RU2577172C2 - Пассивное шиммирование поля в1 - Google Patents

Пассивное шиммирование поля в1 Download PDF

Info

Publication number
RU2577172C2
RU2577172C2 RU2013132722/28A RU2013132722A RU2577172C2 RU 2577172 C2 RU2577172 C2 RU 2577172C2 RU 2013132722/28 A RU2013132722/28 A RU 2013132722/28A RU 2013132722 A RU2013132722 A RU 2013132722A RU 2577172 C2 RU2577172 C2 RU 2577172C2
Authority
RU
Russia
Prior art keywords
field
coil
excitation
magnetic resonance
dielectric
Prior art date
Application number
RU2013132722/28A
Other languages
English (en)
Other versions
RU2013132722A (ru
Inventor
Чжиюн ЧЖАЙ
Майкл Эндрю МОРИХ
Пол Ройстон ХАРВИ
Миха ФЮДЕРЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013132722A publication Critical patent/RU2013132722A/ru
Application granted granted Critical
Publication of RU2577172C2 publication Critical patent/RU2577172C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/246Spatial mapping of the RF magnetic field B1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Использование: для магнитно-резонансной визуализации, спектроскопии, а также для других методов ядерного магнитного резонанса. Сущность изобретения заключается в том, что катушечные элементы (18) генерируют поле возбуждения B1 в области (14) исследования, причем упомянутое поле возбуждения B1 искажается посредством размещения пациента (например, посредством эффектов длин волн). С целью улучшения однородности поля B1, между катушечными элементами и субъектом размещаются элементы (22, 24) пассивного шиммирования. В одном варианте осуществления элементы пассивного шиммирования включают в себя один или более диэлектрических стержней (55), размещенных ниже субъекта, которые не генерируют существенного сигнала протонного МР и которые имеют проницаемость, по меньшей мере, 100 и предпочтительно больше чем 500. В другом варианте осуществления на трубки (24), смежные с каждым катушечным элементом, подается диэлектрическая жидкость, причем толщина упомянутой диэлектрической жидкости между катушечным элементом и субъектом регулирует фазу поля B1, сгенерированного посредством катушечного элемента. Для достижения результата улучшенной однородности РЧ-поля активное шиммирование B1 может быть скомбинировано с элементами (22, 24) пассивного шиммирования. Технический результат: обеспечение возможности улучшения однородности возбуждения поля возбуждения B1, а также обеспечение возможности улучшения рабочего процесса МР-визуализации при высоких напряженностях полей и улучшения отношения «сигнал-шум». 2 н. и 13 з.п. ф-лы, 14 ил.

