RU2578977C1 - Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии - Google Patents
Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии Download PDFInfo
- Publication number
- RU2578977C1 RU2578977C1 RU2015117678/15A RU2015117678A RU2578977C1 RU 2578977 C1 RU2578977 C1 RU 2578977C1 RU 2015117678/15 A RU2015117678/15 A RU 2015117678/15A RU 2015117678 A RU2015117678 A RU 2015117678A RU 2578977 C1 RU2578977 C1 RU 2578977C1
- Authority
- RU
- Russia
- Prior art keywords
- scanning electron
- sample
- electron microscopy
- contrast
- contrasting
- Prior art date
Links
- 238000004626 scanning electron microscopy Methods 0.000 title claims abstract description 13
- 239000012472 biological sample Substances 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 title claims description 14
- 238000004458 analytical method Methods 0.000 title abstract 2
- 239000000523 sample Substances 0.000 claims abstract description 27
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- 239000002872 contrast media Substances 0.000 claims description 4
- -1 rare earth chlorides Chemical class 0.000 claims description 4
- 238000011160 research Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 16
- 230000018044 dehydration Effects 0.000 abstract description 8
- 238000006297 dehydration reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 4
- 238000005507 spraying Methods 0.000 abstract description 4
- 150000003841 chloride salts Chemical class 0.000 abstract 1
- 230000002906 microbiologic effect Effects 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 33
- 210000004027 cell Anatomy 0.000 description 17
- 239000000243 solution Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 150000001805 chlorine compounds Chemical class 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000011575 calcium Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000000644 isotonic solution Substances 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229910052729 chemical element Inorganic materials 0.000 description 3
- 238000001493 electron microscopy Methods 0.000 description 3
- 210000000110 microvilli Anatomy 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 2
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 2
- 239000012285 osmium tetroxide Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 101100421200 Caenorhabditis elegans sep-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- WYICGPHECJFCBA-UHFFFAOYSA-N dioxouranium(2+) Chemical compound O=[U+2]=O WYICGPHECJFCBA-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 210000001650 focal adhesion Anatomy 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Изобретение относится к биологии и медицине и может быть использовано для подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии. Для этого перед контрастированием промывают образцы в изотоническом растворе хлорида натрия. В качестве контрастирующего вещества используют изотонический водный раствор одного из хлоридов редкоземельных элементов или их смеси. При этом нативный образец подвергают суправитальному контрастированию с экспозицией от 20 минут до 6 часов. Изобретение обеспечивает возможность при проведении сканирующей электронной микроскопии с удовлетворительной контрастностью во вторичных электронах наблюдать микрорельеф биологического объекта и с высокой контрастностью в обратнорассеянных электронах наблюдать структуру и ультраструктуру подповерхностного слоя биологической ткани, не прибегая при этом к предварительному обезвоживанию или фиксации, а также напылению токопроводящим слоем образца. 3 ил., 2 пр.
Description
Предлагаемое изобретение относится к медицине и биологии и предназначено для контрастирования структуры и ультраструктуры биологической ткани и отдельных клеток при ее исследовании с помощью сканирующего электронного микроскопа.
Впервые, сканирующий электронный микроскоп (СЭМ), использующий те же конструктивные принципы, что и современные модели, был предложен в 1942 году. После начала серийного производства с 1965 года эволюция СЭМ происходила непрерывно, вплоть до настоящего момента. С начала этого века на рынке стали появляться модели, позволяющие работать с образцами без напыления, в режиме низкого вакуума в камере микроскопа. Именно такие модели микроскопов сделали возможной работу с образцами биологических тканей в нативном состоянии. Для исследований с помощью СЭМ предыдущих поколений биологические ткани приходилось подготавливать специальным образом.
Первые работы, в которых описывалось применение сканирующего электронного микроскопа для изучения биологических препаратов, стали появляться практически сразу после его создания, в 60-е годы прошлого столетия.
