RU2576271C1 - Способ получения наноразмерного порошка алюмоиттриевого граната - Google Patents

Способ получения наноразмерного порошка алюмоиттриевого граната Download PDF

Info

Publication number
RU2576271C1
RU2576271C1 RU2014152402/05A RU2014152402A RU2576271C1 RU 2576271 C1 RU2576271 C1 RU 2576271C1 RU 2014152402/05 A RU2014152402/05 A RU 2014152402/05A RU 2014152402 A RU2014152402 A RU 2014152402A RU 2576271 C1 RU2576271 C1 RU 2576271C1
Authority
RU
Russia
Prior art keywords
iii
yttrium
solution
aluminum
salts
Prior art date
Application number
RU2014152402/05A
Other languages
English (en)
Inventor
Геннадий Леонидович Пашков
Светлана Васильевна Сайкова
Марина Васильевна Пантелеева
Елена Витальевна Линок
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority to RU2014152402/05A priority Critical patent/RU2576271C1/ru
Application granted granted Critical
Publication of RU2576271C1 publication Critical patent/RU2576271C1/ru

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики. Способ получения наноразмерного порошка алюмоиттриевого граната включает приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5. Сначала реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 20 мин, затем добавляют раствор солей алюминия (III). Из полученного раствора осаждают продукт-прекурсор, отделяют его от раствора, промывают водой, сушат и обжигают при температуре 900°С. Ионообменный способ обеспечивает получение наноразмерного порошка алюмоиттриевого граната, не содержащего катионов осадителя, без применения агрессивных сред и давлений. 3 ил., 2 пр.

