RU2577938C2 - Автоматизированная развертка и экспорт двумерных ультразвуковых изображений трехмерных объемов - Google Patents

Автоматизированная развертка и экспорт двумерных ультразвуковых изображений трехмерных объемов Download PDF

Info

Publication number
RU2577938C2
RU2577938C2 RU2013108782/14A RU2013108782A RU2577938C2 RU 2577938 C2 RU2577938 C2 RU 2577938C2 RU 2013108782/14 A RU2013108782/14 A RU 2013108782/14A RU 2013108782 A RU2013108782 A RU 2013108782A RU 2577938 C2 RU2577938 C2 RU 2577938C2
Authority
RU
Russia
Prior art keywords
image
images
orientations
projection
collection
Prior art date
Application number
RU2013108782/14A
Other languages
English (en)
Other versions
RU2013108782A (ru
Inventor
Майкл ШОФ
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013108782A publication Critical patent/RU2013108782A/ru
Application granted granted Critical
Publication of RU2577938C2 publication Critical patent/RU2577938C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к трехмерным ультразвуковым диагностическим системам визуализации. Система содержит ультразвуковой зонд, включающий в себя двумерный матричный преобразователь, контроллер, который управляет зондом для того, чтобы получить двухпроекционные изображения отличающихся ориентаций, пользовательский блок управления, который управляется пользователем для того, чтобы подавать команды контроллеру, получать и сохранять последовательность изображений с последовательно отличающимися ориентациями изображения в диапазоне изменения углов ориентаций плоскости изображения, устройство отображения для отображения двухпроекционных изображений. Способ заключается в выборе режима двухпроекционной визуализации, визуализации интересующей области в теле в выбранном режиме, инициировании сбора с разверткой двухпроекционных изображений, где сбор с разверткой выполняют для последовательно отличающихся ориентаций изображения, и сохранении последовательности изображений. Изобретение позволяет повысить точность диагностики. 2 н. и 13 з.п. ф-лы, 5 ил.

