RU2575846C1 - Способы и установки для получения сжиженного природного газа - Google Patents

Способы и установки для получения сжиженного природного газа Download PDF

Info

Publication number
RU2575846C1
RU2575846C1 RU2014148137/04A RU2014148137A RU2575846C1 RU 2575846 C1 RU2575846 C1 RU 2575846C1 RU 2014148137/04 A RU2014148137/04 A RU 2014148137/04A RU 2014148137 A RU2014148137 A RU 2014148137A RU 2575846 C1 RU2575846 C1 RU 2575846C1
Authority
RU
Russia
Prior art keywords
adsorbent
natural gas
hydrocarbons
contacting
depleted
Prior art date
Application number
RU2014148137/04A
Other languages
English (en)
Inventor
Лубо ЧЖОУ
Шейн-Джер ДУН
Брэдли П. РАССЕЛЛ
Генри РАСТЕЛЛИ
Original Assignee
Юоп Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юоп Ллк filed Critical Юоп Ллк
Application granted granted Critical
Publication of RU2575846C1 publication Critical patent/RU2575846C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • F25J1/0255Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Предложены способ и установка получения сжиженного природного газа из подаваемого природного газа, содержащего углеводороды C5-C7 и углеводороды C8 или выше. Причем указанный способ включает стадии: контактирования первого адсорбента, который предпочтительно адсорбирует углеводороды C8 или выше, с подаваемым природным газом, для получения обедненного C8 потока природного газа; контактирования второго адсорбента, отличающегося от первого адсорбента и предпочтительно адсорбирующего углеводороды C5-C7, с обедненным C8 потоком природного газа, для получения обедненного C5-C8 потока природного газа, при этом второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент; и сжижения обедненного C5-C8 потока природного газа в ступени сжижения. Использование настоящего изобретения позволяет избежать чрезмерной регенерации адсорбентов. 2 н. и 8 з.п. ф-лы, 2 табл., 5 ил.

Description

Притязание на приоритет предшествующей национальной заявки
Данная заявка испрашивает приоритет на основании заявки US №13/461046 от 1 мая 2012 года.
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к способам получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды С5-С7 и углеводороды C8 или выше. В частности, настоящее изобретение относится к способам адсорбции углеводородов C8 или выше и углеводородов C5-C7, таких как неопентан, из подаваемого природного газа перед сжижением подаваемого природного газа.
Уровень техники
Природный газ, который преимущественно включает в себя метан, в последние годы превратился в жизнеспособный альтернативный нефти источник энергии, особенно в Соединенных Штатах, в связи с резким увеличением доказанных запасов по всему миру и внутри страны и за счет стремления к повышению энергонезависимости. Однако многие доказанные запасы природного газа характеризуются как имеющие пониженное качество в связи с наличием в них соединений, отличных от метана. Тогда как высококачественные запасы природного газа могут нуждаться в меньшей переработке для коммерческой реализации, запасы природного газа пониженного качества обычно являются более дешевыми источниками природного газа. В дополнение к этому, запасы природного газа пониженного качества обеспечивают возможности экономии затрат, по мере того как разрабатываются более эффективные способы переработки природного газа из запасов для коммерческой реализации.
Одна из причин переработки природного газа для коммерческой реализации включает сжижение природного газа, которое обеспечивает простоту хранения и транспортировки, и в результате которого объем природного газа может быть уменьшен до 600 раз. Высококачественные запасы природного газа могут быть сжижены относительно легко. Однако остаются трудности с сжижением природного газа из запасов природного газа пониженного качества из-за присутствия соединений, отличных от метана. В частности, в запасах природного газа пониженного качества могут присутствовать соединения, которые замерзают при более высоких температурах, чем температура кипения метана, и которые могут замерзать во время сжижения природного газа, тем самым вызывая образование пробок и закупорку в трубах во время сжижения. Примеры соединений, которые могут присутствовать в природном газе и которые могут замерзать при сжижении, включают бензол, толуол, ксилол, циклогексан и неопентан. Неопентан особенно проблематичен из-за его высокой температуры замерзания (-17°С), которая в большинстве случаев будет приводить к замерзанию при сжижении природного газа, и из-за его более низкой молекулярной массы и уникальной сферической молекулярной структуры по сравнению с бензолом, толуолом и ксилолом, что делает отделение неопентана от природного газа более сложным, чем бензола, толуола и ксилола.
Для селективного удаления соединений из природного газа при подготовке к сжижению были разработаны способы адсорбции. Адсорбция обычно включает накопление молекул на поверхности адсорбента. Например, силикагели, алюмосиликатные гели, цеолитные молекулярные сита и активированный уголь представляют собой известные адсорбенты для адсорбции различных соединений из природного газа. В связи с относительной легкостью регенерации по сравнению с другими адсорбентами, силикагели и алюмосиликатные гели получили широкое применение для обеднения природного газа различными углеводородами, такими как бензол, толуол, ксилол и другими углеводородами, имеющими более 8 атомов углерода. Тем не менее, для уменьшения до желаемых концентраций в природном газе определенных углеводородов, таких как углеводороды C5-C7, в том числе гептаны, циклогексаны, бензол и неопентан, как правило, требуется, чтобы слои адсорбента, содержащие силикагели и алюмосиликатные гели, имели больший объем, чем был бы необходим в остальных случаях для обеднения природного газа одними только углеводородами C8 или выше.