Description

Изобретение относится к способу получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики.
Алюмоиттриевый гранат представляет собой сложный оксид иттрия и алюминия с химической формулой Y3Al5O12 и структурой граната.
Известен способ получения алюмоиттриевого граната [Авторское свидетельство 544614, C01F 17/00, УДК 546.641, опубл. 30.01.77, Бюлл. №4], в котором в качестве исходных компонентов использовали безводные хлориды алюминия и иттрия и хлориды щелочных металлов, которые предварительно расплавляли при температуре 750-950°С. Для приготовления алюмоиттриевого граната состава Y3Al5O12 плавы 46 г хлоралюминатов KAlCl4 (NaAlCl4) щелочных металлов и 54 г хлориттратов K3YCl6 (NaYCl6) смешивали и нагревали в корундовом реакторе до температуры 750-950°С и в полученный расплав подавали газообразный кислород, скорость подачи которого составляет 10-15 л/ч на 100 г расплава. В ходе реакции в расплаве образовывались тонкодисперсные частицы алюмоиттриевого граната и выделялось большое количество газообразного хлора. Затем расплав охлаждали, промывали водой от солей, отфильтровывали и просушивали при температуре 120°С. Получали тонкодисперсный порошок алюмоиттриевого граната белого цвета высокой степени чистоты.
К недостаткам данного способа можно отнести использование дополнительной стадии расплавления исходных веществ, а также выделение газообразного хлора в ходе реакции.
Известен способ получения алюмоиттриевого граната [патент RU №2137715, C01F 17/00, С01В 13/32, C01G 49/00, С30В 29/22, С30В 29/28, опубл. 20.09.1999], в соответствии с которым оксиды иттрия Y2O3 и железа Al2O3, взятые в молярном отношении (3:5), перемешивали в изопропаноле в течение 10 мин под действием ультразвука и после удаления изопропанола с помощью испарителя и вакуумной сушилки обжигали в кварцевом муфеле при температуре 1100°С в течение 60 минут в атмосфере хлористого водорода. Полученный продукт, по данным РФА, представлял собой чистую фазу иттрий-алюминиевого граната с размером частиц 52 мкм.
К недостаткам данного способа можно отнести использование органического растворителя, который далее нужно отгонять; необходимость применения кварцевого муфеля из-за использования хлороводорода на стадии обжига, а также высокие температуры обжига.
Известен также способ получения алюмоиттриевого граната золь-гель методом [Ramanujam P.A comparative study of the synthesis of nanocrystalline yttrium aluminium garnet using sol-gel and co-precipitation methods / P. Ramanujam, B. Vaidhynatan, J. Binner, A. Anshuman, C. Spacie // Ceramics International. - 2014. - №40. - P. 4179-4186]. Синтез проводили следующим образом: смешали нитратные водные растворы иттрия (0,6 М), алюминия (1 М) и лимонную кислоту (1 М) и нагревали на масляной бане при температуре 90°С в течение 24 ч. Полученный гель высушивали при 100°С 24 ч и обжигали при 900-1000°С 1 ч. Размер частиц составил 30-60 нм. Согласно данным рентгенофазного анализа чистая фаза граната Y3Al5O12 получается при 1000°С.
Недостатком данного способа является длительное время контакта фаз, а также необходимость отмывки конечного продукта от анионов и катионов.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения алюмоиттриевого граната, легированного редкоземельными элементами, методом соосаждения [патент RU №2503754, С30В 29/28, C09K 11/80]. В качестве исходных веществ используют нитраты алюминия, иттрия и редкоземельных элементов (с общей концентрацией ионов металла 1 моль/л), а в качестве осадителя - гидрокарбонат аммония (2 моль/л), содержащий фторид аммония (в количестве 0,1-5% атомов фтора относительно количества осадителя). Смесь водных растворов нитратов алюминия, иттрия и редкоземельного элемента заливают в капельную воронку и приливают ее к осадителю со скоростью 60 мл/мин при перемешивании 300-500 об/мин. Полученный осадок отфильтровывают, промывают водой, сушат при температуре 100-150°С в течение 8-12 часов, обжигают при температуре 1100°С 5 часов.
К недостаткам данного способа можно отнести загрязнение полученного осадка анионами исходной соли и катионами осадителя.
Техническим результатом заявляемого изобретения является разработка анионообменного способа получения алюмоиттриевого граната, являющегося достаточно простым, не предполагающего применения агрессивных сред и давлений.
Технический результат достигается тем, что в способе получения наноразмерного порошка алюмоиттриевого граната, включающем приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5, осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, который приводят сначала в контакт с раствором иттрия (III), а затем с раствором алюминия (III), обжиг проводят при температуре не менее 900°С.
Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».