Description

Данное изобретение относится к ультразвуковым диагностическим системам и, в частности, к трехмерным ультразвуковым диагностическим системам визуализации, которые автоматически осуществляют развертку двумерных плоскостей изображения по отношению к опорной плоскости, и экспортируют развернутые плоскости как отдельные плоскости изображения или последовательности изображений.
Патенты США 6709394 (Frisa и др.) и 6755786 (Frisa и др.) описывают ультразвуковую двухпроекционную визуализацию. При двухпроекционной визуализации зонд с двумерным матричным преобразователем сканирует две различные двумерные плоскости изображения в быстром сменяющем друг друга следовании, тем самым производя изображения прямой передачи («вживую») в реальном времени в обеих плоскостях. Одна из плоскостей изображения определяется как опорная плоскость изображения. Эта плоскость изображения ориентирована, как правило, перпендикулярно плоскости матричного преобразователя, продолжаясь прямо от зонда вокруг центральной ортогональной оси к массиву. Ориентацию опорного изображения обычно поддерживают неподвижной, а вторая плоскость изображения подвижна по отношению к этой опорной плоскости. В патенте '394 описана двухпроекционная визуализация, при которой вторую плоскость изображения можно наклонять или поворачивать относительно опорной плоскости. В коммерческом варианте осуществления, доступном от Philips Healthcare of Andover, MA, наклоненная плоскость изображения имеет заданную ориентацию центральной оси на одной линии с центральной осью опорной плоскости. Наклонную плоскость можно двигать (наклонять) таким образом, что она ориентируется под разными углами по отношению к центральной оси опорной плоскости, но ее центральная ось всегда расположена в опорной плоскости. Эта реализация двухпроекционного вращения, в свою очередь, имеет поначалу центральную ось второй (поворачивающейся) плоскости изображения, выровненной с центральной осью опорного изображения, и ориентация второго изображения ортогональна плоскости опорного изображения. Из этого исходного положения поворачивающуюся плоскость можно поворачивать вокруг ее центральной оси под углами относительно опорного изображения, которые отличаются от прямого. Патент '786 описывает то, что известно как двухпроекционная визуализация с изменением по высоте и наклоном. При визуализации с изменением по высоте и наклоном второе изображение имеет исходное положение на одной линии с опорным изображением. Затем второе изображение отодвигают от опорной плоскости изображения в вертикальном направлении к разным плоскостям, которые не пересекают опорную плоскость изображения. Таким образом, две плоскости могут быть абсолютно параллельны или параллельны под углом, причем последнее является состоянием, когда вторая плоскость имеет общее с опорной плоскостью расположение вершины или пересекает опорную плоскость выше верха (на незначительную глубину) изображения. Двухпроекционные изображения позволяют клиницисту позиционировать опорную плоскость так, чтобы просмотреть целевую анатомию или интересующую область, а затем перемещать вторую плоскость для наблюдения других плоскостных изображений целевой анатомии. Как показано в патентах, два двухпроекционных изображения отображаются рядом одновременно, так что клиницист может постоянно видеть опорное изображение при движении второй плоскости. Двухпроекционная визуализация позволяет клиницисту сканировать и наблюдать две плоскости изображения одновременно, при постоянном сохранении координат местоположений изображений внутри трехмерного объема, подлежащего сканированию, его или ее навигационным средством. Когда клиницист определяет место интересующей анатомии на обеих плоскостях изображения, одиночное изображение или цикл (последовательность изображений прямой передачи) могут быть зафиксированы или сохранены и отображены или воспроизведены позже при постановке окончательного диагноза.
Фиксация двойного отображения изображений уменьшит размер каждого изображения по сравнению с размером отображения одиночного изображения. В некоторых случаях может быть желательно сохранять только второе изображение, которому было назначено место наблюдения анатомии, требующей диагностики; опорное изображение может и не быть необходимым для диагностики. Сохранение только второго изображения позволит изображению отображаться в большем формате изображения, что помогает детальной диагностике. Также может быть желательным сохранять не только одиночное подвижное изображение, но все изображения в диапазоне ориентаций изображения. Изменение положения подвижных изображений вручную на ряд новых ориентаций, затем фиксация новых изображений одного за другим, является утомительным и трудоемким и предоставляет неполную серию изображений, если зонд движется случайно во время процесса. Было бы также желательно иметь возможность автоматически двигаться пошагово или разворачивать по диапазону ориентаций изображения и фиксировать все изображения в диапазоне или развертке. Кроме того, желательно, иметь возможность сохранять только последовательность развернутых вторых изображений, независимо от опорного изображения, когда опорное изображение более бесполезно для диагностики.
В соответствии с принципами настоящего изобретения система визуализации ультразвуковой диагностики выполняет двухпроекционную визуализацию с возможностью осуществлять развертку и сохранять изображения из серий двухпроекционных изображений с подвижной ориентацией. При нажатии на кнопку вторая (подвижная) плоскость двухпроекционных изображений поворачивается, наклоняется или поднимается по всему диапазону ориентаций или выбранному поддиапазону и последовательность сохраняется для последующего изучения. В соответствии с дополнительным аспектом настоящего изобретения подвижная плоскость изображения или последовательность таких плоскостей, либо статических, либо изображений прямой передачи, могут быть зафиксированы и сохранены отдельно от изображения опорной плоскости. Отдельное изображение или цикл изображений могут быть экспортированы для последующего просмотра и диагностики.