Особенность биологических тканей при наблюдении в СЭМ связана с их химическим составом, в котором преимущественно представлены различные соединения легких химических элементов и вода. Вода, преобладающая в образцах тканей и клеток, исключала изучение препаратов в нативном виде при использовании СЭМ первых поколений. Это было связано с обязательным использованием в камере микроскопа вакуума n·10-3 - n·10-7 Па. Попытки поместить нативную ткань или клеточную культуру в такие условия приводили к ее быстрому обезвоживанию с недопустимым искажением структуры, что делало наблюдения бессмысленными. Именно этот факт послужил основой для классической пробоподготовки биологических образцов и предопределил необходимость либо химической фиксации ткани с последующим высушиванием, либо быстрого замораживания и лиофилизации (Springer Science+Business Media. Electron microscopy: methods and protocols. Third Edition. Kuo J, редактор. New York: Humana Press; Springer; 2014. 799 p.). Подготовленные таким образом образцы также имеют значительные искажения в структуре, связанные с потерей объема при обезвоживании, но эти искажения меньше, чем искажения при неуправляемом обезвоживании в высоком вакууме.
Вторая проблема, связанная с химическим составом биологических образцов, которую пришлось решать при классической подготовке биологических образцов, - низкая контрастность при электронной микроскопии. Разные типы тканей, за исключением костной, по своему преимущественному составу сочетают в себе различные соединения водорода, кислорода и углерода, все остальные химические элементы обнаруживаются в резкоподчиненном количестве. Такой «легкий» в элементном отношении состав, наряду с низкой физической плотностью, определяет низкую эффективность взаимодействия электронного пучка с веществом образца ткани. Этот факт определяет низкую контрастность при изучении нативных тканей с помощью сканирующего электронного микроскопа как во вторичных, так и в обратнорассеянных электронах.
Для увеличения контрастности применялись схемы контрастирования при предварительной подготовке проб к изучению. В основе контрастирования лежал принцип избирательного утяжеления среднего атомного веса структур ткани, достигавшийся либо пропиткой образца солями тяжелых катионов с халькофильными свойствами (чаще всего свинца) или сложных анионов с тяжелым элементом (чаще всего уранил-иона и вольфрамата), либо выдерживанием в парах тетроксида осмия, тропного преимущественно к липидам. Для модификации поверхности при наблюдении в режиме высокого вакуума применялось напыление металлами: золотом, платиноидами, углеродом или медью.
К недостаткам классической схемы подготовки биологической ткани к исследованию при помощи сканирующего электронного микроскопа можно отнести:
1. Очевидную избыточность обезвоживания образцов, так как современные сканирующие микроскопы позволяют наблюдать ткани в режиме низкого вакуума во влажном состоянии, и исключить при этом артефакты, связанные с предварительной лиофилизацией или химическим замещением воды в структурах биологических объектов.
2. Агрессивность контрастирующих веществ по отношению к биологическим тканям. Используемые в классической схеме контрастирующие вещества не являются химически нейтральными по отношению к большинству органических веществ, входящих в состав тканей. При вымачивании тканей растворы или пары этих веществ имеют окислительно-восстановительный потенциал и pH, далеко выходящие за пределы химической устойчивости структур. Это не исключает возникновение артефактов на этапе контрастирования за счет коррозии структур образца.
3. Высокую токсичность и летучесть наиболее популярного красителя - тетроксида осмия, определяющего сложность выполнения подготовки тканей.
4. Избыточность напыления токопроводящего слоя на поверхности при исследовании на современных сканирующих электронных микроскопах в режимах низкого вакуума. Современные микроскопы позволяют отводить заряд с поверхности образца не через напыленный токопроводящий слой, а посредством ионизации газов в камере микроскопа. Напыление приводит как к сглаживанию естественной микроструктуры поверхности наблюдаемых объектов, так и к возникновению артефактов в момент наблюдений за счет реконденсации напыления под электронным пучком.
Известен способ контрастирования препаратов для проведения электронной микроскопии иммуноконьюгированными частицами золота (Richards RG, Stiffanic М, Owen GR, Riehle M, Ар Gwynn I, Curtis AS. Immunogold labelling of fibroblast focal adhesion sites visualised in fixed material using scanning electron microscopy, and living, using internal reflection microscopy. Cell Biol Int. 2001; 25 (12): 1237-49.) Этот способ принят за ближайший аналог.