Несмотря на преимущества, связанные с адсорбцией соединений из природного газа с помощью силикагелей и алюмосиликатных гелей, желательно максимально увеличить эффективность адсорбции углеводородов C8 или выше в дополнение к максимальному увеличению эффективности адсорбции углеводородов C5-C7, особенно адсорбции неопентана, циклогексана, бензола и гептана из природного газа, для приведения к минимуму концентрации указанных выше углеводородов в подаваемом природном газе, в допустимые для сжижения диапазоны. Желательно также привести к минимуму объем слоя адсорбента, одновременно избегая чрезмерной регенерации адсорбентов, которые используются в слоях адсорбента.
Краткое изложение сущности изобретения
Предложены способы и установки для получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды С8 или выше. В варианте осуществления способ получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды C8 или выше, включает осуществление предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа по сравнению с адсорбцией углеводородов, имеющих менее 8 атомов углерода, для получения обедненного C8 потока природного газа. Способ продолжается осуществлением предпочтительной адсорбции углеводородов C5-C7 из обедненного C8 потока природного газа по сравнению с адсорбцией углеводородов, имеющих менее 5 атомов углерода, с образованием обедненного C5-C8 потока природного газа. Углеводороды C5-C7 предпочтительно адсорбируются с более высокой селективностью и емкостью, чем при адсорбции углеводородов C5-C7 в ходе предпочтительной адсорбции углеводородов C8 или выше. Обедненный C5-C8 поток природного газа затем сжижается.
Другой вариант осуществления способа получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды C8 или выше, включает в себя контактирование первого адсорбента, который предпочтительно адсорбирует углеводороды C8 или выше, с подаваемым природным газом, для получения обедненного C8 потока природного газа. Способ продолжается контактированием второго адсорбента, который отличается от первого адсорбента и который предпочтительно адсорбирует углеводороды C5-C7, с обедненным C8 потоком природного газа, для получения обедненного C5-C8 потока природного газа. Второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент. Третий адсорбент, который предпочтительно адсорбирует остаточную воду, также приводится в контакт с обедненным C8 потоком природного газа. Обедненный C5-C8 поток природного газа далее сжижается в ступени сжижения.
Вариант осуществления установки для получения сжиженного природного газа из подаваемого природного газа включает первый слой адсорбента, который содержит первый адсорбент. Первый адсорбент предпочтительно адсорбирует углеводороды C8 или выше по сравнению с углеводородами, имеющими менее 8 атомов углерода. Установка также содержит второй слой адсорбента, находящийся ниже по потоку от первого слоя адсорбента. Второй слой адсорбента содержит второй адсорбент, который отличается от первого адсорбента и который предпочтительно адсорбирует углеводороды C5-C7 по сравнению с углеводородами, имеющими менее 5 атомов углерода. Второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент. Установка также включает в себя ступень сжижения, которая находится ниже по потоку от второго слоя адсорбента.
Краткое описание чертежей
Настоящее изобретение будет в дальнейшем описано вместе со следующими чертежами, где одинаковые позиции обозначают одинаковые элементы, и где:
на фиг. 1 представлена принципиальная схема установки, применяющей иллюстративный вариант осуществления способа получения сжиженного природного газа, при этом установка включает в себя блок многослойной адсорбции;
на фиг. 2 представлена принципиальная схема другого варианта осуществления установки, применяющей другой иллюстративный вариант осуществления способа получения сжиженного природного газа, при этом установка включает в себя другой вариант осуществления блока многослойной адсорбции;
на фиг. 3 представлен график, показывающий концентрацию в слое для углеводородов C6 и воды как функцию расстояния по оси вдоль блока многослойной адсорбции, показанного на фиг. 1, полученный с помощью моделирования Aspen Adsim™;
на фиг.4 представлен график, показывающий концентрацию в слое для углеводородов C5 и углеводородов C7 как функцию расстояния по оси вдоль блока многослойной адсорбции, показанного на фиг. 1, полученный с помощью моделирования Aspen Adsim™; и
на фиг. 5 представлен график, показывающий концентрацию в слое для неопентана и C8 углеводородов как функцию расстояния по оси вдоль блока многослойной адсорбции, показанного на фиг. 1, полученный с помощью моделирования Aspen Adsim™.
Подробное описание
Нижеследующее подробное описание носит чисто иллюстративный характер и не имеет целью ограничить изобретение или применение и использование изобретения. Кроме того, не существует намерения быть связанным какой-либо теорией, представленной в предыдущем описании уровня техники или в нижеследующем подробном описании.
