RU2580613C1 - Method of producing antibiotic nanocapsules in agar-agar - Google Patents
Method of producing antibiotic nanocapsules in agar-agar Download PDFInfo
- Publication number
- RU2580613C1 RU2580613C1 RU2014138303/15A RU2014138303A RU2580613C1 RU 2580613 C1 RU2580613 C1 RU 2580613C1 RU 2014138303/15 A RU2014138303/15 A RU 2014138303/15A RU 2014138303 A RU2014138303 A RU 2014138303A RU 2580613 C1 RU2580613 C1 RU 2580613C1
- Authority
- RU
- Russia
- Prior art keywords
- agar
- nanocapsules
- producing
- microcapsules
- suspension
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5161—Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.The invention relates to the field of nanotechnology, medicine, pharmacology and veterinary medicine.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК А61К 047/02, А61К 009 /16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.Previously known methods for producing microcapsules of drugs. So, in US Pat. 2092155, IPC A61K 047/02, A61K 009/16, published on 10/10/1997, Russian Federation, a method for microencapsulation of drugs based on the use of special equipment using ultraviolet radiation was proposed.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can affect the process of formation of microcapsules.
В пат. 2095055, МПК А61К 9/52, А61К 9/16, А61К 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.In US Pat. 2095055, IPC
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.The disadvantages of the proposed method: the complexity and duration of the process, the use of special equipment.
В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.In US Pat. 2076765, IPC
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.The disadvantage of this method is the difficulty of execution: obtaining microcapsules by dispersion with subsequent change in temperature, which slows down the process.
В пат. 2101010, МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.In US Pat. 2101010, IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Russian Federation, published January 10, 1998, a chewing form of the drug with a taste masking having the properties of controlled release of the drug is proposed The preparation contains microcapsules with a size of 100-800 microns in diameter and consists of a pharmaceutical core with crystalline ibuprofen and a polymer coating, including a plasticizer, flexible enough to withstand chewing. The polymer coating is a methacrylic acid based copolymer.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.The disadvantages of the invention: the use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancerous tumors; obtaining microcapsules by suspension polymerization; complexity of execution; the duration of the process.
В пат. 2139046, МПК А61К 9/50, А61К 49/00, А61К 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.In US Pat. 2139046, IPC
Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.The disadvantages of the proposed method are the complexity and duration of the process, the use of freeze-drying, which takes a lot of time and slows down the process of obtaining microcapsules.
В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.In US Pat. 2159037, IPC A01N 25/28, A01N 25/30, Russian Federation, published November 20, 2000, a method for producing microcapsules by a polymerization reaction at the phase boundary containing solid agrochemical material 0.1-55 wt. % suspended in a water-miscible organic liquid, 0.01-10 wt. % non-ionic dispersant active at the phase boundary and not acting as an emulsifier.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.The disadvantages of the proposed method: complexity, duration, the use of high shear mixer.
В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт. ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт. ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.In the article “Development of microencapsulated and gel-like products and materials for various industries”, Russian Chemical Journal, 2001, vol. XLV, No. 5-6, p. 125-135, a method for producing microcapsules of drugs by gas-phase polymerization is described, since the authors of the article consider the method of chemical coacervation from aqueous media to be microencapsulated as unsuitable because most of them are water-soluble. The microencapsulation process using the gas-phase polymerization method using n-xylylene includes the following main stages: evaporation of the n-xylylene dimer (170 ° C), its thermal decomposition in a pyrolysis furnace (650 ° C at a residual pressure of 0.5 mm Hg), transfer of reaction products to the “cold” polymerization chamber (20 ° C, residual pressure 0.1 mm Hg), deposition and polymerization on the surface of the protected object. The polymerization chamber is made in the form of a rotating drum, the optimum speed for coating the powder is 30 rpm. The thickness of the shell is regulated by the time of coating. This method is suitable for encapsulation of any solids (with the exception of prone to intense sublimation). The resulting poly-n-xylylene highly crystalline polymer, characterized by high orientation and tight packaging, provides a conformal coating.
Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.The disadvantages of the proposed method are the complexity and duration of the process, the use of gas phase polymerization, which makes the method inapplicable for producing microcapsules of drugs in polymers of protein nature due to denaturation of proteins at high temperatures.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57, представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.In the article “Development of Micro- and Nanosystems for the Delivery of Medicines”, Russian Chemical Journal, 2008, vol. LII, No. 1, p. 48-57, a method for producing microcapsules with incorporated proteins is presented, which does not significantly reduce their biological activity, carried out by the process of interfacial crosslinking of soluble starch or hydroxyethyl starch and bovine serum albumin (BSA) using terephthaloyl chloride. The proteinase inhibitor aprotinin, either native or with a protected active center, was microencapsulated when it was introduced into the aqueous phase. The flattened form of lyophilized particles indicates the preparation of microcapsules or particles of a reservoir type. Thus prepared microcapsules were not damaged after lyophilization and easily restored their spherical shape after rehydration in a buffer medium. The pH value of the aqueous phase was decisive in obtaining durable microcapsules with high yield.
Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.The disadvantage of the proposed method for producing microcapsules is the complexity of the process, and hence the floating output of the target capsules.
В пат. 2173140, МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремний органолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.In US Pat. 2173140, IPC A61K 009/50, A61K 009/127, Russian Federation, published September 10, 2001, a method for producing silicon organolipid microcapsules using a rotary-cavitation unit with high shear forces and powerful sonar acoustic and ultrasonic dispersion ranges is proposed.
Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.The disadvantage of this method is the use of special equipment - a rotary-quittance installation, which has an ultrasonic effect, which affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructively affects polymers of a protein nature, therefore, the proposed method is applicable when work with polymers of synthetic origin.
В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. 2359662, IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009, Russian Federation, a method for producing microcapsules using spray cooling in a Niro spray cooling tower under the following conditions: air temperature inlet 10 ° C;
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the
В пат. WO/2010/076360 ES, МПК B01J 13/00; А61К 9/14; А61К 9/10; А61К 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.In US Pat. WO / 2010/076360 ES, IPC B01J 13/00; A61K 9/14; A61K 9/10; AK61K 9/12, published July 8, 2010, a new method for producing solid micro- and nanoparticles with a homogeneous structure with a particle size of less than 10 μm, where the treated solid compounds have a natural crystalline, amorphous, polymorphic and other states associated with the starting compound, is proposed. The method allows to obtain solid micro- and nanoparticles with substantially spheroidal morphology.
Недостатком предложенного способа является сложность и длительность процесса.The disadvantage of the proposed method is the complexity and duration of the process.
В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес / объем). Как правило, продкет подлежит фильтрации, который осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.In US Pat. WO / 2010/119041 EP, IPC
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.The disadvantage of this method is the use of special equipment (vibration encapsulators (Inotech, Switzerland)), the production of microcapsules by protein denaturation, the difficulty of isolating the microcapsules obtained by this method is filtration using multiple filters, which makes the process long.
В пат. WO/2011/003805 ЕР, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.In US Pat. WO / 2011/003805 EP, IPC B01J 13/18; B65D 83/14;
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.The disadvantage of the proposed method is the use of centrifugation to separate from the process fluid, the duration of the process, as well as the use of this method not in the pharmaceutical industry.
В пат. 20110223314, МПК B05D 7/00, 20060101, B05D 007/00, В05С 3/02, 20060101, В05С 003/02; В05С 11/00, 20060101, В05С 011/00; B05D 1/18, 20060101, B05D 001/18; B05D 3/02, 20060101, B05D 003/02; B05D 3/06, 20060101, B05D 003/06 от 10.03. 2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.In US Pat. 20110223314,
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.The disadvantage of this method is the complexity and duration of the process, the use of special equipment, the use of ultraviolet radiation.
В пат. WO/2011/150138 US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.In US Pat. WO / 2011/150138 US, IPC C11D 3/37; B01J 13/08; C11D 17/00, published 01.12.2011, describes a method for producing microcapsules of solid water-soluble agents by polymerization.
Недостатками данного способа являются сложность исполнения и длительность процесса.The disadvantages of this method are the complexity of execution and the duration of the process.