Схема контрастирования, описанная в этой работе, позволяла, так же как и в предлагаемом способе, добиться насыщения определенных структурных элементов клетки химическим элементом с высоким атомным номером. Однако в этом случае остается открытым вопрос о проницаемости клеточных мембран для частиц золота. Авторы работы сами признают, что избирательность проникновения и распределения наночастиц золота в клетке неоднозначна и может приводить к значительным артефактам.
Таким образом, на текущий момент диапазон методов контрастирования биологической ткани для СЭМ можно определить эволюционным рядом: от методов химического окрашивания, искажающих биологические объекты и пригодных только для классической высоковакуумной микроскопии, до попытки физической избирательной импрегнации образца на основе иммунной реакции.
Задачей изобретения явилась разработка способа подготовки биологической ткани к исследованию при помощи сканирующей электронной микроскопии, позволившего бы изучать структуру и ультраструктуру образца с наименьшими искажениями.
Техническим результатом предлагаемого способа является возможность при проведении сканирующей электронной микроскопии с удовлетворительной контрастностью во вторичных электронах наблюдать микрорельеф биологического объекта и с высокой контрастностью в обратнорассеянных электронах наблюдать структуру и ультраструктуру подповерхностного слоя биологической ткани, не прибегая при этом к предварительному обезвоживанию или фиксации, а также напылению токопроводящим слоем образца.
Технический результат достигается за счет использования в качестве контрастирующего вещества изотонического водного раствора одного из хлоридов редкоземельных элементов или их смеси, при этом нативный образец подвергают суправитальному контрастированию с экспозицией от 20 минут до 6 часов.
Попытки применять в качестве контрастирующего агента соединения редкоземельных элементов предпринимались только в световой микроскопии (Bunzli J-CG. Lighting up cells with lanthanide self-assembled helicates. Interface Focus. 2013; 3 (5): 20130032).
В основе предлагаемого способа лежит представление об иммобилизации редкоземельных элементов (РЗЭ) при обменных процессах на уровне Ca2+-каналов различных мембран, с накоплением редкоземельных элементов в этой позиции. Этот процесс на настоящий момент весьма изучен (Yang J, Liu Q, Wu S, Xi Q, Cai Y. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus. Biometals. 2013 Feb; 26 (1): 43-59.) и (Li X, He P, Xia J, Song S, Lu J, Liu Y. Effect of lanthanum chloride on growth of breast cancer cells and regulation of c-met transcription. Front Med China. 2009 Sep 1; 3 (3): 336-40).
Под группой РЗЭ понимаются лантан, иттрий и лантаноиды, изученные в этих работах в разной степени, однако крайняя близость их химических свойств позволяет экстраполировать эти данные на всю группу (Серебренников В.В. Химия редкоземельных элементов, 1959). В некоторых из отмеченных выше работ было указано, что в присутствии редкоземельных элементов не происходит мгновенной гибели и лизиса клеток, а токсический эффект на клеточном уровне приводит к апоптозу, что подтверждает включенность РЗЭ в метаболические цепочки клетки и позволяет таким образом использовать их соединения в качестве суправитального красителя.
Нейтральные Eh-pH свойства водных растворов хлоридов РЗЭ, наряду с биодоступностью Cl-иона, делают эти соединения оптимальными для окрашивания живых клеточных культур и изолированных тканей. Это вытекает из самой формулы LaCl3. При диссоциации баланс электронов и протонов остается нулевым. Кислые промежуточные продукты диссоциации не образуются, т.к. хлор одновалентен и, кроме того, Cl-анион является общим с главными электролитами тканей.
Дополнительным эффектом от использования РЗЭ в качестве суправитального красителя является стабилизация естественного обезвоживания ткани. Этот эффект не был изучен в полной мере, лишь описан в исследовании цитотоксичности NdCl3 (Huang Р., Li J., Zhang S., Chen C., Han Y., Liu N. et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ Toxicol Pharmacol. 2011 Jan; 31 (1): 25-32.).