НА ЧЕРТЕЖАХ:
На Фиг. 1 показана в виде блок-схемы ультразвуковая диагностическая система визуализации, сконструированная в соответствии с принципами настоящего изобретения.
На Фиг. 2 показано двухпроекционное отображение, согласно известному уровню техники.
На Фиг. 3 показана в виде блок-схемы подсистема выбора формата двухпроекционного изображения ультразвуковой системы на Фиг. 1.
На Фиг. 4 представлена блок-схема, иллюстрирующая начальную установку и сбор двухпроекционных изображений развертки в соответствии с принципами настоящего изобретения.
На Фиг. 5a и 5b показаны сохраненные по отдельности вторые (подвижные) двухпроекционные изображения в соответствии с принципами настоящего изобретения.
Обратимся сначала к Фиг. 1, ультразвуковая система 10, сконструированная в соответствии с принципами настоящего изобретения, представлена в виде блок-схемы. Ультразвуковая система скомпонована из двух подсистем - подсистемы 10A сбора с предварительной обработкой и подсистемы 10B отображения. Ультразвуковой зонд соединен с подсистемой сбора, которая включает в себя двумерный матричный преобразователь 70 и микроформирователь 72 луча. Микроформирователь луча содержит схемы, которые управляют сигналами, применяемыми к группе элементов («группа приемников») матричного преобразователя 70, и делает некоторую обработку эхосигналов, принятых элементами каждой группы. Микроформирователь луча в зонде предпочтительно уменьшает количество проводов в кабеле между зондом и ультразвуковой системой и описан в патенте США 5997479 (Savord et al.) и в патенте США 6436048 (Pesque) и обеспечивает электронное управление передачей и приемом лучей при визуализации в режиме реального времени (прямой передаче) с высокой частотой кадров.
Зонд связан с подсистемой 10A сбора ультразвуковой системы. Подсистема сбора включает в себя контроллер 74 формы луча, который способен реагировать на пользовательский блок 36 управления, и подает сигналы управления на микроформирователь 72 луча, дающие инструкции зонду относительно синхронизации, частоты, направления и фокусировки переданных лучей. Контроллер формы луча также управляет формированием лучей эхосигналов, принятых подсистемой сбора, с помощью управления аналого-цифровыми (А/Ц) преобразователями 18 и формирователем 20 луча. Частично сформированные лучи эхо-сигналов, принятые зондом, усиливаются схемой 16 предусилителя и ДРУ (дифференциальная регулировка усиления) в подсистеме сбора, затем оцифровываются А/Ц преобразователями 18. Оцифрованные эхо-сигналы затем формируются в полностью управляемые и сфокусированные лучи основным формирователем 20 луча системы. Эхо-сигналы затем обрабатываются процессором 22 изображений, который осуществляет цифровую фильтрацию, измерение в B-режиме и M-режиме, и доплеровскую обработку, а также может выполнять другие обработки сигнала, такие как разделение гармоник, понижение уровня спеклов и другие требуемые обработки сигнала изображения.
Эхо-сигналы, производимые подсистемой 10A сбора, связываются с подсистемой 10B отображения, которая обрабатывает эхо-сигналы для отображения в нужном формате изображения. Эхо-сигналы обрабатываются процессором 24 строки изображения, который выполнен с возможностью провести дискретизацию по времени эхо-сигналов, сопряжение сегментов лучей в полные линейные сигналы и усреднение линейных сигналов для улучшения отношения сигнал-шум или установки уровня усреднения потока. Строки изображения для двумерного изображения сканирования преобразуются в нужный формат изображения посредством сканирующего преобразователя 26, который выполняет преобразование полярных координат, как известно в данной области техники. Сканирующий преобразователь может, таким образом, задавать формат прямолинейного или секторного видов изображения. Затем изображение сохраняется в памяти 28 для хранения изображений, из которой оно может быть отображено на устройстве 38 отображения, как описано более подробно на Фиг. 3. Изображение в памяти также совмещается с графиками, которые должны отображаться с изображением, которые генерируются генератором 34 графических изображений, который реагирует на пользовательский блок 36 управления, так что произведенные графики связываются с изображениями устройства отображения. Отдельные изображения или последовательности изображений могут быть сохранены в кино-памяти 30 в течение фиксации циклов изображений или последовательностей.
Для объемной визуализации в реальном времени подсистема 10B отображения также включает в себя процессор 32 построения трехмерного изображения, который принимает строки изображения от процессора 24 строки изображения для построения трехмерных изображений в реальном времени. Трехмерные изображения могут быть отображены как изображения прямой передачи (в реальном времени) на устройстве 38 отображения или связаны с памятью 28 для хранения изображений для сохранения наборов трехмерных данных для последующего просмотра и диагностики.