Description

Область техники, к которой относится изобретение
Настоящий документ относится к области техники магнитного резонанса. Изобретение, в частности, находит применение в отношении радиочастотных (РЧ) катушек и генерируемой от них коррекции магнитного поля. Однако изобретение также находит применение в области магнитно-резонансной визуализации, спектроскопии и других методов ядерного магнитного резонанса.
Уровень техники
Получение нагрузки от пациента искажает поле возбуждения B1. Искажение варьируется в зависимости от размера и формы субъекта, а также от рабочей радиочастоты. Это искажение становится особенно сильным свыше 3 Тесла, что имеет рабочую радиочастоту для водорода, приблизительно, в 128 МГц. Отсутствие однородности B1 вызывает наличие артефактов в результирующих изображениях или других результатах применения магнитного резонанса.
Раскрытие изобретения
Настоящий документ обеспечивает новую и улучшенную систему и способ, которые преодолевают обозначенные выше и другие проблемы.
В соответствии с одним аспектом обеспечивается магнитно-резонансная система. Элементы радиочастотной катушки размещены смежно с областью исследования с целью генерирования поля возбуждения B1 в области исследования. По меньшей мере, одно устройство шиммирования размещено в области исследования между элементами РЧ-катушки и субъектом с целью улучшения однородности в сгенерированном поле возбуждения B1. Данное устройство пассивного шиммирования имеет предварительно подготовленное положение, размеры, а также диэлектрическую проницаемость. Следует отметить, что в этом контексте область исследования включает в себя все пространство внутри РЧ-катушки. В некоторых случаях, таких как РЧ-катушка для исследования всего тела, область исследования в этом контексте является большей, чем обычный объем визуализации.
В соответствии с одним другим аспектом обеспечивается способ пассивного шиммирования поля возбуждения B1. По меньшей мере, одно устройство пассивного шиммирования размещено в области исследования, заданной внутри катушечных элементов РЧ- катушки. Элементы пассивного шиммирования улучшают однородность поля возбуждения B1. Упомянутый, по меньшей мере, один элемент пассивного шиммирования имеет предварительно подготовленное положение, размеры, а также диэлектрическую проницаемость.
Одно из преимуществ заключается в том, что улучшается однородность возбуждения B1.
Другое преимущество заключается в том, что улучшается рабочий процесс МР визуализации при высоких напряженностях полей.
Еще одно преимущество заключается в том, что улучшается отношение «сигнал-шум».
Другие дополнительные преимущества настоящего изобретения станут в полной мере понятными для специалистов в данной области техники после прочтения и осмысления приведенного ниже подробного описания.
Данное изобретение может быть выполнено в виде различных компонентов и схем расположения компонентов, а также в виде и различных этапов, и схем расположения этапов.
Краткое описание чертежей
Чертежи приведены только лишь с целью иллюстрирования предпочтительных вариантов осуществления и не должны истолковываться как ограничивающие настоящее изобретение.
Фиг.1 представляет собой схематическое изображение магнитно-резонансной системы, которая включает в себя устройства пассивного шиммирования.
Фиг.2 представляет собой одно другое схематическое изображение магнитно-резонансной системы и устройств пассивного шиммирования.
Фиг.3 иллюстрирует фантом, имеющий форму тела женщины, в квадратурной катушке типа «птичья клетка» с или без диэлектрических стержней пассивного шиммирования.
Фиг.4а-b иллюстрируют распределения B1 с различными комбинациями шиммирования с использованием квадратурной катушки типа «птичья клетка» с двумя независимыми каналами передачи/приема.
Фиг.5a и Фиг.5b иллюстрируют симметричное расположение двух стержней шиммирования, размещенных ниже фантома, и результирующее распределение поля B1 с использованием квадратурной катушки типа «птичья клетка» с двумя независимыми каналами передачи/приема.
Фиг.5c и Фиг.5d иллюстрируют одиночный стержень пассивного шиммирования, размещенный ниже фантома, и соответствующее распределение B1 с использованием квадратурной катушки типа «птичья клетка» с двумя независимыми каналами передачи/приема.
Фиг.6 иллюстрирует симметричное расположение стержней пассивного шиммирования ниже фантома, имеющего форму тела худощавого сложения, и результирующие распределения поля B1 с использованием квадратурной РЧ-катушки и без диэлектрических стержней с шиммированием B1 без использования диэлектрических стержней и шиммированием с использованием диэлектрических стержней.
Фиг.7 иллюстрирует РЧ-катушку для головы с моделью головы человека, в которой элемент пассивного шиммирования включает в себя водяной шар, и результирующее распределение B1 с использованием и без использования водяного шара.
Фиг.8 иллюстрирует способ использования элементов пассивного шиммирования.
Осуществление изобретения
Со ссылкой на Фиг.1 и Фиг.2, система 10 магнитно-резонансной (МР) визуализации включает в себя главный магнит 12, осуществляющий генерирование пространственного и однородного во времени поля B0 в, по меньшей мере, 3 Тесла и над и через область 14 исследования. Данный главный магнит может представлять собой кольцевой магнит или магнит с внутренним отверстием, или тому подобное. Градиентные катушки 16 магнитного поля, размещенные смежно с главным магнитом, служат для генерирования, вдоль выбранных осей, градиентов магнитного поля относительно магнитного поля B0 для пространственного кодирования сигналов магнитного резонанса, с целью производства градиентов поля для подавления намагниченности, или тому подобного. Градиентная катушка 16 магнитного поля может включать в себя сегменты катушки, сконфигурированные с возможностью производства градиентов магнитного поля в трех ортогональных направлениях, обычно, продольном или z направлении, перпендикулярном или x направлении и вертикальном или y направлении.
Радиочастотная (РЧ) катушка в сборе, такая как радиочастотная катушка для исследования всего тела, является размещенной смежно с областью исследования. Данная РЧ-катушка в сборе может включать в себя множество отдельных элементов 18 РЧ- катушки или может представлять собой катушку типа «птичья клетка» с множеством элементов 18, взаимно соединенных посредством структур РЧ-катушек с замыкающим кольцом. В проиллюстрированном варианте осуществления продемонстрированы восемь катушечных элементов 18. Однако также рассматривается и большее или меньшее количество катушечных элементов 18. РЧ- катушка в сборе осуществляет генерирование радиочастотных импульсов для возбуждения магнитного резонанса в ориентированных диполях субъекта. В некоторых вариантах осуществления, радиочастотная катушка 18 в сборе также служит для обнаружения сигналов магнитного резонанса, излучаемых от области визуализации. В других вариантах осуществления, для более точного, локализованного пространственного кодирования, возбуждения, а также приема сигналов магнитного резонанса, в дополнение к или вместо РЧ-катушки для исследования всего тела, обеспечиваются локальные или поверхностные РЧ-катушки (не продемонстрированы). Отдельные РЧ-катушки 18 вместе могут действовать как одна катушка, как множество независимых катушечных элементов, как матрица, такая как в системе параллельных передач, или комбинированно. Например, в ситуации, когда РЧ-катушка 18 является сконфигурированной как катушка типа «птичья клетка», в целях осуществления РЧ-шиммирования могут независимо осуществляться два режима.