Предложены способы получения сжиженного природного газа из подаваемого природного газа, а также установки для получения сжиженного природного газа. Способы применяются для получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды C8 или выше, которые могут присутствовать в запасах природного газа. Способы включают в себя осуществление сначала предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа по сравнению с углеводородами, имеющими менее 8 атомов углерода, с получением обедненного C8 потока природного газа. Согласно изложенному в данном описании, «предпочтительная адсорбция» означает, что указанные соединения адсорбируются в более высоких равновесных количествах по сравнению с другими соединениями, хотя непредпочтительные соединения также могут адсорбироваться в небольших количествах. Кроме того, согласно изложенному в данном описании, «обедненный» означает, что большая часть указанных соединений удалена из подаваемого природного газа, и содержания указанных соединений после удаления могут быть понижены до следовых количеств, не более 100 частей на миллион, как, например, не более 10 частей на миллион, по объему, относительно общего объема подаваемого природного газа. Способ продолжается осуществлением предпочтительной адсорбции углеводородов C5-C7 из обедненного C8 потока природного газа по сравнению с углеводородами, имеющими менее 5 атомов углерода, с образованием обедненного C5-C8 потока природного газа. Углеводороды C5-C7 предпочтительно адсорбируются для уменьшения содержаний неопентана, циклогексана, бензола и гептанов в допустимые для сжижения диапазоны, поскольку эти углеводороды особенно склонны к замерзанию при сжижении, и другие углеводороды C5 и C6, которые не особенно склонны к замерзанию при сжижении, попутно удаляются вместе с неопентаном, циклогексаном, бензолом и гептанами. Углеводороды C5-C7 также предпочтительно адсорбируются с более высокой селективностью и емкостью, чем при адсорбции углеводородов C5-C7 во время предпочтительной адсорбции углеводородов C8 или выше. Согласно изложенному в данном описании, «селективность» относится к эффективности адсорбента в адсорбции определенных соединений из газового потока и уменьшению концентрации этих соединений в газовом потоке. Также согласно изложенному в настоящем описании, «емкость» относится к количеству целевых углеводородов, которые могут быть адсорбированы адсорбентом на единицу массы адсорбента. Способы, описанные в данном описании, позволяют максимально увеличить эффективность адсорбции углеводородов C8 или выше в дополнение к максимально увеличенной эффективности адсорбции углеводородов C5-C7 из природного газа, чтобы таким образом привести к минимуму концентрацию неопентана, циклогексана, бензола, гептанов, и углеводородов C8 или выше в подаваемом природном газе, в допустимые для сжижения диапазоны. В частности, с помощью осуществления сначала предпочтительной адсорбции углеводородов С8 или выше, углеводороды C5-C7 могут быть предпочтительно адсорбированы с помощью адсорбентов, которые более селективны и имеют более высокую емкость адсорбции углеводородов C5-C7, чем адсорбенты, которые используются для предпочтительной адсорбции углеводородов C8 или выше, но которые иначе потребуют избыточной регенерации в случае воздействия высоких концентраций углеводородов C8 или выше. Поскольку углеводороды C8 или выше предпочтительно адсорбируются с получением обедненного C8 потока природного газа перед осуществлением предпочтительной адсорбции углеводородов C5-C7 из обедненного C8 потока природного газа, избыточная регенерация адсорбента, использованного для осуществления предпочтительной адсорбции углеводородов C5-C7, не является проблемой, что позволяет применять адсорбенты, которые более селективны и имеют более высокую емкость адсорбции углеводородов C5-C7. В результате, общие объемы слоев адсорбента могут быть сведены к минимуму при одновременном продолжении уменьшения концентраций углеводородов С8 или выше и неопентана, циклогексана, бензола и гептанов в подаваемом природном газе до концентраций в допустимых для сжижения диапазонах.
Углеводороды C5-C7, которые могут присутствовать в подаваемом природном газе, включают без ограничения различные формы пентана, в том числе и-пентан, н-пентан и неопентан; различные формы гексана, такие как н-гексан и циклогексан; бензол; н-гептан; толуол; и их сочетания. Примеры углеводородов C8 или выше, которые могут присутствовать в подаваемом природном газе, включают без ограничения н-октан; различные формы ксилола, такие как о-ксилол; н-нонан; н-декан; и их сочетания. В одном конкретном варианте осуществления в подаваемом природном газе присутствует неопентан. В частности, неопентан, циклогексан, бензол, гептаны и углеводороды C8 или выше могут присутствовать в подаваемом природном газе в концентрациях, которые могут представлять проблему при сжижении подаваемого природного газа из-за замерзания указанных выше углеводородов. Например, указанные выше углеводороды могут присутствовать в количествах свыше 100 частей на миллион по объему (ppmv), например от 100 до 1000 ppmv, что создает трудности, если данные содержания не будут уменьшены до 100 ppmv или менее. В качестве одного конкретного примера, неопентан может присутствовать в подаваемом природном газе в количестве от 10 до 200 ppmv, как, например, от 50 до 150 ppmv, что вызовет затруднения при сжижении подаваемого природного газа, если содержания не будут снижены до 2 ppmv или менее. Подаваемый природный газ также содержит метан, который присутствует в количествах более 50 об.%, таких как от 80 до 99,8 об.%, или от 95 до 99,5 об.%, или от 99,0 до 99,5 об.%, исходя из общего объема подаваемого природного газа.
Иллюстративный вариант осуществления способа получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды C8 или выше, будет теперь рассмотрен со ссылкой на приводимую в качестве примера установку 10 для получения сжиженного природного газа 24, как показано на фиг. 1. Как видно из фиг. 1, установка 10 данного варианта осуществления включает в себя первый слой 12 адсорбента и второй слой 14 адсорбента, который находится после первого слоя 12 адсорбента. Первый слой 12 адсорбента включает в себя первый адсорбент 13, и второй слой 14 адсорбента включает в себя второй адсорбент 15. Как показано на фиг. 1, первый слой 12 адсорбента и второй слой 14 адсорбента предусмотрены в блоке 16 многослойной адсорбции. Тем не менее, хотя это и не показано, необходимо иметь в виду, что первый слой адсорбента и второй слой адсорбента могут быть предусмотрены в независимых блоках.
Способ включает в себя осуществление предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа по сравнению с углеводородами, имеющими менее 8 атомов углерода, с получением обедненного C8 потока природного газа. Согласно приводимому в качестве примера способу, осуществляемому в установке 10 фиг. 1, углеводороды C8 или выше предпочтительно адсорбируются из подаваемого природного газа 20 при контактировании первого адсорбента 13, который предпочтительно адсорбирует углеводороды C8 или выше, с подаваемым природным газом 20, с получением обедненного C8 потока 26 природного газа. В данном варианте осуществления для контактирования первого адсорбента 13 с подаваемым природным газом 20 подаваемый природный газ 20 вводится в первый слой 12 адсорбента блока 16 многослойной адсорбции фиг. 1 с получением обедненного C8 потока 26 природного газа.
