RU2634256C2 - Method for producing nanocapules of dry extract of topinambur - Google Patents

Method for producing nanocapules of dry extract of topinambur Download PDF

Info

Publication number
RU2634256C2
RU2634256C2 RU2016108312A RU2016108312A RU2634256C2 RU 2634256 C2 RU2634256 C2 RU 2634256C2 RU 2016108312 A RU2016108312 A RU 2016108312A RU 2016108312 A RU2016108312 A RU 2016108312A RU 2634256 C2 RU2634256 C2 RU 2634256C2
Authority
RU
Russia
Prior art keywords
agar
nanocapsules
producing
microcapsules
proposed
Prior art date
Application number
RU2016108312A
Other languages
Russian (ru)
Other versions
RU2016108312A (en
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2016108312A priority Critical patent/RU2634256C2/en
Publication of RU2016108312A publication Critical patent/RU2016108312A/en
Application granted granted Critical
Publication of RU2634256C2 publication Critical patent/RU2634256C2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

FIELD: nanotechnology.
SUBSTANCE: dry topinambur extract is added to a suspension of agar-agar in ethanol containing 0.01 g of the E472c preparation as a surfactant, stirred at 1000 rpm, then hexane is added, the resulting nanocapsule suspension is filtered, washed with hexane and dried, while the weight ratio of agar-agar to the topinambur extract in nanocapsules is 1:1, 3 1, 5:1 or 1:5.
EFFECT: simplification and acceleration of nanocapsules preparation, reduction of losses during the nanocapsules production.
2 dwg, 5 ex

Description

Изобретение относится к области нанотехнологий, в частности нанокапсулирования препаратов на примере сухого экстракта тапинамбура в агар-агаре.The invention relates to the field of nanotechnology, in particular nanocapsulation of drugs by the example of dry tapinambur extract in agar-agar.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. РФ 2092155 МПК А61К 047/02, А61К 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.Previously known methods for producing microcapsules of drugs. So, in US Pat. RF 2092155 IPC A61K 047/02, A61K 009/16 published on 10/10/1997 The Russian Federation proposed a method of microencapsulation of drugs based on the use of special equipment using ultraviolet radiation.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can affect the process of formation of microcapsules.

В пат. РФ 2095055 МПК А61К 9/52, А61К 9/16, А61К 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°С и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.In US Pat. RF 2095055 IPC A61K 9/52, A61K 9/16, A61K 9/10 Russian Federation published 10.11.1997 a method for producing solid non-porous microspheres, including melting a pharmaceutically inactive carrier substance, dispersing a pharmaceutically active substance in a melt in an inert atmosphere, spraying the obtained dispersion in the form of fog in a freezing chamber under pressure, in an inert atmosphere, at a temperature of from -15 to -50 ° C and the separation of the obtained microspheres into fractions by size. A suspension intended for administration by parenteral injection contains an effective amount of said microspheres distributed in a pharmaceutically acceptable liquid vector, the pharmaceutically active substance of the microsphere being insoluble in said liquid medium.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.The disadvantages of the proposed method: the complexity and duration of the process, the use of special equipment.

В пат. РФ 2091071, МПК А61К 35/10, опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.In US Pat. RF 2091071, IPC A61K 35/10, published 09/27/1997, a method for producing the preparation by dispersion in a ball mill to obtain microcapsules is proposed.

Недостатками способа являются применение шаровой мельницы и длительность процесса.The disadvantages of the method are the use of a ball mill and the duration of the process.

В пат. РФ 2076765, МПК B01D 9/02, опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.In US Pat. RF 2076765, IPC B01D 9/02, published 04/10/1997, a method for producing dispersed particles of soluble compounds in microcapsules by crystallization from a solution is proposed, characterized in that the solution is dispersed in an inert matrix, cooled, and dispersed particles are obtained by changing the temperature.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.The disadvantage of this method is the difficulty of execution: obtaining microcapsules by dispersion with subsequent change in temperature, which slows down the process.