В целях улучшения однородности поля B1, или поля возбуждения, в области 14 исследования распределение однородности |B1+| передающих катушек 18 определяется посредством процессора 20 шиммирования, например посредством короткого измерения перед фактической последовательностью визуализации с целью компенсации диэлектрических резонансов, возникающих в ткани пациента на высоких частотах, то есть ларморовой частоте при напряженностях постоянных полей, в частности, в 3 Тесла или более. Система 10 визуализации включает в себя одно или более устройств 22, 24 пассивного шиммирования, размещенных в области 14 исследования с целью улучшения однородности поля возбуждения.
В одном варианте осуществления, устройства пассивного шиммирования представляют собой диэлектрические стержни 22, выполненные из твердого диэлектрического материала, имеющего диэлектрическую проницаемость (εr) по меньшей мере 100. С целью оптимизации однородности поля возбуждения B1 доступными являются несколько диэлектрических стержней 22 с различной длиной, формой и диэлектрической проницаемостью. Формы включают в себя цилиндрическую, эллиптическую, прямоугольную или тому подобное. Процессор 20 шиммирования определяет количество, длину, а также положение диэлектрических стержней, назначенных к размещению в области исследования, на основе определенного распределения однородности, которое оптимизирует однородность поля возбуждения B1. Для того чтобы не прерывать рабочий процесс процедуры визуализации, стержни 22 являются размещенными, в качестве обособленных структур, на нижней стороне субъекта в области 14 исследования, или как часть опоры 19 для пациента. Стержни могут быть вручную установлены врачом в области 14 исследования или установлены автоматически посредством привода 26, такого как двигатель из неферромагнитного материала или тому подобное. Привод принимает определенное положение стержней 22 от процессора 20 шиммирования и соответствующим образом регулирует положение по осям x, y и z, а также вращение. Привод 26 может, без вмешательства пользователя, убирать один или более стержней 22 или вводить дополнительные стержни в область 14 исследования.
В одном другом варианте осуществления, форма, размер, расположение, а также диэлектрическая проницаемость стержней определяются для номинального пациента, и стержни являются неподвижно установленными. В одном другом варианте осуществления, форма, размер, расположение, а также диэлектрическая проницаемость вычисляются для множества групп или классов пациентов, таких как крупные? или страдающие ожирением, обычные или средние и мелкие.
В одном другом варианте осуществления, устройства пассивного шиммирования включают в себя трубки 24 с диэлектрической текучей средой, каждая из которых размещается смежно с соответствующим катушечным элементом 18 в промежутке между областью 14 исследования и отдельной катушкой 18. Примеры диэлектрических текучих сред включают в себя сильнолегированную воду, тяжелую воду или другую текучую среду для генерирования сигнала не протонного магнитного резонанса (МР). Объем диэлектрической текучей среды в каждой трубке 24 регулируется посредством контроллера 28 текучей среды в соответствии с распределением однородности с целью оптимизации однородности поля возбуждения B1. Резервуар 30 для текучей среды осуществляет подачу диэлектрической текучей среды к контроллеру 28 текучей среды, который осуществляет подачу текучей среды к каждой трубке 24 через посредство линий 25 подачи, проходящих через корпус гентри системы 10 визуализации. Резервуар 30 может включать в себя множество субрезервуаров, каждый из которых включает в себя диэлектрическую текучую среду с уникальной диэлектрической проницаемостью. В этой компоновке, контроллер 28 текучей среды может подавать диэлектрическую текучую среду от одного или более субрезервуаров к каждой трубке 24. Таким образом, диэлектрическая проницаемость каждой трубки может быть настроена посредством регулирования диэлектрической проницаемости текучей среды и объема текучей среды.
В аксиальном направлении, трубки 24 могут иметь одни и те же или различные длины с соответствующим катушечным элементом 18, смежным с трубкой. В одном варианте осуществления, трубки 24 включают в себя змеевидную структуру для обеспечения однородного сечения по длине трубки или однородного объема в аксиальном направлении. В одном другом варианте осуществления, каждая трубка сегментируется в аксиальном направлении. Контроллер 30 текучей среды может регулировать объем каждого сегмента с целью принятия во внимание неоднородной диэлектрической нагрузки от пациента в аксиальном направлении. Например, голова, туловище и ноги обнаруживают различную диэлектрическую нагрузку из-за размера, геометрического строения, внутренней структуры, а также плотности соответствующей анатомической области. В дополнительном варианте осуществления, каждый сегмент включает в себя змеевидную структуру для обеспечения того, чтобы каждый сегмент имел однородное сечение или объем в аксиальном направлении. В одном другом варианте осуществления, трубки 24 представляют собой или включают в себя увеличиваемые емкости или другие структуры для управления распределением жидкости между каждым катушечным элементом 18 и областью 14 визуализации. В качестве одного примера, однородная толщина жидкости может быть сформирована вокруг стороны катушечного элемента в направлении области визуализации. В качестве одного другого примера может обеспечиваться параболическое распределение.
В одном другом варианте осуществления, система 10 визуализации включает в себя как диэлектрические стержни 22, так и трубки 24 диэлектрической текучей среды для шиммирования поля возбуждения B1 в целях достижения оптимальной однородности. После анализа распределения однородности процессор 20 шиммирования определяет оптимальный размер, геометрическое строение, диэлектрическую проницаемость и положение каждого диэлектрического стержня 22, а также процессор 20 шиммирования определяет оптимальный объем и диэлектрическую проницаемость каждой трубки 24, что позволяет получать оптимальное поле возбуждения B1 для визуализации субъекта. Например, размер, геометрическое строение, диэлектрическая проницаемость и положение стержней 22 могут быть фиксированными, а жидкость в трубках 24 может быть использована для тонкой регулировки поля B1.