Изобретение поясняется чертежами. На фиг. 1 представлен ИК-спектр алюмоиттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг. 2 показаны рентгеновские спектры алюмоиттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг. 3 представлена микрофотография алюмоиттриевого граната, полученного из хлоридного раствора (а) и нитратного раствора (б).
Необходимость создания настоящего изобретения обусловлена тем, что при анионообменном синтезе, проводимом из смеси солей, образуются прекурсоры, обладающие высокой активностью, поэтому формирование сложных оксидов протекает при более низкой температуре. Поскольку данный способ позволяет получать прекурсоры состава, близкого к стехиометрическому, при термообработке формируется однофазный материал с узким распределением частиц по размерам.
При создании заявленного изобретения были использованы гелевые и пористые сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом. Поэтому выбор сильноосновного анионита АВ-17-8 является предпочтительным.
Заявляемый способ осуществляется следующим образом.
Переводят анионит АВ-17-8 (сильноосновной анионит с полистирольной матрицей, содержащий четвертичные аммониевые основания - N+(СН3)3 (ГОСТ 20301-74)) в ОН-форму, осуществляют контакт анионита с раствором солей иттрия (III) и алюминия (III), отделение и промывку осадка, прокаливание.
Перевод анионита в ОН-форму проводят, заливая исходный АВ-17-8 в хлоридной форме 1 М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 3 раз, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°С.
Массу анионита, необходимую для синтеза, рассчитывают по формуле:
Figure 00000001
где CY, CAl - концентрация исходных растворов иттрия (III) и алюминия (III), М; VY, VAl - объем исходных растворов, мл; СОЕ - статическая обменная емкость анионита в OH-форме, ммоль-экв·г-1.
Рассчитанное количество анионита, выступающего в качестве реагента-осадителя, приводят в контакт с 19 мл 0,24 М раствора иттрия (III). Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем в систему добавляют 31 мл 0,24 М раствора алюминия (III) и перемешивают еще 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Осадок (прекурсор) после промывания водой сушат при температуре 100°С. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.
Пример 1. Получение наноразмерного порошка алюмоиттриевого граната из хлоридных растворов иттрия (III) и железа (III) при температуре обжига 900°С.
Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора YCl3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем в систему добавляют 31 мл 0,24 М раствора AlCl3 и оставляют контактировать еще 40 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.
На фиг. 1а представлен ИК-спектр продукта. В спектре активны семь колебательных мод при 788, 722, 689, 567, 532, 522, 463 и 432 см-1, относящиеся к связям Al-O и Y-O и подтверждающие формирование структуры алюмоиттриевого граната. Также на спектре отсутствуют полосы поглощения, характерные для анионов исходной соли.
На фиг. 2а представлен рентгеновский спектр продукта, обожженного при 900°С. Основные пики на рентгенограмме 4,88, 4,254, 3,22, 2,90, 2,69, 2,39, 1,663 характерны для кубической структуры граната.
На фиг. 3а представлена электронная микрофотография алюмоиттриевого граната, полученного при 900°С. Видны крупные агломераты, близкие к сферической форме, порядка 326 нм.
Пример 2. Получение алюмоиттриевого граната из нитратных растворов иттрия (III) и алюминия (III) при температуре обжига 900°С.
Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора Y(NO3)3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем добавляют 31 мл 0,24 М раствора Al(NO3)3 и оставляют контактировать еще 40 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.
На фиг. 1б представлен ИК-спектр продукта. В спектре активны семь колебательных мод при 788, 722, 689, 567, 532, 522, 463 и 432 см-1, относящиеся к связям Al-O и Y-O и подтверждающие формирование структуры алюмоиттриевого граната. Также на спектре отсутствуют полосы поглощения, характерные для анионов исходной соли.
На фиг. 2б представлен рентгеновский спектр продукта, обожженного при 900°С. Основные пики на рентгенограмме 4,88, 4,254, 3,22, 2,90, 2,69, 2,39, 1,663 характерны для кубической структуры граната.
На фиг. 3б представлена электронная микрофотография алюмоиттриевого граната, полученного при 900°С. Видны крупные агломераты, близкие к сферической форме, порядка 300 нм.
Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред и давлений. Используя данное техническое решение, можно добиться получения продукта, не содержащего катионов осадителя, что освобождает в дальнейшем от необходимости длительной промывки полученного осадка. Кроме того, формирование структуры граната происходит при более низкой температуре. Также, предложенный анионообменный метод синтеза алюмоиттриевого граната приводит к образованию высокодисперсного продукта с воспроизводимыми физико-химическими свойствами.