В пат. РФ 2101010, МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.In US Pat. RF 2101010, IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, published January 10, 1998 a chewing form of the drug with a taste masking having the properties of a controlled release of the drug contains microcapsules with a size of 100-800 microns in diameter and consists of a pharmaceutical core with crystalline ibuprofen and a polymer coating, including a plasticizer, flexible enough to withstand chewing. The polymer coating is a methacrylic acid based copolymer.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.The disadvantages of the invention: the use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancerous tumors; obtaining microcapsules by suspension polymerization; complexity of execution; the duration of the process.

В пат. РФ 2139046, МПК А61К 9/50, А61К 49/00, А61К 51/00, опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно, выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.In US Pat. RF 2139046, IPC A61K 9/50, A61K 49/00, A61K 51/00, published 10/10/1999 a method for producing microcapsules as follows. An oil-in-water emulsion is prepared from an organic solution containing dissolved mono-, di-, triglyceride, preferably tripalmitin or tristearin, and optionally a therapeutically active substance, and an aqueous solution containing a surfactant, optionally a part of the solvent is evaporated, a redispersing agent is added and the mixture is freeze dried. The freeze-dried mixture is then redispersed in an aqueous carrier to separate the microcapsules from organic residues, and the hemispherical or spherical microcapsules are dried.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.The disadvantages of the proposed method are the complexity and duration of the process, the use of freeze-drying, which takes a lot of time and slows down the process of obtaining microcapsules.

В пат. РФ 2159037, МПК A01N 25/28, A01N 25/30, опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.In US Pat. RF 2159037, IPC A01N 25/28, A01N 25/30, published 11/20/2000, a method for producing microcapsules by the polymerization reaction at the interface, containing solid agrochemical material 0.1-55 wt. % suspended in a water-miscible organic liquid, 0.01-10 wt. % non-ionic dispersant active at the phase boundary and not acting as an emulsifier.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.The disadvantages of the proposed method: complexity, duration, the use of high shear mixer.

В пат. РФ 2173140, МПК А61К 009/50, А61К 009/127, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.In US Pat. RF 2173140, IPC A61K 009/50, A61K 009/127, published September 10, 2001. A method for producing silicon organolipid microcapsules using a rotary-cavitation unit with high shear forces and powerful sonar acoustic and ultrasonic dispersion ranges is proposed.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.The disadvantage of this method is the use of special equipment - a rotary-quittance installation, which has an ultrasonic effect, which affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructively affects polymers of a protein nature, therefore, the proposed method is applicable when work with polymers of synthetic origin.

В пат. РФ 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009 предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. RF 2359662, IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009. A method for producing microcapsules using spray cooling in a Niro spray cooling tower under the following conditions: inlet air temperature 10 ° C, outlet air temperature 28 ° C, spray drum rotation speed of 10,000 rpm. The microcapsules of the invention have improved stability and provide controlled and / or prolonged release of the active ingredient.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the inlet 10 ° C, air temperature at the outlet 28 ° C, rotation speed of the spray drum 10,000 rpm).

В пат. ES WO/2010/076360, МПК B01J 13/00; А61К 9/14; А61К 9/10; А61К 9/12, опубликован 08.07.2010 предложен новый способ получения твердых микро-и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологи.In US Pat. ES WO / 2010/076360, IPC B01J 13/00; A61K 9/14; A61K 9/10; AK61K 9/12, published on July 8, 2010. A new method is proposed for producing solid micro- and nanoparticles with a homogeneous structure with a particle size of less than 10 μm, where the treated solid compounds have a natural crystalline, amorphous, polymorphic, and other states associated with the starting compound. The method allows to obtain solid micro- and nanoparticles with substantially spheroidal morphologists.

Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.The disadvantage of the proposed method is the complexity of the process, which leads to capsules with a floating output.