Наши исследования подтвердили лучшую сохранность клеток в низком вакууме микроскопа после экспозиции культуры мезенхимальных стволовых клеток в растворе NdCl3 по сравнению с группой контроля. У 50 из 50 наблюдаемых клеток после суправитального окрашивания РЗЭ ядра имели правильную круглую и овальную форму, которая сохранялась в течение 4 часов при нахождении клеток в условиях давления 50 Па, в то же время в группе контроля из 50 клеток, экспонированных в изотоническом растворе хлорида натрия, у 47 за это же время ядра приобрели неправильную форму и уменьшились в размерах.
Кроме того, хлориды РЗЭ не являются опасными веществами, не имеют ограничений по хранению в кристаллическом состоянии, а приготовление изотонических растворов осуществляется простым смешиванием с водой.
Приготовление изотонических концентраций растворов можно проводить по формуле Вант-Гоффа (Еремин В.В., Каргов С.И., Успенская И.А., Кузьменко Н.Е., Лунин В.В. Основы физической химии. Теория и задачи: учеб. пособие для вузов. - М.: Издательство «Экзамен», 2005. - 480 с.).
Однако в ряде случаев в связи с особенностью разных тканей рекомендуется сделать предварительные тесты осмотического контроля с визуальным контролем формы клеток в световой микроскоп.
В связи со схожестью химических свойств тех РЗЭ, которые образуют растворимые хлориды, - не имеет практического значения, какой из хлоридов РЗЭ используется для контрастирования. Результаты будут одинаковы при использовании любого из хлоридов РЗЭ или их произвольной смеси.
Наилучших результатов контрастирования удалось добиться при выдерживании биологической ткани в растворе РЗЭ от 20 минут до 6 часов, в физиологичных для контрастируемой ткани условиях.
Важно, что предварительно перед контрастированием необходимо тщательно промывать образцы в изотоническом растворе NaCl. Иначе часть РЗЭ, будучи тройными к фосфатам, могут связаться с обязательно присутствующими фосфатными компонентами ростовых сред и жидкости основного вещества ткани, сорбировавшейся на поверхность образца. После контрастирования рекомендуется смывать остатки контрастирующего раствора кратковременной (1-10 сек) промывкой в дистиллированной воде. Подготовленные с помощью предлагаемого способа контрастирования образцы биологических тканей можно наблюдать на любых типах сканирующих электронных микроскопов, допускающих наблюдения в режиме низкого вакуума.
После предлагаемого контрастирования возможны наблюдения как в режиме вторичных электронов, так и в режиме обратнорассеянных электронов. Наибольшая контрастность подповерхностного слоя образца достигается в режиме обратнорассеянных электронов при ускоряющем напряжении 15-30 кВ.
Способ осуществляют следующим образом:
1. Образец биологической ткани (культуру клеток, изолированный блок ткани и т.п.) промывают в изотоническом растворе NaCl.
2. После промывки образец биологической ткани размещают в емкости с водным изотоническим раствором одного из хлоридов редкоземельных элементов или их смеси, при этом нативную ткань экспонируют в растворе от 20 минут до 6 часов.
3. Образец изымают из емкости с контрастирующим раствором и кратковременно промывают в дистиллированной воде (1-10 сек).
4. Образец размещают на предметном столике микроскопа.
5. Проводят сканирующую электронную микроскопию в режиме низкого вакуума, при ускоряющем напряжении 15-30 кВ.
Пример 1.
Для изучения методом сканирующей электронной микроскопии был получен образец культуры клеток эпителия роговицы человека на поверхности культурального пластика. Решался вопрос о компактности расположения клеток в монослое. Образец промыли в изотоническом растворе NaCl. После промывки образец разместили в емкости с водным изотоническим раствором хлорида неодима и выдержали в растворе 40 минут. Затем образец переместили в кювету с дистиллированной водой и промыли его в течение 5 секунд. Удалив с поверхности образца избыток воды (чтобы не увеличивать время контакта образца с водой), разместили образец на предметном столике микроскопа.
