RU2569739C1 - Method for producing antibiotic nanocapsules in sodium alginate - Google Patents

Method for producing antibiotic nanocapsules in sodium alginate Download PDF

Info

Publication number
RU2569739C1
RU2569739C1 RU2014118300/15A RU2014118300A RU2569739C1 RU 2569739 C1 RU2569739 C1 RU 2569739C1 RU 2014118300/15 A RU2014118300/15 A RU 2014118300/15A RU 2014118300 A RU2014118300 A RU 2014118300A RU 2569739 C1 RU2569739 C1 RU 2569739C1
Authority
RU
Russia
Prior art keywords
nanocapsules
sodium alginate
microcapsules
suspension
producing
Prior art date
Application number
RU2014118300/15A
Other languages
Russian (ru)
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Кирилл Сергеевич Никитин
Екатерина Евгеньевна Бойко
Яна Владимировна Медведева
Original Assignee
Александр Александрович Кролевец
Илья Александрович Богачев
Кирилл Сергеевич Никитин
Екатерина Евгеньевна Бойко
Яна Владимировна Медведева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец, Илья Александрович Богачев, Кирилл Сергеевич Никитин, Екатерина Евгеньевна Бойко, Яна Владимировна Медведева filed Critical Александр Александрович Кролевец
Priority to RU2014118300/15A priority Critical patent/RU2569739C1/en
Application granted granted Critical
Publication of RU2569739C1 publication Critical patent/RU2569739C1/en

Links

Images

Abstract

FIELD: medicine.
SUBSTANCE: suspension of sodium alginate in butanol and preparation E472c is added with powdered antibiotic, then acetonitrile; the prepared suspension of nanocapsules is filtered and dried.
EFFECT: simplifying and accelerating the process of antibiotic nanocapsules, and increasing their weight yield.
4 dwg, 12 ex

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.The invention relates to the field of nanotechnology, medicine, pharmacology and veterinary medicine.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009 /16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.Previously known methods for producing microcapsules of drugs. So, in US Pat. 2092155 IPC A61K 047/02, A61K 009/16 published on 10/10/1997 The Russian Federation proposed a method of microencapsulation of drugs based on the use of special equipment using ultraviolet radiation.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can affect the process of formation of microcapsules.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.In US Pat. 2095055 IPC A61K 9/52, A61K 9/16, A61K 9/10 Russian Federation, published 10.11.1997, a method for producing solid non-porous microspheres includes melting a pharmaceutically inactive carrier substance, dispersing the pharmaceutically active substance in a melt in an inert atmosphere, spraying the resulting dispersion in the form of fog in a freezing chamber under pressure, in an inert atmosphere, at a temperature of from -15 to -50 ° C, and the separation of the obtained microspheres into fractions by size. A suspension intended for administration by parenteral injection contains an effective amount of said microspheres distributed in a pharmaceutically acceptable liquid vector, the pharmaceutically active substance of the microsphere being insoluble in said liquid medium.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.The disadvantages of the proposed method: the complexity and duration of the process, the use of special equipment.

В пат. 2076765 МПК B01D 9/02 Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых со единений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.In US Pat. 2076765 IPC B01D 9/02 Russian Federation, published April 10, 1997, a method for producing dispersed particles of soluble compounds in microcapsules by crystallization from a solution is proposed, characterized in that the solution is dispersed in an inert matrix, cooled, and dispersed particles are obtained by changing the temperature.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.The disadvantage of this method is the difficulty of execution: obtaining microcapsules by dispersion with subsequent change in temperature, which slows down the process.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.In US Pat. 2101010 IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Russian Federation, published 10.01.1998, a chewing form of the drug with a taste masking having the properties of a controlled release of the drug is proposed, It contains microcapsules 100-800 microns in diameter and consists of a pharmaceutical core with crystalline ibuprofen and a polymer coating that includes a plasticizer that is flexible enough to withstand chewing. The polymer coating is a methacrylic acid based copolymer.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.The disadvantages of the invention: the use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancerous tumors; obtaining microcapsules by suspension polymerization; complexity of execution; the duration of the process.