В пат. ЕР WO/2010/119041, МПК A23L 1/00, опубликован 21.10.2010 предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 мин. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75 до 80°С, надлежащим образом в течение от 30 мин до 50 мин. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например от 0,1 до 0,9 мкм. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале - около 150 мкмн.In US Pat. EP WO / 2010/119041, IPC A23L 1/00, published October 21, 2010, a method for producing beads containing an active component encapsulated in a gel matrix of a whey protein including denatured protein, serum and active components is proposed. The invention relates to a method for producing beads that contain components such as probiotic bacteria. A method for producing microspheres includes the stage of production of microspheres in accordance with the method of the invention and subsequent curing of the microspheres in a solution of an anionic polysaccharide with a pH of 4.6 or lower for at least 10, 30, 60, 90, 120, 180 minutes. Examples of suitable anionic polysaccharides: pectins, alginates, carrageenans. Ideally, whey protein is heat denaturing, although other denaturation methods are also applicable, for example, pressure-induced denaturation. In a preferred embodiment, whey protein is denatured at a temperature of from 75 to 80 ° C., suitably for 30 minutes to 50 minutes. As a rule, whey protein is mixed with heat denaturation. Accordingly, the concentration of whey protein is from 5 to 15%, preferably from 7 to 12%, and ideally from 9 to 11% (weight / volume). Typically, the process is carried out by filtration through multiple filters with a gradual reduction in pore size. Ideally, a fine filter has submicron pore sizes, for example from 0.1 to 0.9 microns. The preferred method for producing beads is a method using vibratory encapsulators (Inotech, Switzerland) and machines manufactured by Nisco Engineering AG. As a rule, nozzles have openings of 100 and 600 microns, and ideally about 150 microns.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.The disadvantage of this method is the use of special equipment (vibration encapsulators (Inotech, Switzerland)), the production of microcapsules by protein denaturation, the difficulty of isolating the microcapsules obtained by this method - filtering using many filters, which makes the process long.

В пат. ЕР WO/2011/003805, МПК B01J 13/18; B65D 83/14; C08G 18/00 описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.In US Pat. EP WO / 2011/003805, IPC B01J 13/18; B65D 83/14; C08G 18/00 describes a method for producing microcapsules that are suitable for use in formulations of sealants, foams, coatings or adhesives.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.The disadvantage of the proposed method is the use of centrifugation to separate from the process fluid, the duration of the process, as well as the use of this method not in the pharmaceutical industry.

В пат. US 20110223314, МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.In US Pat. US20110223314, IPC B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 dated 03/10/2011 describes a method for producing microcapsules by suspension polymerization, which belongs to the group of chemical methods using a new device and ultraviolet radiation.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.The disadvantage of this method is the complexity and duration of the process, the use of special equipment, the use of ultraviolet radiation.

В пат. US WO/2011/150138, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.In US Pat. US WO / 2011/150138, IPC C11D 3/37; B01J 13/08; C11D 17/00, published December 1, 2011 describes a method for producing microcapsules of solid water-soluble agents by polymerization.

Недостатками данного способа являются сложность исполнения и длительность процесса.The disadvantages of this method are the complexity of execution and the duration of the process.

В пат. US WO/2011/127030, МПК А61К 8/11; B01J 2/00; B01J 13/06; C11D3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от РrоСерТ, Бельгия)).In US Pat. US WO / 2011/127030, IPC A61K 8/11; B01J 2/00; B01J 13/06; C11D3 / 37; C11D 3/39; C11D 17/00, published October 13, 2011. Several methods for producing microcapsules are proposed: interfacial polymerization, thermo-induced phase separation, spray drying, evaporation of the solvent, etc. The disadvantages of the proposed methods are the complexity, duration of the processes, and the use of special equipment (filter (Albet, Dassel , Germany), a spray dryer for collecting particles (Spray-4M8 Dryer from ProCert, Belgium)).

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от РrоСерТ, Бельгия)).The disadvantages of the proposed methods are the complexity, duration of the processes, and the use of special equipment (filter (Albet, Dassel, Germany), a spray dryer for collecting particles (Spray-4M8 Dryer from ProCert, Belgium)).

В пат. GB WO/2011/104526, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на 1 г диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.In US Pat. GB WO / 2011/104526, IPC B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, published September 1, 2011. A method for producing a dispersion of encapsulated solid particles in a liquid medium is proposed, including: a) grinding a composition comprising solid, liquid media and polyurethane dispersants with an acid number of from 0.55 to 3.5 mmol per 1 g dispersant, said composition comprises from 5 to 40 parts of a polyurethane dispersant per 100 parts of solid products by weight; and b) crosslinking the polyurethane dispersant in the presence of a solid and liquid medium, as for the encapsulation of solid particles, which polyurethane dispersant contains less than 10% by weight of repeating elements from polymer alcohols.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернилах струйной печати, для фармацевтической промышленности данная методика неприменима.The disadvantages of the proposed method are the complexity and duration of the process for producing microcapsules, as well as the fact that the encapsulated particles of the proposed method are useful as dyes in ink, especially inkjet inks, for the pharmaceutical industry this technique is not applicable.