Как только поле возбуждения B1 оптимизируется для субъекта визуализации, осуществляется получение данных о субъекте с использованием магнитного резонанса. Субъект остается внутри области 14 исследования в том же самом положении, что и положение, когда было определено распределение однородности. Контроллер 40 сканирования осуществляет управление контроллером 42 градиентов, который побуждает градиентные катушки 16 прилагать выбранные импульсы градиентов магнитного поля к области визуализации так, как это может соответствовать выбранной магнитно-резонансной визуализации или последовательности спектроскопии. Данный контроллер 40 сканирования также осуществляет управление, по меньшей мере, одним РЧ-передатчиком 44, побуждающим РЧ-катушку в сборе генерировать возбуждение магнитного резонанса и действие импульсов B1. В параллельной системе РЧ-передатчик 44 включает в себя множество передатчиков или один передатчик с множеством каналов передачи, причем каждый канал передачи является оперативно соединенным с, по меньшей мере, одним соответствующим катушечным элементом 18 сборки. В случае РЧ-катушки типа «птичья клетка», передатчик может иметь два независимых канала с целью обеспечения двух режимов «птичьей клетки». Контроллер сканирования, согласованно с процессором шиммирования, также осуществляет управление передатчиком и контроллером градиентов с целью генерирования последовательностей шиммирования B1 и шиммированных последовательностей B1.
Контроллер сканирования также осуществляет управление РЧ- приемником 46, соединенным с РЧ-катушками 18, и/или управление назначенной катушкой приема, расположенной внутри области 14 исследования, с целью приема от них сигналов магнитного резонанса. В параллельной системе РЧ-приемник 46 включает в себя множество приемников или одиночный приемник с множеством каналов приема, причем каждый канал приема является оперативно соединенным с, по меньшей мере, одним соответствующим катушечным элементом 18 сборки. Принятые данные от приемника 46 временно сохраняются в буфере 48 данных и обрабатываются посредством процессора 50 данных с использованием магнитного резонанса. Процессор данных с использованием магнитного резонанса может выполнять различные функции, известные из уровня техники, включающие в себя реконструкцию изображений, обработку данных магнитно-резонансной спектроскопии, локализацию катетера или хирургического инструмента и тому подобное. Реконструированные изображения с использованием магнитного резонанса, показания спектроскопии, информация о местоположении хирургического инструмента, а также другие обработанные данные МР отображаются на графическом интерфейсе 52 пользователя. Данный графический интерфейс 52 пользователя также включает в себя устройство ввода пользователя, которое может использовать врач для осуществления управления контроллером 40 сканирования с целью выбора последовательностей и протоколов сканирования и тому подобного.
В одном другом варианте осуществления, система 10 визуализации представляет собой систему параллельных передач с множеством РЧ-передатчиков 44. Процессор 20 шиммирования определяет уникальный фазовый и амплитудный компонент для каждого сигнала возбуждения, генерируемого посредством отдельных РЧ-передатчиков 44 на основе проанализированного распределения однородности. В этой компоновке, поле возбуждения B1 оптимизируется посредством изменения сгенерированного поля возбуждения B1, переданного посредством отдельных катушечных элементов 18. Например, в двухканальной системе параллельных передач система 10 визуализации включает в себя два РЧ- передатчика 44, где каждый передатчик является оперативно соединенным с одной или более точками возбуждения катушечных элементов 18 или соединенным с целью осуществления двух режимов РЧ-катушки типа «птичья клетка». Процессор шиммирования определяет изменения в фазе и амплитуде сигнала возбуждения B1 для каждого канала, так что сложное поле возбуждения B1, результирующее из двух каналов, оптимизируется в целях однородности. Процессор шиммирования осуществляет управление количеством текучей среды в каждой трубке 24 с целью регулирования относительной фазы РЧ-поля, произведенной посредством сегментов катушки, ассоциированных с тем же самым передатчиком.
В одном другом варианте осуществления, система 10 визуализации включает в себя диэлектрические стержни 22, трубки 24 диэлектрической текучей среды, а также систему параллельных передач с множеством РЧ-передатчиков 44 для шиммирования поля возбуждения B1 в целях получения оптимальной однородности. После анализа распределения однородности процессор 20 шиммирования определяет оптимальный размер, геометрическое строение, диэлектрическую проницаемость, а также положение каждого диэлектрического стержня 22; оптимальный объем распределения и диэлектрическую проницаемость диэлектрической текучей среды для каждой трубки 24; и уникальный фазовый и амплитудный компоненты для каждого сигнала возбуждения, генерируемого посредством каждого из РЧ-передатчиков 44. В качестве результата, существенно улучшается однородность всего поля B1 при более высоких напряженностях поля для субъекта визуализации.
Со ссылкой на Фиг.3 и Фиг.4, проиллюстрировано улучшение однородности поля возбуждения B1 в модели временной области с конечной разностью (FDTD) для системы 10 визуализации 3 Тесла. РЧ-сборка в данном варианте осуществления представляет собой квадратурную катушку для тела (QBC) типа «птичья клетка», загруженную фантомом, имеющим форму тела женщины. Данная катушка QBC возбуждается двумя независимыми каналами передачи/приема (T/R). Со ссылкой на Фиг.4, как это видно, перпендикулярный срез фантома по центру |B1+| является относительно неоднородным. Рассматривая |B1+|-шиммирование только относительно области туловища (исключая как руки, так и груди), вариант (a) демонстрирует, что в случае стандартного квадратурного возбуждения, стандартное отклонение |B1+| (разделенное на значение среднего поля, без единиц) в области туловища составляет 0,33. При использовании двухканальной передачи стандартное отклонение |B1+| может быть уменьшено до 0,23, с улучшением на 30%, как продемонстрировано в варианте (b). Как это видно в варианте (b), шиммированное |B1+| все еще не вполне является однородным с более высоким |B1+| в верхней правой области и более низким |B1+| в нижней левой области. Отношение максимального |B1+| к минимальному |B1+| составляет 3,6 по сравнению с 7 для стандартного квадратурного возбуждения (a).
Продолжая со ссылкой на Фиг.4, в целях дополнительного улучшения однородности |B1+|, в нижнюю левую область и правую область фантома, смежного с фантомом (как отображено на Фиг.3), помещаются два диэлектрических стержня. Диаметр стержней составляет 4 см с длиной в 65 см и диэлектрической константой εr=1000. Стержни располагаются на расстоянии 31 см друг от друга. Как это видно в варианте (c), даже хотя сечение двух стержней является относительно малым по сравнению с сечением фантома человеческого тела, распределение поля |B1+| повторно распределяется по области шиммирования |B1+|. Когда проницаемость εr уменьшается до 100, как продемонстрировано в варианте (d), достигается лучшее шиммированное |B1+| с отклонением 0,19, что является на 42% лучшим, чем результат 0,33 для случая нешиммированного квадратурного возбуждения; результат также является лучшим, чем отклонение 0,23 по варианту (b), когда используется только РЧ-шиммирование. Отношение максимального |B1+| к минимальному |B1+| составляет 3,3 - лучше, чем оптимальный результат случая двухканального шиммирования, составивший 3,6 в варианте (b), без использования стержней.