В пат. WO/2011/127030 US, МПК А61К 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.In US Pat. WO / 2011/127030 US,
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).The disadvantages of the proposed methods are the complexity, duration of the processes, as well as the use of special equipment (filter (Albet, Dassel, Germany), a spray dryer for collecting particles (Spray-4M8 Dryer from ProCepT, Belgium)).
В пат. WO/2011/104526 GB, МПК B03J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.In US Pat. WO / 2011/104526 GB, IPC B03J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, published 01.09.2011, a method for producing a dispersion of encapsulated solid particles in a liquid medium is proposed, comprising: a) grinding a composition comprising solid, liquid media and polyurethane dispersants with an acid number from 0.55 to 3.5 mmol per gram dispersant, said composition comprises from 5 to 40 parts of a polyurethane dispersant per 100 parts of solid products, by weight; and b) crosslinking the polyurethane dispersant in the presence of a solid and liquid medium, since for the encapsulation of solid particles the polyurethane dispersant contains less than 10% by weight of repeating elements from polymer alcohols.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.The disadvantages of the proposed method are the complexity and duration of the process for producing microcapsules, as well as the fact that the encapsulated particles of the proposed method are useful as dyes in ink, especially inkjet inks, for the pharmaceutical industry this technique is not applicable.
В пат. WO/2011/056935 US, МПК C11D 17/00; А61К 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируются. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.In US Pat. WO / 2011/056935 US,
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.
В пат.WO/2011/160733 ЕР, МПК B01J/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.Pat. WO / 2011/160733 EP, IPC B01J / 16, published December 29, 2011, describes a method for producing microcapsules that contain shells and cores of water-insoluble materials. An aqueous solution of a protective colloid and a solution of a mixture of at least two structurally different bifunctional diisocyanates (A) and (B) insoluble in water are collected together until an emulsion is formed, then added to a mixture of bifunctional amines and heated to a temperature of at least 60 ° C until microcapsules are formed.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. 2134967, IPC A01N 53/00,
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.
Техническая задача - упрощение и ускорение процесса получения нанокапсул антибиотиков в агар-агаре, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and accelerate the process of producing nanocapsules of antibiotics in agar-agar, reducing losses in obtaining nanocapsules (increase in yield by mass).
Решение технической задачи достигается способом получения нанокапсул антибиотиков, отличающимся тем, что в качестве оболочки нанокапсул используется агар-агар, а также получения нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - этилацетата.The solution of the technical problem is achieved by the method of producing nanocapsules of antibiotics, characterized in that agar-agar is used as the shell of nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitator, ethyl acetate.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков агар-агара, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - этилацетата.A distinctive feature of the proposed method is the use of agar-agar antibiotics as a shell of nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitator, ethyl acetate.
Результатом предлагаемого метода является получение нанокапсул антибиотиков в агар-агаре при 25°C в течение 15 минут. Выход нанокапсул составляет 100%.The result of the proposed method is to obtain antibiotic nanocapsules in agar-agar at 25 ° C for 15 minutes. The yield of nanocapsules is 100%.
Изобретение поясняется рис.1-10.The invention is illustrated in Fig. 1-10.