Подсистема ЭКГ предназначена для использования, когда желательно получить изображения отдельных фаз сердечного цикла. Выводы 50 ЭКГ предоставляют сигналы ЭКГ для QRS процессора 52, который идентифицирует зубец R каждого сердечного сокращения. Синхронизация зубца R используется для получения изображения отдельного сердечного цикла. Изображения сердца, в конце фазы диастолы последовательности сердечных сокращений, могут быть получены посредством сопряжения синхронизации зубца R, как запускающего сигнала от генератора 54 запускающего сигнала, для контроллера 74 формы луча и элементов управления панели 36 управления, используемых для выбора нужной фазы сердца, при которой должны быть получены стробированные по фазе изображения.
Когда матричный зонд работает в двухпроекционном режиме, выбранном посредством элементов управления панели 36 управления, контроллер 74 формы луча управляется так, чтобы поочередно получать изображения в двух разных плоскостях изображения быстро, в следовании в режиме реального времени. Элементы управления панели 36 управления используются для выбора нужного двухпроекционного режима, например, поворот, наклон или режим изменения по высоте и наклона. Изображения прямой передачи в двух плоскостях отображаются рядом, как представлено на Фиг. 2. Специалист по ультразвуковой эхографии будет удерживать матричный зонд неподвижным так, что целевая анатомия постоянно отображается в виде опорного изображения, затем манипулировать элементом управления панели управления для того, чтобы наклонять, поворачивать или поднимать второе изображение. Как проиллюстрировано в примере на Фиг. 2, опорное изображение L отображается в левой части экрана устройства отображения, и регулируемое второе изображение R отображается на правой стороне экрана. Справа от вершины каждого изображения на Фиг. 2 имеется маркер 402, 404 ориентации зонда, отображаемый как точка рядом с каждым изображением. Отображаемый маркер коррелирует с меткой на зонде, которая обозначает левую или правую сторону изображения, в зависимости от того, как специалист по ультразвуковой эхографии удерживает зонд. Этот маркер ориентирует отображаемые изображения в зависимости от того, как специалист по ультразвуковой эхографии удерживает зонд по отношению к телу пациента. Выше изображений L и R в центре экрана представлен значок 400 ориентации изображения, который указывает относительную ориентацию двух плоскостей двухпроекционного изображения. Значок 400 представляет вид на плоскости изображения, если смотреть со стороны массива преобразователя зонда, и имеет в составе окружность 410, которая графически представляет пространство, в котором изображение R может двигаться, как бы его не поворачивали. Точка 406 соответствует точке 402 опорного изображения L слева и указывает в этом примере на то, что плоскость опорного изображения ориентирована горизонтально поперек окружности 410 с маркером справа от изображения. Линия 412 на значке указывает, что изображение (подвижное) R справа ориентировано так же, как правый маркер 408, соответствующий точке 404, с правой стороны от изображения. Поскольку подвижная плоскость изображения поворачивается, линия 412 поворачивается в окружности в соответствии с меняющейся ориентацией плоскости.
Дополнительная подробная информация об этом стандартном двухпроекционном отображении для режимов наклона и поворота находится в патенте '394. Подробная информация о двухпроекционном отображении для режима с изменением по высоте и наклоном находится в патенте '786.
В соответствии с принципами настоящего изобретения двухпроекционные изображения могут быть отображены, сохранены и/или экспортированы либо в стандартном формате с обоими изображениями в одном кадре изображения, либо как независимые изображения. На Фиг. 3 представлен пример процессора для обработки изображений ультразвуковой системы с Фиг. 1, которая обеспечивает эту возможность. Линии отображаемого изображения от сканирующего преобразователя 26 попеременно направляются коммутатором 80 либо в первый буфер 82 изображений, либо во второй буфер 84 изображений. Установка в определенное положение коммутатора 80 управляется сигналом от контроллера 74 формирователя луча в соответствии с двухпроекционным изображением, получаемым системой в данный момент. Опорные двухпроекционные изображения собираются в первом буфере 82 изображения, и вторые изображения (переменной ориентации) собираются во втором буфере 84 изображений. Из этих двух буферов изображений могут быть созданы различные форматы хранения и отображения. Буферы 82 и 84 изображений связаны с входными данными селектора 88 формата изображения. Буферы 82 и 84 изображений также связаны с входными данными из буфера 86 двухпроекционных изображений, в котором оба двухпроекционные изображения форматируются для хранения и/или отображения в виде одного кадра изображения. Выход из буфера 86 двухпроекционных изображений подсоединен в качестве третьего входа селектора 88 формата изображения. Селектор 88 формата изображения, следовательно, способен производить в качестве выхода, согласно командам пользователя управляющего сигналом от панели 36 управления, либо кадры изображения опорного изображения, либо кадры изображения второго изображения (переменной ориентации), либо кадры изображения стандартного двухпроекционного отображения обоих изображений одновременно. Генератор 34 графических изображений соединен с селектором 88 для того, чтобы обеспечить соответствующее графическое наложение для выбранного типа изображения. Кадры изображения выбранного формата могут отображаться на устройстве отображения изображения 38, сохраняться в памяти 28 для хранения изображений и/или передаваться для внешнего пользования через системный порт для данных изображений (не показан). Это значит, что только последовательность изображений переменной ориентации может сохраняться и экспортироваться в другие хранилища данных или устройства отображения, независимо от опорных изображений. Также можно хранить и/или экспортировать как последовательность опорных изображений, так и независимую последовательность изображений переменной ориентации, которые были получены одновременно. Две последовательности изображений могут быть воспроизведены одновременно для стробированного отображения с использованием полученных времен изображений, хранящихся в метаданных данных изображений или на основании синхронизации (ЭКГ) сигнала, который определяет синхронизацию получения обоих наборов изображений. Следует принять во внимание, что полученные изображения могут быть статическими изображениями или изображениями прямой передачи потока или движения в теле.