Со ссылкой на Фиг.5a и Фиг.5b, в одном другом сценарии, два стержня одинаковых размеров являются расположенными на расстоянии от фантома, который может моделировать стержни 22, располагающиеся внутри стола 19 для пациента. Расстояние от двух стержней до изоцентра катушки QBC составляет 15,5 см, εr=1000 для обоих стержней 22 в данном случае, и данные два стержня 22 являются расположенными на расстоянии 31 см друг от друга. Как это видно из шиммированного |B1+| на Фиг.5b, в определенной области шиммирования |B1+| стандартное отклонение уменьшается до 0,16, на 52% меньше, чем результат случая нешиммированного квадратурного возбуждения, составивший 0,33 в варианте (a) по Фиг.4, и на 30% меньше, чем результат случая шиммированного квадратурного возбуждения, составивший 0,23 в варианте (b) по Фиг.4 без использования диэлектрических стержней. Отношение максимального |B1+| к минимальному |B1+| составляет 2,2 по сравнению с 3,6 для случая шиммирования без использования диэлектрических стержней.
Со ссылкой на Фиг.5c и Фиг.5d, когда используются локальные принимающие катушки, с целью улучшения только поля передачи |B1+|, может быть использован один диэлектрический стержень. Как продемонстрировано на Фиг.5c и Фиг.5d, в случае |B1+|, шиммированного с помощью диэлектрического стержня (εr=1000), расположенного налево от фантома, распределение |B1+| является почти идентичным распределению в случае с двумя стержнями по Фиг.5a и Фиг.5b. Исходя из модели, левый диэлектрический стержень (Фиг.5c) оказывает большее воздействие на шиммирование |B1+|, чем правый диэлектрический стержень, во время РЧ-передачи поля. С другой стороны, правый диэлектрический стержень имеет гораздо большее воздействие на шиммирование |B1+| во время приема сигнала МР.
В вышеуказанных вычислениях с использованием модели FDTD была использована модель фантома «в форме» тела женщины с аспектовым отношением 0,60 (ширина «вперед-назад» относительно ширины «вправо-влево» в центральном перпендикулярном срезе туловища). Такие же самые вычисления также повторяются и для модели фантома «в форме» тела мужчины с меньшим аспектовым отношением 0,46 (модифицированной из женской модели посредством убирания груди и уменьшения аспектового отношения). Фиг.6 демонстрирует поле |B1+| по центральному перпендикулярному срезу, исключая руки (область шиммирования). Как это видно, с добавлением диэлектрических стержней (εr=1000), однородность |B1+| также дополнительно улучшается по сравнению со случаем шиммирования без диэлектрических стержней.
С целью дальнейшей оптимизации однородности |B1+| с использованием одного или более диэлектрического(-их) стержня(-ей) 22, диаметр стержня, размер, оптимальная проницаемость εr, а также положения могут определяться через моделирование FDTD или через другие цифровые вычисления с использованием процессора 20 шиммирования. Диэлектрические стержни могут быть либо передвижными, например, используемыми внутри доступной для пациента области внутреннего отверстия, либо расположенными в постоянных положениях под столом для пациента (то есть в недоступной для пациента области внутреннего отверстия). Диэлектрические стержни могут изготавливаться из материалов без сигналов протонного МР (сильнолегированная вода для подавления сигнала протонов или керамический материал без значительной электрической проводимости). Они являются относительно малыми и могут помещаться в пространство катушки QBC.
Со ссылкой на Фиг.7, в квадратуре с использованием одиночного канала передачи с квадратурным переключателем T/R была задействована модель T/R катушки для головы в 7 Тесла. Между двумя звеньями катушки и моделью головы человека располагается один прямоугольный водяной шар с размерами 4 см × 2,5 см × 16,5 см. Также продемонстрировано вычисленное поле |B1+| в центральном перпендикулярном срезе (|B1+| является нормализованным относительно поля в центре). Как продемонстрировано, стандартное отклонение |B1+| (разделенное на среднее значение, без единиц) для стандартного случая квадратурного возбуждения составляет 0,232. С добавлением одного водяного шара оно уменьшилось до 0,225, с уменьшением неоднородности поля |B1+| на 3%. В других случаях, когда используются более чем один водяной шар, размеры и положения этих водяных шаров могут быть оптимизированы. Электропроводимость (уровень солей) также может быть оптимизирована для отдельных водяных шаров, ожидается еще большее улучшение однородности |B1+|.
Со ссылкой на Фиг.8, представлен способ шиммирования поля возбуждения B1. После того как субъект помещается в область исследования, генерируется поле B1 и его однородность анализируется (этап S100) посредством процессора 20 шиммирования. На основе проанализированного распределения однородности |B1+| процессор 20 шиммирования определяет положение, размеры, а также диэлектрическую проницаемость εr (этап S102) диэлектрических стержней 22, назначенных к размещению в области 14 исследования, и/или объем и εr (этап S104) диэлектрической текучей среды, подаваемой к каждой трубке 24; а также сигнал возбуждения (этап S106) для каждого независимого канала передачи Tx. Привод 26 выбирает и соответствующим образом размещает диэлектрические стержни 22 (этап S108). Контроллер 28 текучей среды соответствующим образом регулирует объем и εr диэлектрической текучей среды (этап S110). Факультативно, этапы S100-S110 могут итерационно повторяться в целях оптимизации однородности B1. Как только устройства пассивного шиммирования 22, 24 настраиваются в соответствии с проанализированным распределением однородности, РЧ-передатчик 44 побуждает катушечные элементы 18, ассоциированные с каждым каналом передачи, прилагать шиммированное поле возбуждения B1 (этап S112) к области 14 исследования в соответствии с сигналами возбуждения, определенными на этапе S106. Индуцированные сигналы МР принимаются (этап S114) посредством РЧ-приемника 48 через посредство катушечных элементов 18 или назначенной катушки приема в области 14 исследования и реконструируются (этап S116) в представление субъекта в форме изображения посредством процессора 50 данных. Данное представление субъекта в форме изображения отображается на графическом интерфейсе 52 пользователя.
Настоящее изобретение было описано со ссылкой на предпочтительные варианты осуществления. Специалисты смогут создать модификации и внести изменения после прочтения и изучения вышеприведенного подробного описания. Предполагается, что изобретение следует интерпретировать как охватывающее все такие модификации и изменения, пока они находятся в пределах объема прилагаемой формулы изобретения или ее эквивалентов.