В пат. US WO/2011/056935, МПК С11D 17/00; А61К 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 мкм. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируется агент, выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.In US Pat. US WO / 2011/056935, IPC C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, published May 12, 2011 describes a method for producing microcapsules with a size of 15 microns or more. Polymers of the group consisting of polyethylene, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, polyureas, polyurethanes, polyolefins, polysaccharides, epoxies, vinyl polymers and mixtures thereof are proposed as a shell material. The proposed polymer shells are sufficiently impervious to the core material and materials in the environment in which the agent is encapsulated, the benefit will be used to provide the benefits that will be obtained. The core of encapsulated agents may include perfumes, silicone oils, waxes, hydrocarbons, higher fatty acids, essential oils, lipids, skin cooling fluids, vitamins, sunscreens, antioxidants, glycerin, catalysts, bleaching particles, particles of silicon dioxide, etc.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.

Наиболее близким методом является способ, предложенный в пат. РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. RF 2134967, IPC A01N 53/00, A01N 25/28, published on 08.27.1999. A solution of a mixture of natural lipids and a pyrethroid insecticide in a weight ratio of 2-4: 1 in an organic solvent is dispersed in water, which simplifies the microencapsulation method.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.

Техническая задача - упрощение и ускорение процесса получения нанокапсул сухого экстракта тапинамбура в агар-агаре, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and accelerate the process of obtaining nanocapsules of dry tapinambur extract in agar-agar, reducing losses in obtaining nanocapsules (increase in yield by mass).

Решение технической задачи достигается способом получения нанокапсул сухого экстракта тапинамбура, отличающимся тем, что в качестве оболочки нанокапсул используется агар-агар, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - гексана.The solution of the technical problem is achieved by the method of producing nanocapsules of dry tapinambur extract, characterized in that agar-agar is used as the shell of the nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitator - hexane.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул сухого экстракта тапинамбура, агар-агар, а также получения нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя-гексана.A distinctive feature of the proposed method is the use of a dry extract of tapinambur, agar-agar as a shell of nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using hexane precipitant.

Результатом предлагаемого метода являются получение нанокапсул сухого экстракта тапинамбура в агар-агаре при 25°С в течение 15 мин. Выход нанокапсул составляет 100%.The result of the proposed method is the preparation of nanocapsules of dry tapinambur extract in agar-agar at 25 ° C for 15 min. The yield of nanocapsules is 100%.

Пример 1. Получение нанокапсул сухого экстракта топинамбура, соотношение ядро:оболочка 1:3Example 1. Obtaining nanocapsules of dry Jerusalem artichoke extract, the ratio of core: shell 1: 3

К 3 г суспензии агар-агара в этаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта тапинамбура медленно порциями добавляют в суспензию агар-агара в этаноле и перемешивают при 1000 об/мин. Затем добавляют 5 мл гексана. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают гексаном, сушат.To 3 g of a suspension of agar-agar in ethanol, add 0.01 g of the preparation E472c as a surfactant. The resulting mixture is placed on a magnetic stirrer and include stirring. 1 g of dry extract of tapinambur is slowly added in portions to a suspension of agar-agar in ethanol and stirred at 1000 rpm. Then add 5 ml of hexane. The resulting suspension of nanocapsules is filtered off on a filter, washed with hexane, and dried.

Получено 4 г кремового порошка. Выход составил 100%.Received 4 g of cream powder. The yield was 100%.

Пример 2. Получение нанокапсул сухого экстракта тапинамбура, соотношение ядро:оболочка 1:1Example 2. Obtaining nanocapsules of dry extract of tapinambur, the ratio of core: shell 1: 1

К 1 г суспензии агар-агара в этаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта тапинамбура переносят в суспензию агар-агара в этаноле и перемешивают при 1000 об/мин. После этого добавляют 5 мл гексана. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают гексаном, сушат.To 1 g of a suspension of agar-agar in ethanol, add 0.01 g of the preparation E472c as a surfactant. The resulting mixture is placed on a magnetic stirrer and include stirring. 1 g of dry extract of tapinambur is transferred to a suspension of agar-agar in ethanol and stirred at 1000 rpm. Then add 5 ml of hexane. The resulting suspension of nanocapsules is filtered off on a filter, washed with hexane, and dried.