Первый адсорбент 13 предпочтительно адсорбирует углеводороды C8 или выше по сравнению с адсорбцией углеводородов, имеющих менее 8 атомов углерода. Первый адсорбент 13 также может предпочтительно адсорбировать воду в той степени, в которой вода может присутствовать в подаваемом природном газе 20. В некоторых случаях, как описано более подробно ниже, подаваемый природный газ 20 может быть насыщен водой. Однако присутствие воды в подаваемом природном газе 20 является необязательным, и в той степени, в которой вода присутствует, первый адсорбент 13 может предпочтительно адсорбировать большую часть воды из подаваемого природного газа 20 вместе с углеводородами C8 или выше.
Приводимые в качестве примера первые адсорбенты, которые предпочтительно адсорбируют углеводороды C8 или выше по сравнению с углеводородами, имеющими менее 8 атомов углерода, известны в области техники и включают в себя силикагели и алюмосиликатные гели, которые имеют средний размер пор (т.е. диаметр) по меньшей мере 10 Ангстрем, такой как от 10 до 100 Ангстрем или от 10 до 20 Ангстрем. Силикагели известны в области техники и обычно относятся к некристаллическим формам кремнезема, хотя силикагели, как правило, являются твердыми. Силикагели обычно содержат множество сферических микрочастиц, изготовленных из коллоидного кремнезема. Из-за сравнительно большого среднего размера пор силикагели легко адсорбируют углеводороды C8 или выше и также легко адсорбируют воду (если она содержится в подаваемом природном газе 20). Также из-за относительно большого размера пор и химического состава силикагелей и алюмосиликатных гелей регенерация силикагелей и алюмосиликатных гелей для десорбции с их поверхности углеводородов C8 или выше является менее энергоемкой, чем для других адсорбентов, имеющих меньшие размеры пор или другой химический состав. Конкретные примеры подходящих адсорбентов силикагеля и алюмосиликатного геля являются коммерчески доступными под торговой маркой Sorbead от корпорации BASF, Флорхэм-Парк, Нью-Джерси. В варианте осуществления силикагель или алюмосиликатный гель образует по меньшей мере 80 об.% первого слоя 12 адсорбента и может образовывать 100 об.% первого слоя 12 адсорбента.
Для целей настоящей заявки обедненный C8 поток природного газа определяют как поток природного газа, который образуется после осуществления предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа перед осуществлением предпочтительной адсорбции углеводородов C5-C7 из потока природного газа с более высокой селективностью и емкостью, чем существующие в ходе предпочтительной адсорбции углеводородов C8 или выше. В приводимом в качестве примера способе, выполняемом в установке 10 фиг. 1, обедненный C8 поток 26 природного газа определяется как поток природного газа, который выходит из первого слоя 12 адсорбента.
В варианте осуществления концентрация углеводородов C8 или выше уменьшается с помощью предпочтительной адсорбции первым адсорбентом до концентрации не более 100 ppmv, такой как не более 10 ppmv, не более 1 ppmv или от 0,1 до 0,4 ppmv, в обедненном C8 потоке природного газа. В частности, стадия осуществления предпочтительной адсорбции углеводородов C8 или выше включает в себя уменьшение до указанных выше концентраций каждого из углеводородов C8 или выше с получением обедненного C8 потока природного газа. В связи с этим, в приводимом в качестве примера способе, проводимом в установке 10 фиг. 1, обедненный C8 поток 26 природного газа, который выходит из первого слоя 12 адсорбента, имеет указанные выше концентрации углеводородов C8 или выше перед дальнейшей обработкой.
Способ продолжается осуществлением предпочтительной адсорбции углеводородов C5-C7 из обедненного C8 потока природного газа по сравнению с адсорбцией углеводородов, имеющих менее 5 атомов углерода, с образованием обедненного C5-C8 потока природного газа. В соответствии с приводимым в качестве примера способом, проводимым в установке 10 фиг. 1, углеводороды C5-C7 предпочтительно адсорбируются из обедненного C8 потока 26 природного газа при контактировании второго адсорбента 15, который предпочтительно адсорбирует углеводороды C5-C7, с обедненным C8 потоком 26 природного газа с получением обедненного C5-C8 потока 28 природного газа. В данном варианте осуществления для контактирования второго адсорбента 15 с обедненным C8 потоком 26 природного газа обедненный C8 поток 26 природного газа вводится непосредственно во второй слой 14 адсорбента из первого слоя 12 адсорбента блока 16 многослойной адсорбции фиг. 1 для получения обедненного C5-C8 потока 28 природного газа.
Второй адсорбент 15 отличается от первого адсорбента 13 и предпочтительно адсорбирует углеводороды C5-C7 по сравнению с адсорбцией углеводородов, имеющих менее 5 атомов углерода. Второй адсорбент 15 имеет более высокую селективность и емкость адсорбции углеводородов С5-С7, чем первый адсорбент 13. В частности, второй адсорбент 15 является более эффективным в адсорбции углеводородов C5-C7 из подаваемого природного газа 20, чем первый адсорбент 13, тем самым позволяя достичь низких концентраций углеводородов C5-C7 в подаваемом углеводородном сырье, которые могли бы быть получены только при более высоком объеме слоя первого адсорбента 13 в первом адсорбционном слое 12. В связи с этим, углеводороды C5-C7 предпочтительно адсорбируются с более высокой селективностью и емкостью, чем при адсорбции углеводородов C5-C7 в ходе предпочтительной адсорбции углеводородов C8 или выше. В то время как некоторые из углеводородов C5-C7 могут быть адсорбированы первым адсорбентом 13 и даже могут быть предпочтительно адсорбированы первым адсорбентом 13 по сравнению с углеводородами, имеющими менее 5 атомов углерода, после уменьшения количества углеводородов C8 или выше первым адсорбентом 13, селективность и емкость второго адсорбента 15 для адсорбции углеводородов C5-C7 по-прежнему выше, чем селективность и емкость первого адсорбента 13 для адсорбции углеводородов C5-C7.