В соответствии с дополнительным аспектом настоящего изобретения Фиг. 4 иллюстрирует способ работы ультразвуковой системы с Фиг. 1 для автоматического осуществления развертки в диапазоне и сбора последовательности изображений переменной ориентации пары двухпроекционных изображений. Например, опорное изображение может быть секторальным изображением с углом сектора в диапазоне от +45° до -45°; угол 0° секторального опорного изображения является центральной осью секторального изображения, простирающейся перпендикулярно от матричного преобразователя. Следовательно, переменное наклонное изображение может быть расположено в любом месте в диапазоне углов наклона от +45° до -45°. В системах двухпроекционной визуализации известного уровня техники ориентация наклона второго изображения регулируется вручную. Последовательность операций на Фиг. 4 иллюстрирует, как можно управлять ультразвуковой системой, чтобы автоматически осуществлять развертку по всему диапазону или части диапазона ориентаций второго изображения. Например, следуя приведенному выше примеру, можно управлять системой, чтобы осуществлять развертку от начала до конца и получать изображения во всем диапазоне углов наклона от +45° до -45°. Или изображения можно получить для части этого всего диапазона. Способ начинается с этапа 60 выбора нужного двухпроекционного режима. Примеры двухпроекционных режимов даны выше, включают в себя режимы наклона, поворота, изменения по высоте и наклона. Как только был выбран режим, на этапе 62 манипулируют зондом до тех пор, пока не увидят интересующую анатомическую область на опорном изображении нужного двухпроекционного режима. Для визуализации сердца интересующая область может быть, например, левым желудочком сердца. При желании на этапе 64 выбирается область, по которой должна быть осуществлена развертка ориентации. Типично весь диапазон ориентаций будет диапазоном осуществления развертки по умолчанию, например, от +45° до -45° в этом примере. При желании на этапе 66 выбирается запуск развертки. Например, может быть желательно начать осуществление развертки, когда сердце приближается, и продолжать до конца фазы диастолы сердечного сокращения. Как только все нужные параметры для сбора были установлены, нажимается кнопка на панели управления 36 для того, чтобы начать осуществление развертки или активировать пусковое устройство, чтобы начать осуществление развертки с желаемой синхронизацией. Контроллер формирователя луча быстро получает последовательность вторых изображений (переменной ориентации) - каждое с последовательно отличающейся ориентацией. В конце сбора последовательность изображений сохраняется для последующего просмотра или экспортируется в другую систему, такую как диагностическая рабочая станция.
В дополнение к установочным параметрам, проиллюстрированным на Фиг. 4, дополнительные установочные параметры могут быть угловым расстоянием между последовательными изображениями. Читатель поймет, что последовательность разверток изображений, расположенных близко друг к другу, будет иметь много изображений, однако потребуется больше времени, чтобы получить большее количество изображений, чем для последовательности с более крупным шагом по расстоянию.
На Фиг. 5a и 5b показаны два типа двухпроекционных изображений, которые могут отображаться, сохраняться и/или передаваться другому устройству в соответствии с настоящим изобретением. На Фиг. 5a представлено одиночное статическое изображение 90, такое как опорное изображение, которое может быть собрано в первый буфер 82 изображений, затем отображено на устройстве 38 отображения и сохранено как одиночное изображение. Изображение 90 может быть одиночным двухпроекционным опорным изображением или одиночным двухпроекционным изображением переменной ориентации. Вместо статического изображения изображение 90 также может быть циклом или последовательностью изображений прямой передачи, в которых наблюдают анатомию в одиночном изображении, движущемся в реальном времени. На Фиг. 5b представлена последовательность изображений 92, таких как были бы получены посредством автоматизированной развертки по диапазону углов ориентаций плоскости изображения, как описано выше. Видно, что последовательность в этом примере содержит ориентации наклона, начинающиеся с +45°, далее сдвигаясь с приращением в один градус так, что второе изображение в последовательности имеет ориентацию наклона +44°, и так далее. В середине последовательности находится изображение с номинальным наклоном 0°, и в конце последовательности, развернутой в диапазоне от +45° до -45°, находится изображение, наклонное с ориентацией в -45° в этом примере. Последовательность 92 с разверткой можно сохранить и вызывать для последующего просмотра и диагностики, когда клиницист может пройти через последовательность для того, чтобы найти наилучшую ориентацию, подходящую для постановки диагноза. Следует также принять во внимание, что каждое из наклонных изображений может быть одиночным статическим изображением, циклом изображений прямой передачи и/или стробированными изображениями, которые получают при заранее заданной фазе движущейся анатомии.