Claims (15)

1. Магнитно-резонансная система (10), содержащая: радиочастотные (РЧ) катушечные элементы (18), смежные с областью (14) исследования, которые генерируют поле возбуждения В1 в области исследования в соответствии со сгенерированным сигналом возбуждения; и
по меньшей мере, одно устройство (22, 24) пассивного шиммирования, размещенное в области (14) исследования между, по меньшей мере, одной РЧ-катушкой (18) и субъектом, которое улучшает однородность в сгенерированном поле возбуждения В1, причем упомянутое, по меньшей мере, одно устройство (22, 24) пассивного шиммирования включает в себя, по меньшей мере, одно из следующего:
стержень (22), выполненный из твердого диэлектрического материала без сигнала протонов и с проницаемостью более 100, размещенный в области (14) исследования в предварительно подготовленном положении ниже субъекта с целью осуществления пассивного шиммирования сгенерированного поля возбуждения В1; и
множество трубок (24), сконфигурированных с возможностью приема варьирующегося объема диэлектрической текучей среды, размещенных смежно с множеством элементов (18) РЧ-катушки с целью осуществления пассивного шиммирования сгенерированного поля возбуждения В1.
2. Магнитно-резонансная система (10) по п. 1, дополнительно включающая в себя:
процессор (20) шиммирования, осуществляющий анализ
распределения В1 сгенерированного поля возбуждения и определяющий, по меньшей мере, одно из положения, размеров и диэлектрической проницаемости для, по меньшей мере, одного устройства (22, 24) пассивного шиммирования, улучшающего однородность распределения В1 с целью оптимизации однородности В1 поля возбуждения.
3. Магнитно-резонансная система (10) по п. 1 или 2, в которой, по меньшей мере, одно устройство пассивного шиммирования представляет собой стержень (22), выполненный из твердого диэлектрического материала.
4. Магнитно-резонансная система (10) по п. 3, дополнительно включающая в себя:
привод (26), размещающий диэлектрический стержень (22) в области (14) исследования в соответствии с распределением однородности области исследования.
5. Магнитно-резонансная система (10) по п. 3, в которой, по меньшей мере, один диэлектрический стержень (22) размещен на нижней стороне субъекта.
6. Магнитно-резонансная система (10) по п. 1, в которой, по меньшей мере, одно устройство пассивного шиммирования включает в себя множество трубок (24) с объемом диэлектрической текучей среды, размещенных смежно с элементами РЧ-катушки.
7. Магнитно-резонансная система (10) по п. 6, дополнительно включающая в себя:
резервуар (28), осуществляющий подачу диэлектрической текучей среды к каждой из трубок (22); и
контроллер (30) текучей среды, осуществляющий управление,
по меньшей мере, одним из объема диэлектрической текучей среды в каждой трубке (22) и диэлектрической проницаемости диэлектрической текучей среды, подаваемой к каждой трубке (22), в соответствии с проанализированным распределением однородности.
8. Магнитно-резонансная система (10) по п. 1, дополнительно включающая в себя:
два или более РЧ-передатчика (44), каждый из которых генерирует сигнал возбуждения для передачи через элементы (18) РЧ-катушки с целью генерирования пассивно шиммированного поля возбуждения.
9. Магнитно-резонансная система (10) по п. 1, в которой элементы (18) РЧ-катушки формируют РЧ-катушку (18) типа "птичья клетка", дополнительно включающая в себя:
два или более РЧ передатчика (44), каждый из которых генерирует сигнал возбуждения для передачи через РЧ катушку (18) типа "птичья клетка" с целью генерирования пассивно и активно шиммированного поля возбуждения.
10. Магнитно-резонансная система (10) по п. 1, дополнительно включающая в себя:
главный магнит (12), генерирующий постоянное магнитное поле в, по меньшей мере, 3 Тесла в области (14) исследования; и
по меньшей мере, один РЧ-приемник (46), принимающий индуцированные сигналы магнитного резонанса (МР) из области исследования, обусловленные сигналом возбуждения.
11. Способ пассивного шиммирования поля возбуждения В1, содержащий этап, на котором:
размещают, по меньшей мере, одно устройство (22, 24)
пассивного шиммирования в области (14) исследования, заданной внутри катушечных элементов (18) РЧ-катушки с целью улучшения однородности поля возбуждения В1, сгенерированного посредством РЧ-катушки, причем упомянутое, по меньшей мере, одно устройство (22, 24) пассивного шиммирования включает в себя, по меньшей мере, одно из следующего:
стержень (22), выполненный из твердого диэлектрического материала без сигнала протонов и с проницаемостью более 100, размещенный в области (14) исследования в предварительно подготовленном положении ниже субъекта с целью осуществления пассивного шиммирования сгенерированного поля возбуждения В1; и
множество трубок (24), сконфигурированных с возможностью приема варьирующегося объема диэлектрической текучей среды, размещенных смежно с множеством элементов (18) РЧ-катушки с целью осуществления пассивного шиммирования сгенерированного поля возбуждения В1.
12. Способ по п. 11, дополнительно включающий в себя этапы, на которых:
анализируют распределение В1 сгенерированного поля возбуждения; и
определяют, по меньшей мере, одно из положения, размеров и диэлектрической проницаемости для, по меньшей мере, одного устройства (22, 24) пассивного шиммирования, улучшающего однородность В1 сгенерированного поля возбуждения.
13. Способ по п. 11 или 12, в котором, по меньшей мере, одно устройство пассивного шиммирования включает в себя по меньшей мере один стержень (22), выполненный из твердого диэлектрического материала без значительного сигнала протонного МР и с проницаемостью более 100, предпочтительно более 500.
14. Способ по п. 13, дополнительно включающий в себя этап, на котором:
с помощью контроллера (30) осуществляют управление, по меньшей мере, объемом диэлектрической текучей среды в каждой трубке (24).
15. Способ по п. 14, дополнительно включающий в себя этап, на котором:
с помощью контроллера выбирают один из множества стержней различных размеров и/или проницаемости в соответствии с размером субъекта, назначенного к обследованию; и
с помощью контроллера располагают выбранный стержень в области исследования.
RU2013132722/28A 2010-12-16 2011-12-05 Пассивное шиммирование поля в1 RU2577172C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42362410P 2010-12-16 2010-12-16
US61/423,624 2010-12-16
PCT/IB2011/055450 WO2012080898A1 (en) 2010-12-16 2011-12-05 Passive b1 field shimming