Второй адсорбент 15 также способен предпочтительно адсорбировать по меньшей мере некоторые из углеводородов C8 или выше (такие, как октан), и может быть способен предпочтительно адсорбировать некоторые из углеводородов C8 или выше с более высокой селективностью и емкостью, чем первый адсорбент 13. Однако, поскольку второй слой 14 адсорбента находится после первого слоя 12 адсорбента, подаваемый природный газ 20 будут обеднен углеводородами C8 или выше перед вторым слоем 14 адсорбента, что является желательным, поскольку регенерация второго адсорбента 15 после адсорбции больших количеств углеводородов C8 или выше может потребовать чрезмерных затрат энергии, и в любом случае потребует больших расходов энергии для регенерации, чем первый адсорбент 13, из-за более высокой селективности и емкости адсорбции углеводородов C5-C7.
Примеры вторых адсорбентов, которые предпочтительно адсорбируют углеводороды C5-C7 по сравнению с углеводородами, имеющими менее 5 атомов углерода, известны в области техники. В варианте осуществления второй адсорбент 15 включает в себя цеолитный молекулярно-ситовый адсорбент, имеющий средний размер пор от 5 до 15 Ангстрем. Подходящие цеолитные молекулярно-ситовые адсорбенты включают кальций-обменный (СаХ) цеолит и натрий-обменный (NaX) цеолит, которые имеют средний размер пор 10 Ангстрем. В варианте осуществления цеолитный молекулярно-ситовый адсорбент образует по меньшей мере 50 об.% второго слоя 14 адсорбента и может образовывать 100 об.% второго слоя 14 адсорбента. Конкретные примеры подходящих цеолитов NaX коммерчески доступны под торговой маркой Molsiv™ от UOP LLC, Дес-Плейнс, Иллинойс. В другом варианте осуществления второй адсорбент 15 включает в себя адсорбент из активированного угля в дополнение или в качестве альтернативы цеолитному молекулярно-ситовому адсорбенту. Подходящий адсорбент из активированного угля может иметь размер пор 20 Ангстрем и площадь поверхности 1000 м2/г. Когда второй адсорбент 15 включает в себя адсорбент из активированного угля в дополнение к цеолитному молекулярно-ситовому адсорбенту, адсорбент из активированного угля может быть помещен ниже по потоку от цеолитного молекулярно-ситового адсорбента. В варианте осуществления адсорбент из активированного угля образует по меньшей мере 50 об.% второго адсорбента 15 и может образовывать 100 об.% второго слоя 14 адсорбента. Из-за меньших размеров пор во втором адсорбенте 15 и/или его химического состава второй адсорбент 15 имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент 13.
В варианте осуществления концентрация углеводородов C5-C7, таких как неопентан, уменьшается с помощью предпочтительной адсорбции вторым адсорбентом до концентрации не более 2 ppmv, такой как не более 1 ppmv, не более 1 ppmv или от 0,1 до 0,4 ppmv, в обедненном C5-C8 потоке природного газа. В частности, стадия осуществления предпочтительной адсорбции углеводородов C5-C7 включает в себя уменьшение каждого из углеводородов C5-C7 до указанных выше концентраций для получения обедненного C5-C8 потока природного газа. Например, в одном конкретном варианте осуществления, в котором подаваемый природный газ содержит неопентан, неопентан и, необязательно, другие углеводороды C5-C7 предпочтительно адсорбируются из обедненного C8 потока природного газа. В данном варианте осуществления концентрация неопентана уменьшается до не более 2 ppmv в обедненном C5-C8 потоке природного газа, как, например, от 0,1 до 1 ppmv или от 0,1 до 0,4 ppmv. В приводимом в качестве примера способе, проводимом в установке 10 фиг. 1, обедненный C5-C8 поток 28 природного газа, который выходит из второго слоя 14 адсорбента, имеет указанные выше концентрации углеводородов C5-C7 перед дальнейшей обработкой.
Хотя на фиг. 1 показан первый адсорбент 13 и второй адсорбент 15 в форме пеллет или гранул, первый адсорбент 13 и второй адсорбент 15 могут использоваться в любой физической форме, известной в области техники, такой как экструдаты, сотовые структуры, или в композитах, нанесенных на субстраты. Первый адсорбент 13 может быть предусмотрен в количестве от 10 до 90 об.%, таком как от 30 до 70 об.% или от 40 до 60 об.%, исходя из суммарного объема первого адсорбента 13 и второго адсорбента 15. Второй адсорбент 15 может быть предусмотрен в количестве от 10 до 90 об.%, таком как от 30 до 70 об.% или от 40 до 60 об.%, исходя из суммарного объема первого адсорбента 13 и второго адсорбента 15. Относительные объемы первого адсорбента 13 и/или второго адсорбента 15 за пределами указанных выше диапазонов могут привести к недостаточной адсорбции углеводородов C5-C7 и/или углеводородов C8 или выше, так что на сжижение могут повлиять чрезмерно высокие концентрации неопентана, циклогексана, бензола, гептанов, и/или углеводородов C8 или выше. В варианте осуществления, показанном на фиг. 1, первый адсорбент 13 и второй адсорбент 15 вместе образуют 100 об.% всего адсорбента, который используется в блоке 16 многослойной адсорбции. Однако необходимо иметь в виду, что в других вариантах осуществления могут быть включены дополнительные слои адсорбента, которые могут содержать дополнительные адсорбенты. В таких вариантах осуществления суммарное количество первого адсорбента 13 и второго адсорбента 15 могут составлять по меньшей мере 70 об.%, исходя из общего объема всего адсорбента, который используется для адсорбции в блоке многослойной адсорбции.