Claims (15)

1. Ультразвуковая диагностическая система (10) визуализации для автоматизированного сбора последовательности двухпроекционных изображений с последовательно отличающимися ориентациями плоскости изображения, содержащая:
ультразвуковой зонд, включающий в себя двумерный матричный преобразователь (70);
контроллер (74), который управляет зондом для того, чтобы получить двухпроекционные изображения отличающихся ориентаций изображения;
пользовательский блок (36) управления, управляемый пользователем;
устройство (38) отображения для отображения двухпроекционных изображений;
отличающаяся тем, что
пользовательский блок (36) управления управляется пользователем для того, чтобы подавать команды контроллеру (74) получать и сохранять последовательность изображений с последовательно отличающимися ориентациями изображения в диапазоне изменения углов ориентаций плоскости изображения.
2. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая пользовательский блок управления, управляемый пользователем для установления диапазона изменения углов ориентаций плоскости изображения, в котором должны быть получены изображения.
3. Ультразвуковая диагностическая система визуализации по п. 2, дополнительно содержащая источник (54) запускающих сигналов, связанный с контроллером, для стробированного сбора последовательности изображений с последовательно отличающимися ориентациями изображения.
4. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая память (28) для хранения изображений для хранения полученной последовательности изображений с последовательно отличающимися ориентациями изображения.
5. Ультразвуковая диагностическая система визуализации по п. 4, в которой последовательно отличающиеся ориентации изображения являются разными ориентациями угла наклона, разными ориентациями угла поворота или разным изменением по высоте и ориентациями угла наклона.
6. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая пользовательский блок управления, управляемый пользователем для установления разницы в ориентации между разными ориентациями изображения.
7. Ультразвуковая диагностическая система визуализации по п. 1, в которой двухпроекционные изображения дополнительно содержат первое изображение с фиксированной ориентацией относительно матричного преобразователя и второе изображение с изменяемой пользователем ориентацией относительно первого изображения.
8. Ультразвуковая диагностическая система визуализации по п. 7, дополнительно содержащая пользовательский блок управления, управляемый пользователем для того, чтобы выбирать двухпроекционный режим, как одно из:
второго изображения, имеющего наклонную ориентацию
относительно первого изображения и пересекающего плоскость первого изображения;
второго изображения, имеющего повернутую ориентацию относительно первого изображения; или
второго изображения, наклоненного при изменении по высоте и не пересекающего плоскость первого изображения.
9. Способ работы ультразвуковой диагностической системы визуализации для получения двухпроекционных изображений, содержащий:
выбор (60) режима двухпроекционной визуализации;
визуализацию (62) интересующей области в теле в выбранном режиме двухпроекционной визуализации;
инициирование сбора (68) с разверткой двухпроекционных изображений; и
сохранение последовательности изображений двухпроекционных изображений с последовательно отличающимися ориентациями изображения;
отличающийся тем, что сбор с разверткой двухпроекционных изображений выполняют для последовательно отличающихся ориентаций изображения.
10. Способ по п. 9, дополнительно содержащий выбор (64) диапазона сбора последовательно отличающихся изображений, по которому должен быть инициирован сбор с разверткой.
11. Способ по п. 10, дополнительно содержащий выбор инкрементной разницы в ориентации между разными ориентациями изображений.
12. Способ по п. 9, в котором инициирование дополнительно содержит инициирование сбора с разверткой двухпроекционных изображений с последовательно отличающимся наклоном плоскости изображения.
13. Способ по п. 9, в котором инициирование дополнительно содержит инициирование сбора с разверткой двухпроекционных изображений с последовательно отличающимся поворотом плоскости изображения.
14. Способ по п. 9, дополнительно содержащий экспорт сохраненной последовательности изображений в другое устройство отображения изображений.
15. Способ по п. 9, дополнительно содержащий:
получение запускающего сигнала; и
в котором инициирование дополнительно содержит инициирование стробированного сбора с разверткой двухпроекционных изображений с последовательно отличающимися ориентациями изображения.
RU2013108782/14A 2010-07-30 2011-07-20 Автоматизированная развертка и экспорт двумерных ультразвуковых изображений трехмерных объемов RU2577938C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36919510P 2010-07-30 2010-07-30
US61/369,195 2010-07-30
PCT/IB2011/053225 WO2012014125A1 (en) 2010-07-30 2011-07-20 Automated sweep and export of 2d ultrasound images of 3d volumes