Publications (2)

Publication Number Publication Date
RU2013132722A RU2013132722A (ru) 2015-01-27
RU2577172C2 true RU2577172C2 (ru) 2016-03-10

Family

ID=45443136

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132722/28A RU2577172C2 (ru) 2010-12-16 2011-12-05 Пассивное шиммирование поля в1

Country Status (7)

Country Link
US (1) US9689941B2 (ru)
EP (1) EP2652516B1 (ru)
JP (1) JP6085567B2 (ru)
CN (1) CN103261906B (ru)
BR (1) BR112013014672A2 (ru)
RU (1) RU2577172C2 (ru)
WO (1) WO2012080898A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686728B2 (en) * 2011-07-21 2014-04-01 Siemens Medical Solutions Usa, Inc. System for adapting an RF transmission magnetic field for image acquisition
US9297867B2 (en) * 2012-01-05 2016-03-29 General Electric Company Radio frequncy (RF) body coil and method for tuning an RF body coil for magnetic resonance imaging
JP6108953B2 (ja) * 2012-06-15 2017-04-05 キヤノン株式会社 医療用装置
DE102013009630A1 (de) 2013-06-10 2014-12-11 Forschungszentrum Jülich GmbH Verfahren zur Homogenisierung eines B1-Sendefeldes
DE102013213538B4 (de) * 2013-07-10 2018-08-16 Siemens Healthcare Gmbh Patienten-Bore mit integrierter HF-Rückflussraumformung zur Minimierung der Kopplung zwischen einer Energiekette und lokalen HF-Sendespulen
GB2524494A (en) * 2014-03-24 2015-09-30 Siemens Plc Shimming device for a magnetic resonance imaging apparatus with enhanced cooling and method for providing such a device
US11540740B2 (en) * 2014-05-20 2023-01-03 The Medical College Of Wisconsin, Inc. System and method for fabricating electromagnetic field enhancing objects for magnetic resonance imaging
EP3428673A1 (en) * 2017-07-13 2019-01-16 Koninklijke Philips N.V. Passive rf shim resonator for field homogenization of an rf antenna device for tx mode and rx mode
EP3692383A1 (en) 2017-10-06 2020-08-12 Advanced Imaging Research, Inc. Optimized infant mri system with cryocooled rf coil
WO2019126936A1 (zh) * 2017-12-25 2019-07-04 深圳先进技术研究院 一种用于磁共振成像的高介电常数衬垫新型结构
CN109953759A (zh) * 2017-12-26 2019-07-02 深圳先进技术研究院 一种胎儿磁共振成像方法及其装置
EP3511727A1 (en) * 2018-01-11 2019-07-17 Koninklijke Philips N.V. Active b1+ shimming of transmission coils
CN112816923B (zh) * 2020-12-29 2023-07-28 深圳市联影高端医疗装备创新研究院 一种超高场发射匀场线圈结构
NL2031618B1 (en) * 2022-04-19 2023-11-06 Univ Delft Tech Shim for mitigating effects of field inhomogeneities in magnetic resonance imaging and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623430A (en) * 1995-01-17 1997-04-22 General Electric Company Method for passively shimming an open magnet
US20080054902A1 (en) * 2006-09-05 2008-03-06 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Passive shimming for MR spectroscopy at high magnetic fields
RU2008102642A (ru) * 2005-06-24 2009-07-27 Конинклейке Филипс Электроникс Н.В. (Nl) Магнитно-резонансное устройство и способ
US20100277174A1 (en) * 2007-12-21 2010-11-04 Koninklijke Philips Electronics N.V. PASSIVE SHIMS TO INCREASE THE EFFECTIVE B0 and B1 UNIFORMITY IN A BODY COIL
RU2009120604A (ru) * 2006-10-31 2010-12-10 Конинклейке Филипс Электроникс Н.В. (Nl) Гибридные системы получения изображений методами позитронно-эмиссионной/магнитно-резонансной томографии