Получено 2 г порошка с кремовым оттенком. Выход составил 100%.Received 2 g of powder with a cream tint. The yield was 100%.

Пример 3. Получение нанокапсул сухого экстракта тапинамбура, соотношение ядро:оболочка 1:5Example 3. Obtaining nanocapsules of dry extract of tapinambur, the ratio of the core: shell 1: 5

К 5 г суспензии агар-агара в этаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта тапинамбура переносят в суспензию агар-агара в этаноле и перемешивают при 1000 об/мин. После этого добавляют 10 мл гексана. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают гексаном, сушат.To 5 g of a suspension of agar-agar in ethanol, add 0.01 g of the preparation E472c as a surfactant. The resulting mixture is placed on a magnetic stirrer and include stirring. 1 g of dry extract of tapinambur is transferred to a suspension of agar-agar in ethanol and stirred at 1000 rpm. Then add 10 ml of hexane. The resulting suspension of nanocapsules is filtered off on a filter, washed with hexane, and dried.

Получено 6 г порошка с кремовым оттенком. Выход составил 100%.Received 6 g of powder with a creamy tint. The yield was 100%.

Пример 4 Получение нанокапсул сухого экстракта тапинамбура, соотношение ядро:оболочка 5:1Example 4 Preparation of Nanocapsules of Tapinambur Dry Extract, Core: Shell Ratio 5: 1

K 1 г суспензии агар-агара в этаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 5 г сухого экстракта тапинамбура переносят в суспензию агар-агара в этаноле и перемешивают при 1000 об/мин. После этого добавляют 10 мл гексана. Полученную суспензию микрокапсул отфильтровывают на фильтре, промывают гексаном, сушат.To 1 g of a suspension of agar-agar in ethanol, add 0.01 g of the preparation E472c as a surfactant. The resulting mixture is placed on a magnetic stirrer and include stirring. 5 g of dry extract of tapinambur is transferred to a suspension of agar-agar in ethanol and stirred at 1000 rpm. Then add 10 ml of hexane. The resulting suspension of microcapsules is filtered off on a filter, washed with hexane, and dried.

Получено 6 г порошка с кремовым оттенком. Выход составил 100%.Received 6 g of powder with a creamy tint. The yield was 100%.

Е472с представляет собой сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и, как оксокислота, - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.E472c is a glycerol ester with one or two molecules of edible fatty acids and one or two molecules of citric acid, moreover, citric acid, as tribasic, can be esterified with other glycerides and, like oxoacid, with other fatty acids. Free acid groups can be neutralized with sodium.

Предложенная методика пригодна для косметической и фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул сухого экстракта тапинамбура в агар-агаре.The proposed technique is suitable for the cosmetic and pharmaceutical industries due to minimal losses, speed, ease of preparation and isolation of nanocapsules of dry tapinambur extract in agar-agar.

Claims (1)

Способ получения нанокапсул сухого экстракта топинамбура в агар-агаре, характеризующийся тем, что сухой экстракт топинамбура добавляют в суспензию агар-агара в этаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества, перемешивают при 1000 об/мин, затем добавляют гексан, полученную суспензию нанокапсул отфильтровывают, промывают гексаном и сушат, при этом массовое соотношение агар-агара к экстракту топинамбура в нанокапсулах составляет 1:1, 3:1, 5:1 или 1:5.A method of producing nanocapsules of dry Jerusalem artichoke extract in agar-agar, characterized in that the Jerusalem artichoke dry extract is added to a suspension of agar-agar in ethanol containing 0.01 g of the preparation E472c as a surfactant, stirred at 1000 rpm, then added hexane, the resulting suspension of nanocapsules is filtered off, washed with hexane and dried, while the mass ratio of agar-agar to Jerusalem artichoke extract in nanocapsules is 1: 1, 3: 1, 5: 1 or 1: 5.
RU2016108312A 2016-03-09 2016-03-09 Method for producing nanocapules of dry extract of topinambur RU2634256C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016108312A RU2634256C2 (en) 2016-03-09 2016-03-09 Method for producing nanocapules of dry extract of topinambur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016108312A RU2634256C2 (en) 2016-03-09 2016-03-09 Method for producing nanocapules of dry extract of topinambur