В пат. 2139046 МПК A61K 9/50, A61K 49/00, A61K 51/00 Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.In US Pat. 2139046 IPC A61K 9/50, A61K 49/00, A61K 51/00 Russian Federation, published 10.10.1999, a method for producing microcapsules as follows. An oil-in-water emulsion is prepared from an organic solution containing dissolved mono-, di-, triglyceride, preferably tripalmitin or tristearin, and possibly a therapeutically active substance, and an aqueous solution containing a surfactant, possibly a portion of the solvent is evaporated, a redispersing agent is added the agent and the mixture are freeze dried. The freeze-dried mixture is then redispersed in an aqueous carrier to separate the microcapsules from organic residues, and the hemispherical or spherical microcapsules are dried.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.The disadvantages of the proposed method are the complexity and duration of the process, the use of freeze-drying, which takes a lot of time and slows down the process of obtaining microcapsules.

В пат. 2159037 МПК A01N 25/28, A01N 25/30 Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.In US Pat. 2159037 IPC A01N 25/28, A01N 25/30 Russian Federation, published on November 20, 2000, a method for producing microcapsules by a polymerization reaction at the interface, containing solid agrochemical material 0.1-55 wt.% Suspended in an organic liquid mixed with water, is proposed , 0.01-10 wt.% Non-ionic dispersant, active at the phase boundary and not acting as an emulsifier.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.The disadvantages of the proposed method: complexity, duration, the use of high shear mixer.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с.125-135 описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт. ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт. ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.The article “Development of microencapsulated and gel-like products and materials for various industries”, Russian Chemical Journal, 2001, vol. XLV, No. 5-6, p.125-135 describes a method for producing microcapsules of drugs by gas-phase polymerization, as the authors of the article consider unsuitable the method of chemical coacervation from aqueous media for microencapsulation of drugs due to the fact that most of them are water soluble. The microencapsulation process using the gas-phase polymerization method using n-xylylene includes the following main stages: evaporation of the n-xylylene dimer (170 ° C), its thermal decomposition in a pyrolysis furnace (650 ° C at a residual pressure of 0.5 mm Hg), transfer of reaction products to the “cold” polymerization chamber (20 ° C, residual pressure 0.1 mm Hg), deposition and polymerization on the surface of the protected object. The polymerization chamber is made in the form of a rotating drum, the optimum speed for coating the powder is 30 rpm. The thickness of the shell is regulated by the time of coating. This method is suitable for encapsulation of any solids (with the exception of prone to intense sublimation). The resulting poly-n-xylylene highly crystalline polymer, characterized by high orientation and tight packaging, provides a conformal coating.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.The disadvantages of the proposed method are the complexity and duration of the process, the use of gas phase polymerization, which makes the method inapplicable for producing microcapsules of drugs in polymers of protein nature due to denaturation of proteins at high temperatures.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, t. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствовует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.In the article “Development of Micro- and Nanosystems for the Delivery of Medicines”, Russian Chemical Journal, 2008, t. LII, No. 1, p. 48-57, a method for producing microcapsules with incorporated proteins is presented, which does not significantly reduce their biological activity, carried out by the process of interfacial crosslinking of soluble starch or hydroxyethyl starch and bovine serum albumin (BSA) using terephthaloyl chloride. The proteinase inhibitor aprotinin, either native or with a protected active center, was microencapsulated when it was introduced into the aqueous phase. The flattened form of lyophilized particles indicates the production of microcapsules or particles of a reservoir type. Thus prepared microcapsules were not damaged after lyophilization and easily restored their spherical shape after rehydration in a buffer medium. The pH of the aqueous phase was decisive in the preparation of durable microcapsules in high yield.

Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.The disadvantage of the proposed method for producing microcapsules is the complexity of the process, and hence the floating output of the target capsules.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.In US Pat. 2173140 IPC A61K 009/50, A61K 009/127 Russian Federation, published 10.09.2001, a method for producing silicon organolipid microcapsules using a rotary-cavitation unit with high shear forces and powerful sonar acoustic and ultrasonic dispersion ranges is proposed.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.The disadvantage of this method is the use of special equipment - a rotary-quittance installation, which has an ultrasonic effect, which affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructively affects polymers of a protein nature, therefore, the proposed method is applicable when work with polymers of synthetic origin.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009 Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. 2359662 IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009 Russian Federation, a method for producing microcapsules using spray cooling in a Niro spray cooling tower under the following conditions: inlet air temperature 10 ° C, outlet air temperature 28 ° C, spray drum rotation speed 10,000 rpm. The microcapsules of the invention have improved stability and provide controlled and / or prolonged release of the active ingredient.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the inlet 10 ° C, air temperature at the outlet 28 ° C, rotation speed of the spray drum 10,000 rpm).