Способ продолжается сжижением обедненного C5-C8 потока природного газа. Стадия сжижения обедненного C5-C8 потока природного газа включает в себя различные подстадии, которые могут проводиться для дополнительного удаления разных других соединений и сжижения полученного в результате потока природного газа. Сжижение природного газа обычно включает конденсацию природного газа в жидкость, обычно с помощью охлаждения природного газа при соответствующих температурах и давлениях. В соответствии с приводимым в качестве примера способом, который осуществляется в установке 10 фиг. 1, установка 10 включает в себя ступень 18 сжижения, которая находится ниже по потоку от второго слоя 14 адсорбента. Ступень 18 сжижения может включать в себя традиционное оборудование для охлаждения обедненного C5-C8 потока природного газа и может также включать в себя оборудование для выделения различных компонентов из подаваемого природного газа 20, по мере того как обедненный C5-C8 поток 28 природного газа охлаждается до достаточно низких температур для сжижения. Обедненный C5-C8 поток 28 природного газа сжижается в ступени 18 сжижения, которая образует поток 24 сжиженного природного газа. В данном варианте осуществления газоконденсатные жидкости (ГКЖ) и сжиженный нефтяной газ (СНГ), показанные на фиг. 1 как единый поток 22 ГКЖ/СНГ, также образуются ступенью 18 сжижения, и представляют фракции, которые отделяются от обедненного C5-C8 потока 28 природного газа по мере того, как обедненный C5-C8 поток 28 природного газа охлаждается до достаточно низких температур для сжижения. Ступень 18 сжижения также может включать в себя традиционное оборудование для сепарации дополнительных нежелательных компонентов подаваемого природного газа 20, таких как, например, ртуть, азотсодержащие соединения и тому подобное.
Другой иллюстративный вариант осуществления способа получения сжиженного природного газа из подаваемого природного газа, который содержит углеводороды C5-C7 и углеводороды C8 или выше, будет теперь рассмотрен со ссылкой на приводимую в качестве примера установку 110 для получения сжиженного природного газа 24, как показано на фиг. 2. В соответствии с данным вариантом осуществления, показано, что подаваемый природный газ 20 может подвергаться другой обработке перед адсорбцией углеводородов C8 или выше, и что другие стадии предпочтительной адсорбции могут осуществляться в дополнение к осуществлению предпочтительной адсорбции углеводородов C8 или выше и осуществлению предпочтительной адсорбции углеводородов C5-C7. В частности, в данном варианте осуществления способ включает в себя стадию удаления кислого газа, такого как углекислый газ и сероводород, из подаваемого природного газа перед осуществлением предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа. Кислый газ может быть удален из подаваемого природного газа с помощью контактирования подаваемого природного газа 20 с водным аминовым раствором 31 в блоке 30 аминовой очистки, который в общих чертах показан на фиг. 2. Блоки аминовой очистки известны в области техники. В блоке 30 аминовой очистки кислый газ взаимодействует с водным аминовым раствором 31 с образованием слабых химических связей с водным аминовым раствором 31 при высоком давлении, при этом другие компоненты подаваемого природного газа 20 остаются в газообразной форме. Водный аминовый раствор 31, который несет в себе кислые газы, далее регенерируют для выделения из него потока 34 кислого газа, при этом остающийся подаваемый природный газ 20 обрабатывают далее, как описано ниже. Однако, подаваемый природный газ 20 обычно становится насыщенным водой в результате контактирования подаваемого природного газа 20 с водным аминовым раствором 31.