Сканирующая электронная микроскопия образца в режиме низкого вакуума, при ускоряющем напряжении 20 кВ, позволила получить изображения в обратно-рассеянных электронах с визуализацией не только ядер, ядрышек и Ca-каналов, но и яркими межклеточными контактами (фиг. 1). Последнее доказывает наличие активных межклеточных контактов эпителиальных клеток в монослое на основе контрастированных Ca-насосов.
Пример 2.
Для изучения методом сканирующей электронной микроскопии, хирургически был получены два фрагмента эпителия конъюнктивы человека с подстилающей его базальной мембраной. Была поставлена задача визуализировать методом сканирующей электронной микроскопии в сочетании с контрастированием хлоридами РЗЭ микроворсинки на поверхности эпителиальных клеток. Также ставилась задача сравнить результаты визуализации со вторым фрагментом, подготовленным к микроскопии фиксацией, обезвоживанием и напылением. Образец промыли в изотоническом растворе NaCl. После промывки первый фрагмент разместили в емкости с водным изотоническим раствором хлорида неодима и выдержали в растворе 40 минут. Затем переместили в кювету с дистиллированной водой, промыли его в течение 5 секунд и разместили на предметном столике микроскопа.
Сканирующая электронная микроскопия первого фрагмента в режиме низкого вакуума, при ускоряющем напряжении 20 кВ, позволила получить изображения микроворсинок на поверхности клеток эпителия во вторичных электронах (фиг. 2).
Второй фрагмент ткани, подготовленный классическим способом, не позволил корректно визуализировать элементы микроскульптуры поверхности клеток. Несмотря на большую контрастность изображения второго фрагмента эпителия, при его наблюдении в режиме высокого вакуума видно, что подготовка образца внесла необратимые искажения в его структуру. В частности, микроворсинки сохранились только в периферической зоне клеток, их форма и форма самих клеток сильно исказились (фиг. 3).
Claims (1)
- Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии, включающий использование контрастирующего вещества, отличающийся тем, что перед контрастированием промывают образцы в изотоническом растворе хлорида натрия, а в качестве контрастирующего вещества используют изотонический водный раствор одного из хлоридов редкоземельных элементов или их смеси, при этом нативный образец подвергают суправитальному контрастированию с экспозицией от 20 минут до 6 часов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015117678/15A RU2578977C1 (ru) | 2015-05-12 | 2015-05-12 | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015117678/15A RU2578977C1 (ru) | 2015-05-12 | 2015-05-12 | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2578977C1 true RU2578977C1 (ru) | 2016-03-27 |
Family
ID=55656968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015117678/15A RU2578977C1 (ru) | 2015-05-12 | 2015-05-12 | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2578977C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2643955C1 (ru) * | 2017-04-19 | 2018-02-06 | Галина Мэлсовна Чернакова | Способ отбора и подготовки пробы клеток конъюнктивы для проведения бактериологического, вирусологического и иммунологического исследований |
RU2668879C1 (ru) * | 2017-11-07 | 2018-10-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) | Способ подготовки поверхности образцов костной ткани для изучения её микроструктуры при помощи сканирующего электронного микроскопа |
RU2672356C1 (ru) * | 2018-03-12 | 2018-11-14 | Общество с ограниченной ответственностью "Глаукон" | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
RU2834770C1 (ru) * | 2024-07-09 | 2025-02-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) | Способ подготовки пыльцевых зерен для сканирующей электронной микроскопии |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2242005C2 (ru) * | 1998-10-27 | 2004-12-10 | Текнион Рисерч Энд Дивелопмент Фаундейшн Лтд. | Способ осаждения золота, способ определения присутствия конкретного вещества на активных центрах на подложке, способ определения присутствия анализируемого вещества в образце и набор средств, используемый в способе (варианты) |
RU2461839C1 (ru) * | 2011-03-16 | 2012-09-20 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" | Сканирующий зондовый микроскоп |
-
2015