В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.In US Pat. WO / 2010/076360 ES IPC B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 published July 8, 2010, a new method for producing solid micro- and nanoparticles with a homogeneous structure with a particle size of less than 10 microns is proposed, where the treated solid compounds have a natural crystalline, amorphous, polymorphic and other states associated with the starting compound. The method allows to obtain solid micro- and nanoparticles with substantially spheroidal morphologists.

Недостатком предложенного способа является сложность и длительность процесса процесса.The disadvantage of the proposed method is the complexity and duration of the process.

В пат. WO/2010/119041 EP МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, который осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.In US Pat. WO / 2010/119041 EP IPC A23L 1/00, published October 21, 2010, a method for producing beads containing an active component encapsulated in a gel matrix of a whey protein including denatured protein, serum and active components is proposed. The invention relates to a method for producing beads that contain components such as probiotic bacteria. A method for producing microspheres includes the stage of production of microspheres in accordance with the method of the invention, and the subsequent curing of the microspheres in a solution of an anionic polysaccharide with a pH of 4.6 or lower for at least 10, 30, 60, 90, 120, 180 minutes. Examples of suitable anionic polysaccharides: pectins, alginates, carrageenans. Ideally, whey protein is heat denaturing, although other denaturation methods are also applicable, for example, pressure-induced denaturation. In a preferred embodiment, the whey protein is denatured at a temperature of from 75 ° C to 80 ° C, appropriately for from 30 minutes to 50 minutes. As a rule, whey protein is mixed with heat denaturation. Accordingly, the concentration of whey protein is from 5 to 15%, preferably from 7 to 12%, and ideally from 9 to 11% (weight / volume). As a rule, the product is subject to filtration, which is carried out through many filters with a gradual decrease in pore size. Ideally, a fine filter has submicron pore sizes, for example, from 0.1 to 0.9 microns. A preferred method for producing beads is a method using vibratory encapsulators (Inotech, Switzerland) and machines manufactured by Nisco Engineering AG ,. As a rule, nozzles have openings of 100 and 600 microns, and ideally about 150 microns.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.The disadvantage of this method is the use of special equipment (vibration encapsulators (Inotech, Switzerland)), the production of microcapsules by protein denaturation, the difficulty of isolating the microcapsules obtained by this method - filtering using many filters, which makes the process long.

В пат. WO/2011/003805 EP МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.In US Pat. WO / 2011/003805 EPIC IPC B01J 13/18; B65D 83/14; C08G 18/00, published January 13, 2011, describes a method for producing microcapsules that are suitable for use in formulations of sealants, foams, coatings or adhesives.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.The disadvantage of the proposed method is the use of centrifugation to separate from the process fluid, the duration of the process, as well as the use of this method not in the pharmaceutical industry.

В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03. 2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.In US Pat. 20110223314 IPC B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 dated 10.03. 2011 US describes a method for producing microcapsules by suspension polymerization, belonging to the group of chemical methods using a new device and ultraviolet radiation.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.The disadvantage of this method is the complexity and duration of the process, the use of special equipment, the use of ultraviolet radiation.

В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.In US Pat. WO / 2011/150138 US IPC C11D 3/37; B01J 13/08; C11D 17/00, published 01.12.2011, describes a method for producing microcapsules of solid water-soluble agents by polymerization.

Недостатками данного способа являются сложность исполнения и длительность процесса.The disadvantages of this method are the complexity of execution and the duration of the process.

В пат. WO/2011/127030 US МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.In US Pat. WO / 2011/127030 US IPC A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, published October 13, 2011, several methods for producing microcapsules are proposed: interfacial polymerization, thermally induced phase separation, spray drying, evaporation of the solvent, etc.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).The disadvantages of the proposed methods are the complexity, duration of the processes, as well as the use of special equipment (filter (Albet, Dassel, Germany), a spray dryer for collecting particles (Spray-4M8 Dryer from ProCepT, Belgium)).

