) 2014-11-20 2014-11-20 Способ обработки поверхности фторсодержащей резины

Country Status (1)

Country Link
RU (1) RU2580722C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669827C1 (ru) * 2017-12-18 2018-10-16 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Способ склеивания инертных полимерных материалов с металлическими поверхностями
RU2718772C1 (ru) * 2019-10-28 2020-04-14 Общество с ограниченной ответственностью «НПО ГЕЛАР» Композиционный материал на основе сверхвысокомолекулярного полиэтилена
RU2758411C2 (ru) * 2019-04-26 2021-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Способ обработки поверхности фторсодержащей резины

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU988836A1 (ru) * 1979-09-25 1983-01-15 Предприятие П/Я В-8584 Способ поверхностной модификации резино-технических изделий
RU1656851C (ru) * 1987-09-29 1994-06-15 Филиал Института энергетических проблем химической физики РАН Способ получения антифрикционного покрытия на поверхности резинотехнического изделия
RU2126810C1 (ru) * 1997-08-01 1999-02-27 Комбинат "Электрохимприбор" Способ подготовки поверхности полимерных материалов перед склеиванием
RU2400493C2 (ru) * 2008-08-27 2010-09-27 Открытое акционерное общество "Балаковорезинотехника" Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена
RU2446198C1 (ru) * 2010-12-27 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU988836A1 (ru) * 1979-09-25 1983-01-15 Предприятие П/Я В-8584 Способ поверхностной модификации резино-технических изделий
RU1656851C (ru) * 1987-09-29 1994-06-15 Филиал Института энергетических проблем химической физики РАН Способ получения антифрикционного покрытия на поверхности резинотехнического изделия
RU2126810C1 (ru) * 1997-08-01 1999-02-27 Комбинат "Электрохимприбор" Способ подготовки поверхности полимерных материалов перед склеиванием
RU2400493C2 (ru) * 2008-08-27 2010-09-27 Открытое акционерное общество "Балаковорезинотехника" Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена
RU2446198C1 (ru) * 2010-12-27 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669827C1 (ru) * 2017-12-18 2018-10-16 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Способ склеивания инертных полимерных материалов с металлическими поверхностями
RU2758411C2 (ru) * 2019-04-26 2021-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Способ обработки поверхности фторсодержащей резины
RU2718772C1 (ru) * 2019-10-28 2020-04-14 Общество с ограниченной ответственностью «НПО ГЕЛАР» Композиционный материал на основе сверхвысокомолекулярного полиэтилена

Similar Documents

Publication Publication Date Title
RU2580722C1 (ru) Способ обработки поверхности фторсодержащей резины
JP5849308B2 (ja) 表面改質フッ素樹脂フィルムの製造方法及び表面改質フッ素樹脂フィルム
US20130089671A1 (en) Polymers formed from 2,3,3,3-tetrafluoropropene and articles and uses thereof
DK148061B (da) Termohaerdelige masser paa basis af fluorholdige copolymere
JPH10176144A (ja) 基体と付着したポリテトラフルオロエチレン物品
CN104962972A (zh) 一种铝合金与树脂结合体的制造方法
CN106397894A (zh) 一种丁腈手套的制备方法
US6844030B2 (en) Process for modifying a polymeric surface
TWI829639B (zh) 含氟彈性共聚物及其製造方法
KR20170066960A (ko) 실리콘 고무를 이용한 실리콘 합성 피혁 제조 방법
US6752894B2 (en) Process for modifying a polymeric surface
RU2758411C2 (ru) Способ обработки поверхности фторсодержащей резины
JP6148494B2 (ja) 親水性ゴム成形体及びその製造方法
RU2685354C1 (ru) Способ получения полимерного покрытия на поверхности алюминия
RU2400493C2 (ru) Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена
JPH0796575A (ja) 積層体およびその製法
JPH0639147B2 (ja) 複合構造体
JP3643912B2 (ja) ゴム製品の表面処理方法
RU2685309C1 (ru) Способ получения полимерного покрытия на поверхности алюминия
JP4760007B2 (ja) フッ素樹脂の被膜の形成方法
JPS6329695B2 (ru)
Novák et al. Polypropylene fabrics pre-treated by atmospheric plasma
RU2446198C1 (ru) Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена
Cepeda-Jiménez et al. Weak boundary layers on vulcanized styrene–butadiene rubber treated with sulfuric acid
RU2685356C1 (ru) Способ получения полимерного покрытия на поверхности алюминия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171121