Publications (2)

Publication Number Publication Date
RU2016108312A RU2016108312A (en) 2017-09-14
RU2634256C2 true RU2634256C2 (en) 2017-10-24

Family

ID=59893436

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016108312A RU2634256C2 (en) 2016-03-09 2016-03-09 Method for producing nanocapules of dry extract of topinambur

Country Status (1)

Country Link
RU (1) RU2634256C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672864C1 (en) * 2018-02-02 2018-11-20 Александр Александрович Кролевец Method of producing nanocapsules of a dry cordyceps extract in guar gum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550920C1 (en) * 2014-05-20 2015-05-20 Александр Александрович Кролевец Method of production of nanocapsules of 2,4-dichlorophenoxyacetic acid
RU2555824C1 (en) * 2014-02-17 2015-07-10 Александр Александрович Кролевец Method for production of microcapsules of dry girasol extract in pectin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555824C1 (en) * 2014-02-17 2015-07-10 Александр Александрович Кролевец Method for production of microcapsules of dry girasol extract in pectin
RU2550920C1 (en) * 2014-05-20 2015-05-20 Александр Александрович Кролевец Method of production of nanocapsules of 2,4-dichlorophenoxyacetic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. СОЛОДОВНИК В. Д. Микрокапсулирование, 1980, стр.136-137. КРОЛЕВЕЦ А. А. Применение нано- и микрокапсулирования в фармацевтике и пищевой промышленности. Часть 2. Характеристика инкапсулирования, Вестник Российской академии естественных наук, 2013, N 1, стр.77-84. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672864C1 (en) * 2018-02-02 2018-11-20 Александр Александрович Кролевец Method of producing nanocapsules of a dry cordyceps extract in guar gum

Also Published As

Publication number Publication date
RU2016108312A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
RU2491939C1 (en) Method for preparing drug microcapsules of cephalosporin in konjac gum in chloroform
RU2550918C1 (en) Method of production of nanocapsules of antibiotics in gellan gum
RU2606854C1 (en) Method of producing nanocapsules of dry spinach extract
RU2561586C1 (en) Method of producing microcapsules of biopag-d in pectin
RU2550950C1 (en) Method of production of nanocapsules biopag-d
RU2555824C1 (en) Method for production of microcapsules of dry girasol extract in pectin
RU2500404C2 (en) Method for preparing cephalosporin microcapsules in interferon
RU2563618C2 (en) Method of obtaining microcapsules of biopag-d in pectin
RU2619331C2 (en) Method of producing nanocapsules of umifenovir (arbidol) in sodium alginate
RU2550932C1 (en) Method for producing cephalosporin nanocapsules in xanthum gum
RU2605614C1 (en) Method of producing nanocapsules of dry girasol extract
RU2640130C2 (en) Method for producing nanocapsules of dry extract of topinambur
RU2634256C2 (en) Method for producing nanocapules of dry extract of topinambur
RU2640490C2 (en) Method for producing nanocapules of dry extract of topinambour in gellan gum
RU2578403C2 (en) Method of producing nanocapsules of cytokinins
RU2555472C2 (en) Method of obtaining microcapsules of antioxidants in pectin
RU2595825C1 (en) Method of producing potassium iodide nanocapsules in pectin
RU2632428C1 (en) Method for obtaining of girasole dry extract nanocapules in xanthane gum
RU2640127C2 (en) Method for producing nanocapsules of dry extract of topinambur
RU2525158C2 (en) Method of obtaining microcapsules of medications of cephalosporin group in konjac gum in toluene
RU2514113C2 (en) Method of obtaining microcapsules of medications of cephalosporin group in konjac gum
RU2580613C1 (en) Method of producing antibiotic nanocapsules in agar-agar
RU2555055C1 (en) Method of obtaining nanocapsules of glucoamine sulphate in xanthan gum
RU2564898C1 (en) Method of obtaining nanocapsules of antibiotics
RU2573979C1 (en) Method of production of nanocapsules of antibiotics in agar-agar