В пат. WO/2011/104526 GB МПК B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.In US Pat. WO / 2011/104526 GB IPC B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02, published 01.09.2011, a method for producing a dispersion of encapsulated solid particles in a liquid medium is proposed, comprising: a) grinding a composition comprising solid, liquid media and polyurethane dispersants with an acid number from 0.55 to 3.5 mmol per gram dispersant, the composition includes from 5 to 40 parts of a polyurethane dispersant per 100 parts of solid, products, by weight; and b) crosslinking the polyurethane dispersant in the presence of a solid and liquid medium, as for the encapsulation of solid particles, which polyurethane dispersant contains less than 10% by weight of repeating elements from polymer alcohols.

Недостаткакми предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.The disadvantages of the proposed method are the complexity and duration of the process for producing microcapsules, as well as the fact that the encapsulated particles of the proposed method are useful as dyes in ink, especially inkjet inks, for the pharmaceutical industry this technique is not applicable.

В пат. WO/2011/056935 US МПК C11D 17/00; A61K 8/11; B01J 3/02; C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.In US Pat. WO / 2011/056935 US IPC C11D 17/00; A61K 8/11; B01J 3/02; C11D 3/50, published May 12, 2011, describes a method for producing microcapsules with a size of 15 microns or more. Polymers of the group consisting of polyethylene, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, polyureas, polyurethanes, polyolefins, polysaccharides, epoxies, vinyl polymers and mixtures thereof are proposed as a shell material. The proposed polymer shells are sufficiently impervious to core material and materials in an environment in which an agent encapsulated benefit will be used to provide benefits to be obtained. The core of encapsulated agents may include perfumes, silicone oils, waxes, hydrocarbons, higher fatty acids, essential oils, lipids, skin cooling fluids, vitamins, sunscreens, antioxidants, glycerin, catalysts, bleaching particles, particles of silicon dioxide, etc.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.

В пат. WO/2011/160733 ЕР МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.In US Pat. WO / 2011/160733 EP IPC B01J 13/16, published December 29, 2011, describes a method for producing microcapsules that contain shells and cores of water-insoluble materials. An aqueous solution of a protective colloid and a solution of a mixture of at least two structurally different bifunctional diisocyanates (A) and (B) insoluble in water are collected together until an emulsion is formed, then added to a mixture of bifunctional amines and heated to a temperature of at least 60 ° C until microcapsules are formed.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. 2134967 IPC A01N 53/00, A01N 25/28, published on 08.27.1999 Russian Federation (1999). A solution of a mixture of natural lipids and a pyrethroid insecticide in a weight ratio of 2-4: 1 in an organic solvent is dispersed in water, which simplifies the microencapsulation method.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.

Техническая задача - упрощение и ускорение процесса получения нанокапсул антибиотиков в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and accelerate the process of obtaining nanocapsules of antibiotics in sodium alginate, reduce losses in obtaining nanocapsules (increase in yield by mass).

Решение технической задачи достигается способом получения нанокапсул антибиотиков, отличающийся тем, что в качестве оболочки микрокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - ацетонитрила, процесс получения осуществляется без специального оборудования.The solution of the technical problem is achieved by the method of producing nanocapsules of antibiotics, characterized in that sodium alginate is used as the shell of the microcapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitant, acetonitrile, the production process is carried out without special equipment.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков альгината натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - ацетонитрила.A distinctive feature of the proposed method is the use of sodium alginate antibiotics as a shell of nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitator, acetonitrile.

Результатом предлагаемого метода являются получение нанокапсул антибиотиков, в альгинате натрия при 25°C в течение 15 минут. Выход микрокапсул составляет 100%.The result of the proposed method is the production of antibiotic nanocapsules in sodium alginate at 25 ° C for 15 minutes. The output of microcapsules is 100%.