Claims (1)

  1. Способ получения наноразмерного порошка алюмоиттриевого граната, включающий приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5, приведение растворов в контакт, осаждение из полученного раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг, отличающийся тем, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, предварительно приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 20 мин, а затем в систему добавляют раствор солей алюминия (III), при этом обжиг проводят при температуре не менее 900°С.
RU2014152402/05A 2014-12-23 2014-12-23 Способ получения наноразмерного порошка алюмоиттриевого граната RU2576271C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014152402/05A RU2576271C1 (ru) 2014-12-23 2014-12-23 Способ получения наноразмерного порошка алюмоиттриевого граната

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014152402/05A RU2576271C1 (ru) 2014-12-23 2014-12-23 Способ получения наноразмерного порошка алюмоиттриевого граната

Publications (1)

Publication Number Publication Date
RU2576271C1 true RU2576271C1 (ru) 2016-02-27

Family

ID=55435750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152402/05A RU2576271C1 (ru) 2014-12-23 2014-12-23 Способ получения наноразмерного порошка алюмоиттриевого граната

Country Status (1)

Country Link
RU (1) RU2576271C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721548C1 (ru) * 2019-06-24 2020-05-20 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Комплексный способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701722A (zh) * 2012-02-13 2012-10-03 中国科学院上海硅酸盐研究所 分步沉淀法制备yag纳米粉体的方法
RU2503754C1 (ru) * 2012-08-06 2014-01-10 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации Способ получения алюмоиттриевого граната, легированного редкоземельными элементами
RU2509625C1 (ru) * 2012-12-28 2014-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ получения наноразмерного порошка железоиттриевого граната
CN103771481A (zh) * 2013-10-30 2014-05-07 四川大学 一种钇铝石榴石纳米粉体的制备方法
CN104045103A (zh) * 2014-06-24 2014-09-17 中国工程物理研究院化工材料研究所 钇铝石榴石纳米粉体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701722A (zh) * 2012-02-13 2012-10-03 中国科学院上海硅酸盐研究所 分步沉淀法制备yag纳米粉体的方法
RU2503754C1 (ru) * 2012-08-06 2014-01-10 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации Способ получения алюмоиттриевого граната, легированного редкоземельными элементами
RU2509625C1 (ru) * 2012-12-28 2014-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ получения наноразмерного порошка железоиттриевого граната
CN103771481A (zh) * 2013-10-30 2014-05-07 四川大学 一种钇铝石榴石纳米粉体的制备方法
CN104045103A (zh) * 2014-06-24 2014-09-17 中国工程物理研究院化工材料研究所 钇铝石榴石纳米粉体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721548C1 (ru) * 2019-06-24 2020-05-20 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Комплексный способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Similar Documents

Publication Publication Date Title
Xu et al. Preparation and characterizations of tetragonal barium titanate powders by hydrothermal method
JPH0665609B2 (ja) 蓚酸稀土類アンモニウム複塩の製造方法及びそれらの稀土類酸化物製造への利用
CN106747475A (zh) 一种低钠镁铝尖晶石微粉的制备方法
JP2002255515A (ja) 金属酸化物微粒子の製造方法
JP2012504094A (ja) 酸化ジルコニウムの粉末
Wang et al. Luminescent metastable Y 2 WO 6: Ln3+ (Ln= Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly
Rahmani et al. The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals
Tang et al. Synthesis and characterization of Gd 2 Zr 2 O 7 defect-fluorite oxide nanoparticles via a homogeneous precipitation-solvothermal method
CN104556167B (zh) 一种制备片状氧化铝粉末的方法
JP2001524923A (ja) アニオン挿入ハイドロタルサイトの単純な製造方法
RU2689721C1 (ru) Способ получения высокостехиометричных наноразмерных материалов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов
JP2004517020A (ja) 微粉の形態のジルコニア、ヒドロオキシ炭酸ジルコニア及びそれらの製造方法
RU2576271C1 (ru) Способ получения наноразмерного порошка алюмоиттриевого граната
Huang et al. Malate-aided selective crystallization and luminescence comparison of tetragonal and monoclinic LaVO 4: Eu nanocrystals
JP3906352B2 (ja) Yag透明焼結体の製造方法
CN111422892A (zh) 一种立方状γ-AlOOH前驱体、Na-β″-Al2O3固体电解质粉体及其制备方法
Settu Characterisation of MgO–ZrO2 precursor powders prepared by in-situ peptisation of coprecipitated oxalate gel
JP2012504093A (ja) ジルコニウム水和物の粉末
RU2649443C1 (ru) Способ получения субмикронных порошков феррита кобальта (ii)
RU2509625C1 (ru) Способ получения наноразмерного порошка железоиттриевого граната
JP2002020122A (ja) ガリウム化合物粉末、酸化ガリウム粉末及びこれらの製造方法
JPS60166222A (ja) 希土類元素酸化物微粉末の製造方法
Srisombat et al. Chemical synthesis of magnesium niobate powders
RU2721548C1 (ru) Комплексный способ получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов
US20130183527A1 (en) Process for obtaining nanocrystalline corundum from natural or synthetic alums

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191224