Publications (2)

Publication Number Publication Date
RU2013108782A RU2013108782A (ru) 2014-09-10
RU2577938C2 true RU2577938C2 (ru) 2016-03-20

Family

ID=44504033

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013108782/14A RU2577938C2 (ru) 2010-07-30 2011-07-20 Автоматизированная развертка и экспорт двумерных ультразвуковых изображений трехмерных объемов

Country Status (6)

Country Link
US (2) US10610198B2 (ru)
EP (1) EP2598036A1 (ru)
JP (1) JP2013532543A (ru)
CN (1) CN103037774B (ru)
RU (1) RU2577938C2 (ru)
WO (1) WO2012014125A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659021C2 (ru) 2014-01-27 2018-06-26 Конинклейке Филипс Н.В. Система ультразвуковой визуализации и способ ультразвуковой визуализации
CN105973205B (zh) * 2016-05-13 2019-04-02 中国人民解放军装备学院 一种交叉斜采样模式高分辨率成像方法
US20230261706A1 (en) * 2022-02-14 2023-08-17 Qualcomm Incorporated Selection of beamforming configuration parameters for a multi-panel active antenna system (aas)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245017B1 (en) * 1998-10-30 2001-06-12 Kabushiki Kaisha Toshiba 3D ultrasonic diagnostic apparatus
DE102007018454A1 (de) * 2006-04-20 2007-10-25 General Electric Co. System und Verfahren zum automatischen Gewinnen von Ultraschallbildebenen, basierend auf patientenspezifischen Daten
WO2009044316A1 (en) * 2007-10-03 2009-04-09 Koninklijke Philips Electronics N.V. System and method for real-time multi-slice acquisition and display of medical ultrasound images