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623844A (en) 1983-07-18 1986-11-18 Albert Macovski NMR inhomogeneity compensation system
JPS6096236A (ja) * 1983-10-31 1985-05-29 株式会社日立製作所 核磁気共鳴映像装置用高周波磁場発生装置
US5017872A (en) * 1990-01-19 1991-05-21 General Electric Company NMR radio frequency coil with dielectric loading for improved field homogeneity
JP3130562B2 (ja) * 1990-06-20 2001-01-31 株式会社東芝 磁気共鳴イメージング装置
US5343183A (en) 1990-11-09 1994-08-30 Mitsubishi Denki Kabushiki Kaisha Magnetic field correction device
US5339033A (en) * 1992-08-11 1994-08-16 Alliance Pharmaceutical Corp. Method of improving fat saturation during MRI
JPH07136146A (ja) * 1993-06-24 1995-05-30 Toshiba Corp Mri装置
JPH08191809A (ja) * 1995-01-18 1996-07-30 Toshiba Corp 磁気共鳴イメージング装置用マット
EP1230559A2 (en) 1999-05-21 2002-08-14 The General Hospital Corporation Rf coil for imaging system
DE10345176B4 (de) * 2003-09-29 2007-07-26 Siemens Ag Lokalspuleneinheit eines Magnetresonanzgeräts
JP4805835B2 (ja) * 2003-10-31 2011-11-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 擬似ランダム系列を生成する方法
DE102004013422B4 (de) * 2004-03-18 2009-02-19 Siemens Ag Verfahren zur Homogenisierung eines B1-Felds, Magnetresonanzsystem und Computerprogrammprodukt
DE102004015859A1 (de) 2004-03-31 2005-10-20 Siemens Ag Verfahren zur Erzeugung von Magnetresonanzaufnahmen eines Untersuchungsobjekts, dielektrisches Element und Verwendung des dielektrischen Elements
US7196520B2 (en) 2004-10-22 2007-03-27 General Electric Company Method and apparatus for passive shimming of magnets
CN100396240C (zh) 2005-02-28 2008-06-25 西门子(中国)有限公司 频域灵敏度编码磁共振并行成像方法
US7714578B2 (en) 2005-03-16 2010-05-11 Koninklijke Philips Electronics N.V. Optical decoupling, tuning and shimming of magnetic resonance coils
US20080265889A1 (en) 2005-10-07 2008-10-30 Koninklijke Philips Electronics N. V. Multiple-Channel Transmit Magnetic Resonance
EP2016435A2 (en) * 2006-05-09 2009-01-21 Wisconsin Alumni Research Foundation Mri rf coil decoupling circuit for a transmit coil array
DE102007004812B4 (de) 2007-01-31 2012-04-26 Siemens Ag Anordnung zur Einstrahlung eines Hochfrequenzfelds
DE102007011840B4 (de) 2007-03-12 2009-01-29 Siemens Ag Feldverteilungs-Korrekturelement, Verfahren zur Erzeugung von Magnetresonanzaufnahmen eines Untersuchungsobjekts und Verwendung des Feldverteilungs-Korrekturelements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623430A (en) * 1995-01-17 1997-04-22 General Electric Company Method for passively shimming an open magnet
RU2008102642A (ru) * 2005-06-24 2009-07-27 Конинклейке Филипс Электроникс Н.В. (Nl) Магнитно-резонансное устройство и способ
US20080054902A1 (en) * 2006-09-05 2008-03-06 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Passive shimming for MR spectroscopy at high magnetic fields
RU2009120604A (ru) * 2006-10-31 2010-12-10 Конинклейке Филипс Электроникс Н.В. (Nl) Гибридные системы получения изображений методами позитронно-эмиссионной/магнитно-резонансной томографии
US20100277174A1 (en) * 2007-12-21 2010-11-04 Koninklijke Philips Electronics N.V. PASSIVE SHIMS TO INCREASE THE EFFECTIVE B0 and B1 UNIFORMITY IN A BODY COIL

Also Published As

Publication number Publication date
CN103261906A (zh) 2013-08-21
EP2652516B1 (en) 2019-11-27
EP2652516A1 (en) 2013-10-23
US9689941B2 (en) 2017-06-27
US20130278262A1 (en) 2013-10-24
RU2013132722A (ru) 2015-01-27
JP2013545573A (ja) 2013-12-26
WO2012080898A1 (en) 2012-06-21
BR112013014672A2 (pt) 2016-09-27
JP6085567B2 (ja) 2017-02-22
CN103261906B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
RU2577172C2 (ru) Пассивное шиммирование поля в1
US8125225B2 (en) Transmit profile control in MRI
US7649353B2 (en) Magnetic resonance imaging method and apparatus using a circularly polarized RF resonator detecting right and left circularly polarized components of MR signals
JP5885845B2 (ja) 磁気共鳴撮像装置および高周波磁場条件決定方法
CN106918794B (zh) 磁共振系统及成像的方法
KR102346071B1 (ko) 로우-필드, 다중-채널 이미징을 위한 시스템 및 방법
US9784807B2 (en) Method and magnetic resonance apparatus to acquire magnetic resonance data of a target region including a metal object
US20110172515A1 (en) Dynamic correction of high frequency adjustment during parallel transmission
US20120153950A1 (en) Rf shimmed mri slice excitation along a curved spoke k-space trajectory
US10162033B2 (en) Magnetic resonance imaging method and apparatus
US10151813B2 (en) Magnetic resonance apparatus and method for operation thereof with actively controllable radio-frequency coil profiles
US11194000B2 (en) Active b1+ shimming of transmission coils
RU2578763C2 (ru) Магниторезонансная визуализация с многоканальной передачей
US9229083B2 (en) Magnetic resonance method and system to generate an optimized MR image of an examination subject
US9625553B2 (en) Method and apparatus for acquiring B1 magnetic field information
WO2008100546A1 (en) Transmit profile control in mri
WO2022242593A1 (en) Permittivity enhanced magnetic resonance imaging (mri) and magnetic resonance spectroscopy (mrs)
JP2018528010A (ja) 磁気共鳴画像誘導治療のための高周波アンテナアセンブリ
JP5449935B2 (ja) 導体部材及びそれを用いた磁気共鳴撮像装置
CN106028928B (zh) 核磁共振成像装置以及rf匀场方法
US20240036127A1 (en) Quadrature RF Transmit Coil At A Vertical Main Field MRI System
JP6103965B2 (ja) 磁気共鳴イメージング装置及びrfシミング方法
US20230346247A1 (en) System and method for magnetic resonance imaging using shaped radio frequency pulses
Ilic et al. RF Magnetic Field Profiling with a Dielectric Bore Lining for Traveling Waves in a 3-T MRI Scanner: A Computational Study
Seo et al. Comparison of birdcage and phase array coil using FDTD for the B 1 homogeneity in high field MRI

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201206