Способ продолжается осуществлением предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа 20 по сравнению с углеводородами, имеющими менее 8 атомов углерода, с образованием обедненного C8 потока природного газа. В соответствии с приводимым в качестве примера способом, осуществляемом в установке 110 фиг. 2, подаваемый природный газ 20 подается из блока 30 аминовой очистки в первый слой 12 адсорбента блока 116 трехслойной адсорбции. Первый слой 12 адсорбента и второй слой 14 адсорбента блока 116 трехслойной адсорбции аналогичны описанным выше применительно к установке 10, показанной на фиг. 1. Однако, в дополнение к первому слою 12 адсорбента и второму слою 14 адсорбента, блок 116 трехслойной адсорбции данного варианта осуществления содержит третий слой 32 адсорбента, который помещен между первым слоем 12 адсорбента и вторым слоем 14 адсорбента. Третий слой 32 адсорбента содержит третий адсорбент 36, который отличается от первого адсорбента 13 и второго адсорбента 15, и который предпочтительно адсорбирует воду. Третий адсорбент 36 может предпочтительно адсорбировать воду, при этом не адсорбируя углеводороды C3 или выше, и третий адсорбент 36 имеет более высокую селективность и емкость для адсорбции воды, чем первый адсорбент 13. В частности, третий адсорбент 36 является более эффективным в адсорбции воды из подаваемого природного газа 20, чем первый адсорбент 13, тем самым позволяя достичь низких концентраций воды в подаваемом природном газе 20, которые могут быть получены только при более высоком объеме слоя первого адсорбента 13. Примеры третьих адсорбентов, которые предпочтительно адсорбируют воду, не адсорбируя углеводороды C3 или выше, известны в области техники. В варианте осуществления третий адсорбент включает в себя цеолитный молекулярно-ситовый адсорбент, имеющий средний размер пор не более 4 Ангстрем. Подходящие цеолитные молекулярно-ситовые адсорбенты включают 4А цеолиты, которые имеют средний размер пор 4 Ангстрема. В варианте осуществления цеолитный молекулярно-ситовый адсорбент образует по меньшей мере 50 об.% третьего слоя 32 адсорбента и может образовывать 100 об.% третьего слоя 32 адсорбента. Первый адсорбент 13 может быть предусмотрен в количестве от 10 до 70 об.%, второй адсорбент 15 может быть предусмотрен в количестве от 20 до 90 об.% и третий адсорбент 36 может быть предусмотрен в количестве от 5 до 20 об.%, исходя из суммарного объема первого адсорбента 13, второго адсорбента 15 и третьего адсорбента 36 в блоке 116 трехслойной адсорбции.
В соответствии с приводимым в качестве примера способом, выполняемым в установке 110 фиг. 2, способ включает в себя осуществление предпочтительной адсорбции остаточной воды из обедненного С8 потока 26 природного газа. В данном варианте осуществления остаточная вода предпочтительно адсорбируется при контактировании третьего слоя 32 адсорбента с обедненным C8 потоком 26 природного газа. Как показано на фиг. 2, третий слой 32 адсорбента расположен непосредственно после первого слоя 12 адсорбента, так что остаточная вода предпочтительно адсорбируется непосредственно после осуществления предпочтительной адсорбции углеводородов C8 или выше из подаваемого природного газа 20. Однако необходимо иметь в виду, что другие промежуточные слои адсорбента (не показаны) могут присутствовать между первым слоем 12 адсорбента и третьим слоем 32 адсорбента в других вариантах осуществления. Поскольку третий слой 32 адсорбента находится после первого слоя 12 адсорбента, и поскольку первый слой 12 адсорбента сам предпочтительно адсорбирует воду, подаваемый природный газ 20 будет лишен большей части воды перед третьим слоем 32 адсорбента, при этом в обедненном C8 потоке 26 природного газа будет оставаться только остаточная вода. Помещение первого слоя 12 адсорбента, как описано, перед третьим слоем 32 адсорбента является желательным, поскольку объем третьего слоя 32 адсорбента может быть приведен к минимуму при одновременном достижении низких концентраций воды в обедненном C5-C8 потоке 28 природного газа, которых было бы трудно достичь при использовании одного только первого слоя 12 адсорбента.
Способ продолжается введением обедненного C8 потока 26 природного газа из третьего слоя 32 адсорбента во второй слой 14 адсорбента, где происходит предпочтительная адсорбция углеводородов C5-C7, как подробно описано выше применительно к приводимому в качестве примера способу, который осуществляется в установке 10 фиг. 1. Как показано на фиг. 2, второй слой 14 адсорбента расположен непосредственно после третьего слоя 32 адсорбента, так что углеводороды C5-C7 предпочтительно адсорбируются непосредственно после осуществления предпочтительной адсорбции остаточной воды из обедненного C8 потока 26 природного газа. Однако необходимо иметь в виду, что другие промежуточные слои адсорбента могут присутствовать между третьим слоем 32 адсорбента и вторым слоем 14 адсорбента в других вариантах осуществления. После получения обедненного C5-C8 потока 28 природного газа из второго слоя 14 адсорбента, способ продолжается сжижением обедненного C5-C8 потока 28 природного газа. В соответствии с приводимым в качестве примера способом, который осуществляется в установке 110 фиг. 2, обедненный C5-C8 поток 28 природного газа сжижают в ступени 18 сжижения, которая образует поток 24 сжиженного природного газа, таким же образом, как описано выше применительно к способу, осуществляемому в установке 10 фиг. 1.
Примеры
Модель Aspen Adsim™ использовали для оценки адсорбции углеводородов C8 или выше, углеводородов C5-C7 и неопентана специально для случаев применения блока многослойной адсорбции, содержащего первый слой адсорбента и второй слой адсорбента при разных относительных объемах и разной высоте блока. Первый слой адсорбента содержал адсорбент Sorbead-H®, и второй слой адсорбента содержал кальций-обменный цеолитный адсорбент (в дальнейшем в этом документе называется адсорбент Molsiv™). В таблице 1 представлены содержания различных компонентов, которые присутствовали в подаваемом природном газе, применявшемся для целей моделирования, а также приводимые в качестве примера предельно допустимые значения продукта, выше которых замерзание при сжижении представляет проблему.