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153528B (en) * 1984-02-02 1987-05-07 Yokogawa Medical Syst Ultrasonic phased-array receiver
JPH08107895A (ja) 1994-10-07 1996-04-30 Hitachi Medical Corp 超音波診断装置
US5722412A (en) * 1996-06-28 1998-03-03 Advanced Technology Laboratories, Inc. Hand held ultrasonic diagnostic instrument
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6231508B1 (en) * 1999-03-05 2001-05-15 Atl Ultrasound Ultrasonic diagnostic imaging system with digital video image marking
US6213944B1 (en) * 1999-03-05 2001-04-10 Atl Ultrasound, Inc. Ultrasonic diagnostic imaging system with a digital video recorder with visual controls
US6277075B1 (en) * 1999-11-26 2001-08-21 Ge Medical Systems Global Technology Company, Llc Method and apparatus for visualization of motion in ultrasound flow imaging using continuous data acquisition
US6709394B2 (en) 2000-08-17 2004-03-23 Koninklijke Philips Electronics N.V. Biplane ultrasonic imaging
US6761689B2 (en) * 2000-08-17 2004-07-13 Koninklijke Philips Electronics N.V. Biplane ultrasonic imaging
US6669641B2 (en) 2000-08-17 2003-12-30 Koninklijke Philips Electronics N.V. Method of and system for ultrasound imaging
US6755788B2 (en) 2000-08-17 2004-06-29 Koninklijke Philips Electronics N. V. Image orientation display for a three dimensional ultrasonic imaging system
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US6582367B1 (en) * 2000-09-15 2003-06-24 Koninklijke Philips Electronics N.V. 2D ultrasonic transducer array for two dimensional and three dimensional imaging
WO2002039901A1 (fr) * 2000-11-15 2002-05-23 Aloka Co., Ltd. Dispositif de diagnostic ultrasonore
JP4666899B2 (ja) * 2002-10-10 2011-04-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バイプレーン超音波撮像法
AU2003278424A1 (en) * 2002-11-06 2004-06-07 Koninklijke Philips Electronics N.V. Phased array acoustic system for 3d imaging of moving parts_____
JP4382374B2 (ja) * 2003-03-12 2009-12-09 アロカ株式会社 超音波診断装置
EP1491913B1 (en) * 2003-06-25 2006-09-27 Aloka Co. Ltd. Ultrasound diagnosis apparatus comprising a 2D transducer with variable subarrays
JP4394945B2 (ja) 2003-12-24 2010-01-06 アロカ株式会社 三次元組織移動計測装置及び超音波診断装置
US7604595B2 (en) * 2004-06-22 2009-10-20 General Electric Company Method and system for performing real time navigation of ultrasound volumetric data
US8012090B2 (en) 2004-06-22 2011-09-06 General Electric Company Method and apparatus for real time ultrasound multi-plane imaging
US20050281444A1 (en) 2004-06-22 2005-12-22 Vidar Lundberg Methods and apparatus for defining a protocol for ultrasound imaging
US7874991B2 (en) * 2006-06-23 2011-01-25 Teratech Corporation Ultrasound 3D imaging system
JP4413909B2 (ja) * 2006-10-05 2010-02-10 株式会社東芝 3次元超音波診断装置
JP2009066074A (ja) 2007-09-11 2009-04-02 Olympus Medical Systems Corp 超音波診断装置
JP2009153600A (ja) 2007-12-25 2009-07-16 Toshiba Corp 超音波診断装置、画像処理装置及びプログラム
US8172753B2 (en) * 2008-07-11 2012-05-08 General Electric Company Systems and methods for visualization of an ultrasound probe relative to an object
WO2011158136A1 (en) * 2010-06-17 2011-12-22 Koninklijke Philips Electronics N.V. Automated heart rate detection for 3d ultrasonic fetal imaging
EP3689250B1 (en) * 2011-10-17 2022-12-07 BFLY Operations, Inc. Transmissive imaging and related apparatus and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245017B1 (en) * 1998-10-30 2001-06-12 Kabushiki Kaisha Toshiba 3D ultrasonic diagnostic apparatus
DE102007018454A1 (de) * 2006-04-20 2007-10-25 General Electric Co. System und Verfahren zum automatischen Gewinnen von Ultraschallbildebenen, basierend auf patientenspezifischen Daten
WO2009044316A1 (en) * 2007-10-03 2009-04-09 Koninklijke Philips Electronics N.V. System and method for real-time multi-slice acquisition and display of medical ultrasound images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Л.В.Осипов "Ультразвуковые диагностические приборы". Москва. ВИДАР. 1999, с.с.184-197. *

Also Published As

Publication number Publication date
CN103037774B (zh) 2015-11-25
WO2012014125A1 (en) 2012-02-02
JP2013532543A (ja) 2013-08-19
US20130194890A1 (en) 2013-08-01
CN103037774A (zh) 2013-04-10
EP2598036A1 (en) 2013-06-05
US10610198B2 (en) 2020-04-07
US20200196981A1 (en) 2020-06-25
RU2013108782A (ru) 2014-09-10

Similar Documents

Publication Publication Date Title
US10410409B2 (en) Automatic positioning of standard planes for real-time fetal heart evaluation
JP5899212B2 (ja) 個別のバイプレーン画像の表示及びエクスポート
US6951543B2 (en) Automatic setup system and method for ultrasound imaging systems
JP5432426B2 (ja) 超音波システム
JP4473729B2 (ja) 時間インタリーブデータの取得によるバイプレイン超音波描出処理
RU2659021C2 (ru) Система ультразвуковой визуализации и способ ультразвуковой визуализации
JP2000135217A (ja) 3次元超音波診断装置
KR20050059078A (ko) 상호간의 평면 방위를 묘사하는 아이콘을 구비한 양면 초음파 영상 디스플레이 및 시스템
JP2007020908A (ja) 超音波診断装置及び超音波診断装置の制御プログラム
CN103582459B (zh) 超声波诊断装置
JP6227926B2 (ja) 超音波イメージング・システム
US20200196981A1 (en) Automated sweep and export of 2d ultrasound images of 3d volumes
JP2012101058A (ja) 超音波撮像のためのシステム及び方法
JP2021511172A (ja) 超音波撮像装置及び方法
JP7337806B2 (ja) 診断検査のための組織固有のプリセットを備える超音波撮像システム
JP4666899B2 (ja) バイプレーン超音波撮像法
JP7216738B2 (ja) 三次元超音波画像の提供
JP2011087759A (ja) 超音波診断装置及び画質条件更新用制御プログラム