ПРИМЕР 1. Получение нанокапсул цефтриаксона в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 1. Obtaining nanocapsules of ceftriaxone in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка цефтриаксона. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c (glycerol ester with one or two molecules of food fatty acids and one or two molecules of citric acid, moreover, citric acid, as tribasic, can be esterified with other glycerides and like oxoacid, with other fatty acids. Free acid groups can be neutralized with sodium) as a surfactant, 0.5 g of ceftriaxone powder is added in small portions. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 2. Получение нанокапсул цефазолина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 2. Obtaining nanocapsules of cefazolin in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата в качестве поверхностно-активного вещества, добавляют 0,5 г порошка цефазолина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of cefazolin powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation as a surfactant. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 3. Получение нанокапсул цефепима в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 3. Obtaining nanocapsules of cefepime in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, добавляют 0,5 г порошка цефепима. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c (glycerol ester with one or two molecules of food fatty acids and one or two molecules of citric acid, moreover, citric acid, as tribasic, can be esterified with other glycerides and like oxoacid, other fatty acids. Free acid groups can be neutralized with sodium) as a surfactant, add 0.5 g of cefepime powder. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 4. Получение нанокапсул цефатоксима в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 4. Obtaining nanocapsules of cefatoxime in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472v в качестве поверхностно-активного вещества, добавляют 0,5 г порошка цефатоксима. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472v as a surfactant, 0.5 g of cefatoxime powder is added. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 5. Получение нанокапсул амикацина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 5. Obtaining nanocapsules of amikacin in sodium alginate, the ratio of the core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка амикацина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of amikacin powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 6. Получение нанокапсул натриевой соли бензилпенициллина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 6. Obtaining nanocapsules of the sodium salt of benzylpenicillin in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472C в качестве поверхностно-активного вещества добавляют 0,5 г порошка натриевой соли бензилпенициллина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of benzylpenicillin sodium salt powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the E472C preparation as a surfactant. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 7. Получение нанокапсул стрептоцида в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 7. Obtaining nanocapsules of streptocide in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка стрептоцида. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant, 0.5 g of streptocide powder is added. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 8. Получение нанокапсул ампициллина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 8. Obtaining nanocapsules of ampicillin in sodium alginate, the ratio of core: shell 1: 3

В суспензию: 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка ампициллина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To the suspension: 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant, add 0.5 g of ampicillin powder. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 9. Получение нанокапсул канамицина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 9. Obtaining nanocapsules of kanamycin in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка канамицина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of kanamycin powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 10. Получение нанокапсул стрептомицина в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 10. Obtaining nanocapsules of streptomycin in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка стрептомицина. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant, add 0.5 g of streptomycin powder. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 11. Получение нанокапсул бициллина-3 в альгинате натрия, соотношение ядро:оболочка 1:3EXAMPLE 11. Obtaining nanocapsules of bicillin-3 in sodium alginate, the ratio of core: shell 1: 3

В суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата E472c в качестве поверхностно-активного вещества, добавляют 0,5 г порошка бициллина-3. Затем по каплям добавляют 5 мл ацетонитрила. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of bicillin-3 powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of acetonitrile are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г белого порошка. Выход составил 100%.Received 2 g of a white powder. The yield was 100%.

ПРИМЕР 12. Определение размеров нанокапсул методом NTA.EXAMPLE 12. Determination of the size of nanocapsules by the NTA method.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.The measurements were carried out on a Nanosight LM0 multiparameter nanoparticle analyzer manufactured by Nanosight Ltd (Great Britain) in the HS-BF configuration (Andor Luca high-sensitivity video camera, 405 nm semiconductor laser with a power of 45 mW). The device is based on the Nanoparticle Tracking Analysis (NTA) method described in ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.The optimal dilution for dilution was 1: 100. For the measurement, the device parameters were selected: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. duration of a single measurement of 215s, the use of a syringe pump.

Получены нанокапсулы антибиотиков в альгинате натрия физико-химическим методом осаждения нерастворителем с использованием ацетонитрила в качестве нерастворилеля. Процесс прост в исполнении и длится в течение 15 минут.Nanocapsules of antibiotics in sodium alginate were obtained by the physicochemical method of precipitation with a non-solvent using acetonitrile as a non-solvent. The process is simple to execute and lasts for 15 minutes.

Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул антибиотиков в альгинате натрия.The proposed technique is suitable for the pharmaceutical industry due to minimal losses, speed, ease of preparation and isolation of antibiotic nanocapsules in sodium alginate.

..