ПРИМЕР 1. Получение нанокапсул цефтриаксона в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 1. Obtaining nanocapsules of ceftriaxone in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка цефтриаксона. Затем по каплям добавляют 5 мл этилацетат. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation E472 s (glycerol ester with one or two molecules of edible fatty acids and one or two molecules of citric acid, moreover, citric acid as a tribasic acid can be esterified with other glycerides and as an oxoacid with other fatty acids. Free acid groups can be neutralized with sodium) as a surfactant, 0.5 g of ceftriaxone powder is added in small portions. Then, 5 ml of ethyl acetate was added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 2. Получение нанокапсул цефазолина в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 2. Obtaining nanocapsules of cefazolin in agar-agar, the ratio of the core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 0,5 г порошка цефазолина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of cefazolin powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 3. Получение нанокапсул цефепима в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 3. Obtaining nanocapsules of cefepime in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 0,5 г порошка цефепима. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of cefepime powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 4. Получение нанокапсул цефотаксима в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 4. Obtaining nanocapsules of cefotaxime in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка цефотаксима. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of cefotaxime powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 5. Получение нанокапсул амикацина в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 5. Obtaining nanocapsules of amikacin in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка амикацина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of amikacin powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 6. Получение нанокапсул натриевой соли бензилпенициллина в агар-агаре, соотношение ядро:оболочка 1:3EXAMPLE 6. Obtaining nanocapsules of the sodium salt of benzylpenicillin in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка натриевой соли бензилпенициллина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of benzylpenicillin sodium salt powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 7. Получение нанокапсул стрептоцида в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 7. Obtaining nanocapsules of streptocide in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка стрептоцида. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation E472 c, 0.5 g of streptocide powder is added as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 8. Получение нанокапсул ампициллина в агар-агаре, соотношение ядро : оболочка 1:3EXAMPLE 8. Obtaining nanocapsules of ampicillin in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка ампициллина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of ampicillin powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 8. Получение нанокапсул канамицина в агар-агаре, соотношение ядро: оболочка 1:3EXAMPLE 8. Obtaining nanocapsules of kanamycin in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка канамицина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of kanamycin powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 9. Получение нанокапсул стрептомицина в агар-агаре, соотношение ядро:оболочка 1:3EXAMPLE 9. Obtaining nanocapsules of streptomycin in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка стрептомицина. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.In a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of the preparation E472 c, 0.5 g of streptomycin powder is added as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 10. Получение нанокапсул бициллина-3 в агар-агаре, соотношение ядро:оболочка 1:3EXAMPLE 10. Obtaining nanocapsules of bicillin-3 in agar-agar, the ratio of core: shell 1: 3
В суспензию 1,5 г агар-агара в петролейном эфире и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества добавляют 0,5 г порошка бициллина-3. Затем по каплям добавляют 5 мл этилацетата. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of bicillin-3 powder is added to a suspension of 1.5 g of agar-agar in petroleum ether and 0.01 g of E472 c as a surfactant. Then 5 ml of ethyl acetate are added dropwise. The resulting suspension of nanocapsules is filtered and dried.
Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.
ПРИМЕР 11. Определение размеров нанокапсул методом NTA.EXAMPLE 11. Sizing of nanocapsules by the NTA method.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.The measurements were carried out on a Nanosight LM0 multiparameter nanoparticle analyzer manufactured by Nanosight Ltd (Great Britain) in the HS-BF configuration (Andor Luca high-sensitivity video camera, 405 nm semiconductor laser with a power of 45 mW). The device is based on the method of analysis of trajectories of nanoparticles (Nanoparticle Tracking Analysis, NTA) described by bASTM E2834.
Оптимальным разведением было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size:Auto, длительность единичного измерения 215s, использование шприцевого насоса.The optimal dilution was 1: 100. For measurement, the device parameters were selected: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto, duration of a single measurement 215s, use of a syringe pump.
Получены нанокапсулы антибиотиков в агар-агаре физико-химическим методом осаждения нерастворителем с использованием этилацетата в качестве нерастворителя. Процесс прост в исполнении и длится в течение 15 минут.Nanocapsules of antibiotics in agar were obtained by the physicochemical method of precipitation with a non-solvent using ethyl acetate as a non-solvent. The process is simple to execute and lasts for 15 minutes.
Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул антибиотиков в агар-агаре.The proposed technique is suitable for the pharmaceutical industry due to minimal losses, speed, ease of preparation and isolation of antibiotic nanocapsules in agar-agar.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014138303/15A RU2580613C1 (en) | 2014-09-22 | 2014-09-22 | Method of producing antibiotic nanocapsules in agar-agar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014138303/15A RU2580613C1 (en) | 2014-09-22 | 2014-09-22 | Method of producing antibiotic nanocapsules in agar-agar |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2580613C1 true RU2580613C1 (en) | 2016-04-10 |
Family
ID=55794168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014138303/15A RU2580613C1 (en) | 2014-09-22 | 2014-09-22 | Method of producing antibiotic nanocapsules in agar-agar |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2580613C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2647436C2 (en) * | 2016-08-15 | 2018-03-15 | Александр Александрович Кролевец | Method of producing aecol nanocapsules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2099087C1 (en) * | 1991-12-27 | 1997-12-20 | Владивостокский государственный медицинский институт | Method of antibiotic-containing liposome preparing |
RU2145845C1 (en) * | 1994-03-08 | 2000-02-27 | Эли Лилли Энд Компани | Capsule of prolonged excretion and method of increase of gain in weight and/or prevention of diseased state in ruminant animals, method of increase of selenium assimilation in ruminant animals |
WO2009085952A1 (en) * | 2007-12-20 | 2009-07-09 | Brookwood Pharmaceuticals, Inc. | Process for preparing microparticles having a low residual solvent volume |
RU2500404C2 (en) * | 2012-03-19 | 2013-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Method for preparing cephalosporin microcapsules in interferon |
-
2014
- 2014-09-22 RU RU2014138303/15A patent/RU2580613C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2099087C1 (en) * | 1991-12-27 | 1997-12-20 | Владивостокский государственный медицинский институт | Method of antibiotic-containing liposome preparing |
RU2145845C1 (en) * | 1994-03-08 | 2000-02-27 | Эли Лилли Энд Компани | Capsule of prolonged excretion and method of increase of gain in weight and/or prevention of diseased state in ruminant animals, method of increase of selenium assimilation in ruminant animals |
WO2009085952A1 (en) * | 2007-12-20 | 2009-07-09 | Brookwood Pharmaceuticals, Inc. | Process for preparing microparticles having a low residual solvent volume |
RU2500404C2 (en) * | 2012-03-19 | 2013-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) | Method for preparing cephalosporin microcapsules in interferon |
Non-Patent Citations (1)
Title |
---|
СОЛОДОВНИК В. Д. "Микрокапсулирование",-М.:Химия, 1980.-216стр.. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2647436C2 (en) * | 2016-08-15 | 2018-03-15 | Александр Александрович Кролевец | Method of producing aecol nanocapsules |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491939C1 (en) | Method for preparing drug microcapsules of cephalosporin in konjac gum in chloroform | |
RU2550918C1 (en) | Method of production of nanocapsules of antibiotics in gellan gum | |
RU2569736C1 (en) | Method of production of nanocapsules of adenine in sodium alginate | |
RU2619331C2 (en) | Method of producing nanocapsules of umifenovir (arbidol) in sodium alginate | |
RU2554763C1 (en) | Method of obtaining nanocapsules of chondroitin sulphate in konjac gum | |
RU2550919C1 (en) | Method of production of nanocapsules of antibiotics in carrageenan | |
RU2550932C1 (en) | Method for producing cephalosporin nanocapsules in xanthum gum | |
RU2599007C1 (en) | Method of producing nanocapsules of ciprofloxacin hydrochloride in sodium alginate | |
RU2605614C1 (en) | Method of producing nanocapsules of dry girasol extract | |
RU2578403C2 (en) | Method of producing nanocapsules of cytokinins | |
RU2580613C1 (en) | Method of producing antibiotic nanocapsules in agar-agar | |
RU2573979C1 (en) | Method of production of nanocapsules of antibiotics in agar-agar | |
RU2564898C1 (en) | Method of obtaining nanocapsules of antibiotics | |
RU2561683C1 (en) | Method of production of nanocapsules of cephalosporin antibiotics in sodium alginate | |
RU2564890C1 (en) | Method of obtaining nanocapsules of antibiotics in konjac gum | |
RU2640490C2 (en) | Method for producing nanocapules of dry extract of topinambour in gellan gum | |
RU2634256C2 (en) | Method for producing nanocapules of dry extract of topinambur | |
RU2595825C1 (en) | Method of producing potassium iodide nanocapsules in pectin | |
RU2576236C1 (en) | Method of producing antibiotic nanocapsules in agar-agar | |
RU2577689C1 (en) | Method of producing antibiotic nanocapsules in agar-agar | |
RU2569739C1 (en) | Method for producing antibiotic nanocapsules in sodium alginate | |
RU2555782C1 (en) | Method of producing glucosamine sulphate nanocapsules in konjac gum in hexane | |
RU2619328C2 (en) | Method of producing antibiotic nanocapsules in gellan gum | |
RU2547560C2 (en) | Method for producing drug preparations of penicillin in sodium alginate possessing supramolecular properties | |
RU2555055C1 (en) | Method of obtaining nanocapsules of glucoamine sulphate in xanthan gum |