- 2015-05-12 RU RU2015117678/15A patent/RU2578977C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2242005C2 (ru) * | 1998-10-27 | 2004-12-10 | Текнион Рисерч Энд Дивелопмент Фаундейшн Лтд. | Способ осаждения золота, способ определения присутствия конкретного вещества на активных центрах на подложке, способ определения присутствия анализируемого вещества в образце и набор средств, используемый в способе (варианты) |
RU2461839C1 (ru) * | 2011-03-16 | 2012-09-20 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" | Сканирующий зондовый микроскоп |
Non-Patent Citations (2)
Title |
---|
BUNZLI J-CG. Lighting up cells with lanthanide self-assembled helicates. Interface Focus. 2013; 3 (5): 20130032. * |
RICHARDS RG et al. Immunogold labelling of fibroblast focal adhesion sites visualised in fixed material using scanning electron microscopy, and living, using internal reflection microscopy. Cell Biol Int. 2001; 25 (12): 1237-49. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2643955C1 (ru) * | 2017-04-19 | 2018-02-06 | Галина Мэлсовна Чернакова | Способ отбора и подготовки пробы клеток конъюнктивы для проведения бактериологического, вирусологического и иммунологического исследований |
RU2668879C1 (ru) * | 2017-11-07 | 2018-10-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) | Способ подготовки поверхности образцов костной ткани для изучения её микроструктуры при помощи сканирующего электронного микроскопа |
RU2672356C1 (ru) * | 2018-03-12 | 2018-11-14 | Общество с ограниченной ответственностью "Глаукон" | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
WO2019177492A1 (ru) * | 2018-03-12 | 2019-09-19 | Общество с ограниченной ответственностью "Глаукон" | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии |
RU2834770C1 (ru) * | 2024-07-09 | 2025-02-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) | Способ подготовки пыльцевых зерен для сканирующей электронной микроскопии |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects | |
Raghavan et al. | Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays | |
ES2550975T3 (es) | Nuevo biomaterial procedente de gelatina de Wharton de cordón umbilical | |
RU2578977C1 (ru) | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии | |
CN105940291B (zh) | 含水状态的生物试样的电子显微镜观察用保护剂、试剂盒、利用电子显微镜进行观察、诊断、评价、定量的方法以及试样台 | |
Park et al. | Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications | |
Dodero et al. | Effect of sodium alginate molecular structure on electrospun membrane cell adhesion | |
Ding et al. | Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes. | |
Robinson et al. | Characterization of sample preparation methods of NIH/3T3 fibroblasts for ToF-SIMS analysis | |
Lou et al. | Study on the antibacterial and anti-corrosion properties of Ni-GO/Ni-rGO composite coating on manganese steel | |
Cervini-Silva et al. | Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains | |
CN104819966B (zh) | 杯芳烃荧光探针应用于活细胞中Zn2+、F-荧光成像的方法 | |
DiCecco et al. | Electron microscopy imaging applications of room temperature ionic liquids in the biological field: A review | |
CN113405869B (zh) | 一种原生动物包囊透射电镜样品的制备方法 | |
Leo et al. | Label-free time-of-flight secondary ion mass spectrometry imaging of sulfur-producing enzymes inside microglia cells following exposure to silver nanowires | |
Nunez | Secretory processes in follicular cells of the bat thyroid. II. The occurrence of organelle‐associated intercellular junctions during late hibernation | |
RU2672356C1 (ru) | Способ подготовки биологического образца к исследованию при помощи сканирующей электронной микроскопии | |
Mestres et al. | The surface topography of the choroid plexus. Environmental, low and high vacuum scanning electron microscopy | |
CN111829859A (zh) | 一种高效杨树种子透明染色及其三维成像的方法 | |
Santhana Raj et al. | New preparation method of Reynolds’ stain for transmission electron microscope for liver samples | |
Niu et al. | Electrochemical interaction between free radicals and lappaconitines | |
Park et al. | Nanoscale characterization of acid and thermally treated collagen fibrils | |
Zhang et al. | 3D imaging of single cells in bacterial biofilms using lattice light-sheet microscopy | |
Shishkova et al. | Evaluation of Oolong Tea Extract Staining of Brain Tissue with Special Reference to Smooth Endoplasmic Reticulum | |
Novikov et al. | Fast and easy method of lanthanoid staining for visualization of cellular ultrastructure and spatial arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170513 |
|
NF4A | Reinstatement of patent |
Effective date: 20180418 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200513 |