Claims (1)

Способ получения нанокапсул антибиотиков в альгинате натрия, характеризующийся тем, что в суспензию 1,5 г альгината натрия в бутаноле и 0,01 г препарата Е472с добавляют 0,5 г порошка антибиотика, затем добавляют 5 мл ацетонитрила, полученную суспензию нанокапсул отфильтровывают и сушат. A method of producing antibiotic nanocapsules in sodium alginate, characterized in that 0.5 g of antibiotic powder is added to a suspension of 1.5 g of sodium alginate in butanol and 0.01 g of E472c, then 5 ml of acetonitrile is added, the resulting suspension of nanocapsules is filtered off and dried.
RU2014118300/15A 2014-05-06 2014-05-06 Method for producing antibiotic nanocapsules in sodium alginate RU2569739C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014118300/15A RU2569739C1 (en) 2014-05-06 2014-05-06 Method for producing antibiotic nanocapsules in sodium alginate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014118300/15A RU2569739C1 (en) 2014-05-06 2014-05-06 Method for producing antibiotic nanocapsules in sodium alginate

Publications (1)

Publication Number Publication Date
RU2569739C1 true RU2569739C1 (en) 2015-11-27

Family

ID=54753615

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014118300/15A RU2569739C1 (en) 2014-05-06 2014-05-06 Method for producing antibiotic nanocapsules in sodium alginate

Country Status (1)

Country Link
RU (1) RU2569739C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides
RU2496483C1 (en) * 2012-03-20 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Method for preparing microcapsules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides
RU2496483C1 (en) * 2012-03-20 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Method for preparing microcapsules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACHADO S. R. P., "Development and characterization of cefoxitin loaded D,L-PLA nanoparticles", Journal of basic and applied pharmaceutical sciences, 2010, vol.3, стр.193-202. *
NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. СОЛОДОВНИК В. Д. "Микрокапсулирование", 1980, стр.136-137. *

Similar Documents

Publication Publication Date Title
RU2491939C1 (en) Method for preparing drug microcapsules of cephalosporin in konjac gum in chloroform
RU2550918C1 (en) Method of production of nanocapsules of antibiotics in gellan gum
RU2569736C1 (en) Method of production of nanocapsules of adenine in sodium alginate
RU2554763C1 (en) Method of obtaining nanocapsules of chondroitin sulphate in konjac gum
RU2619331C2 (en) Method of producing nanocapsules of umifenovir (arbidol) in sodium alginate
RU2550919C1 (en) Method of production of nanocapsules of antibiotics in carrageenan
RU2502510C1 (en) Method for preparing drug microcapsules of cephalosporin in konjak gum in carbon tetrachloride
RU2550932C1 (en) Method for producing cephalosporin nanocapsules in xanthum gum
RU2605614C1 (en) Method of producing nanocapsules of dry girasol extract
RU2578403C2 (en) Method of producing nanocapsules of cytokinins
RU2580613C1 (en) Method of producing antibiotic nanocapsules in agar-agar
RU2573979C1 (en) Method of production of nanocapsules of antibiotics in agar-agar
RU2564898C1 (en) Method of obtaining nanocapsules of antibiotics
RU2561683C1 (en) Method of production of nanocapsules of cephalosporin antibiotics in sodium alginate
RU2564890C1 (en) Method of obtaining nanocapsules of antibiotics in konjac gum
RU2599007C1 (en) Method of producing nanocapsules of ciprofloxacin hydrochloride in sodium alginate
RU2640490C2 (en) Method for producing nanocapules of dry extract of topinambour in gellan gum
RU2569739C1 (en) Method for producing antibiotic nanocapsules in sodium alginate
RU2555782C1 (en) Method of producing glucosamine sulphate nanocapsules in konjac gum in hexane
RU2576236C1 (en) Method of producing antibiotic nanocapsules in agar-agar
RU2577689C1 (en) Method of producing antibiotic nanocapsules in agar-agar
RU2609824C1 (en) Method for obtaining nanocapsules of medications of penicillin goup in sodium alginate
RU2595825C1 (en) Method of producing potassium iodide nanocapsules in pectin
RU2611368C1 (en) Method of production of metronidazole nanocapsules in sodium alginate
RU2619328C2 (en) Method of producing antibiotic nanocapsules in gellan gum