Figure 00000001
Изотермы равновесной адсорбции, характеризующие селективность адсорбента, для адсорбента Sorbead-H® получали из существующей проприетарной базы данных. Изотермы пропана на адсорбенте Molsiv™ из существующих проприетарных данных использовали для построения диаграммы потенциальной теории Полани и оценки изотерм для других углеводородов. Все расчеты проводили для диаметра блока адсорбции 3,35 м, использующего цикл адсорбции с перепадом температуры (TSA) и температуру регенерации 288°C, с первым слоем адсорбента, расположенным перед вторым слоем адсорбента (как схематически показано на фиг. 1). Несколько расчетов проводили при различной высоте блока адсорбции и различных соотношениях объема между первым слоем адсорбента и вторым слоем адсорбента. Во всех случаях не было никакого проскока компонентов C6+ (т.е. «0,1 ppmv), и проскок nC5 был значительно ниже, чем неопентана. Таким образом, неопентан представляет собой контролирующую примесь. На фиг. 3-5 приводятся профили концентрации слоя для слоя адсорбента, имеющего высоту 2,74 м и соотношение объемов 40 об.% для первого слоя адсорбента и 60 об.% для второго слоя адсорбента. В частности, на фиг. 3 показана концентрация в слое для углеводородов C6 и воды, на фиг. 4 показана концентрация в слое для углеводородов C5 и углеводородов C7, и на фиг. 5 показана концентрация в слое для неопентана и углеводородов C8.
Максимальный и средний проскоки неопентана приведены в таблице 2 для различных высот блока адсорбции и различных соотношений объема между первым слоем адсорбента и вторым слоем адсорбента. Как можно видеть из результатов в таблице 2, включение второго слоя адсорбента в дополнение к первому слою адсорбента позволяет снизить высоту блока при одновременном достижении лучшей результативности с точки зрения уменьшения максимального и среднего проскока неопентана в поток продукта, который выходит из блока адсорбции. Такие результаты иллюстрируют повышенную эффективность адсорбции неопентана при включении первого слоя адсорбента и второго слоя адсорбента, а также показывают, что объем слоя адсорбента может быть уменьшен при одновременном достижении повышенной эффективности адсорбции неопентана.
Figure 00000002
Figure 00000003
Несмотря на то, что только один иллюстративный вариант осуществления был представлен в вышеизложенном подробном описании изобретения, следует принимать во внимание, что существует огромное количество вариантов. Также следует принимать во внимание, что иллюстративный вариант осуществления или иллюстративные варианты осуществления являются всего лишь примерами и не имеют целью ограничить объем, применимость или конфигурацию изобретения каким бы то ни было образом. Скорее, вышеизложенное подробное описание снабдит специалистов подходящей последовательностью действий для реализации иллюстративного варианта осуществления изобретения. При этом предполагается, что различные изменения могут быть сделаны в функции и компоновке элементов, описанных в иллюстративном варианте осуществления, без отклонения от объема изобретения, как изложено в прилагаемой формуле изобретения.

Claims (10)

1. Способ получения сжиженного природного газа из подаваемого природного газа, содержащего углеводороды C5-C7 и углеводороды C8 или выше, причем указанный способ включает стадии:
контактирования первого адсорбента, который предпочтительно адсорбирует углеводороды C8 или выше, с подаваемым природным газом, для получения обедненного C8 потока природного газа;
контактирования второго адсорбента, отличающегося от первого адсорбента и предпочтительно адсорбирующего углеводороды C5-C7, с обедненным C8 потоком природного газа, для получения обедненного C5-C8 потока природного газа, при этом второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7, чем первый адсорбент; и
сжижения обедненного C5-C8 потока природного газа в ступени сжижения.
2. Способ по п. 1, дополнительно включающий контактирование третьего адсорбента, предпочтительно адсорбирующего остаточную воду, с обедненным C8 потоком природного газа, и в котором стадии контактирования первого адсорбента, контактирования второго адсорбента и контактирования третьего адсорбента включают контактирование первого адсорбента, предоставленного в количестве от 10 до 70 об.%, с подаваемым природным газом, контактирование второго адсорбента, предоставленного в количестве от 20 до 90 об.%, с обедненным C8 потоком природного газа, и контактирование третьего адсорбента, предоставленного в количестве от 5 до 20 об.%, с обедненным C8 потоком природного газа, где все количества приводятся исходя из суммарного объема первого адсорбента, второго адсорбента и третьего адсорбента.
3. Способ по п. 1, дополнительно включающий стадию контактирования подаваемого природного газа с водным аминовым раствором.
4. Способ по п. 3, в котором подаваемый природный газ вводят в контакт с водным аминовым раствором перед контактированием первого адсорбента с подаваемым природным газом.
5. Способ по п. 4, в котором третий адсорбент вводят в контакт с обедненным C8 потоком природного газа после контактирования первого адсорбента с подаваемым природным газом и перед контактированием второго адсорбента с обедненным C8 потоком природного газа.
6. Способ по п. 1, в котором стадия контактирования первого адсорбента с подаваемым природным газом дополнительно определяется как контактирование первого адсорбента, содержащего силикагель или алюмосиликатный гель, имеющий средний размер пор по меньшей мере 10 Å, с подаваемым природным газом.
7. Способ по п. 1, в котором контактирование второго адсорбента с обедненным C8 потоком природного газа дополнительно определяется как контактирование второго адсорбента, содержащего цеолитный молекулярно-ситовый адсорбент, имеющий средний размер пор от 5 до 15 Å, с обедненным C8 потоком природного газа.
8. Способ по п. 1, в котором стадии контактирования первого адсорбента и контактирования второго адсорбента включают контактирование первого адсорбента, предоставленного в количестве от 10 до 90 об.%, с подаваемым природным газом, и контактирование второго адсорбента, предоставленного в количестве от 10 до 90 об.%, с обедненным C8 потоком природного газа, причем все количества рассчитаны исходя из суммарного объема первого адсорбента и второго адсорбента.
9. Способ по п. 1, в котором блок многослойной адсорбции содержит первый слой адсорбента, содержащий первый адсорбент, и второй слой адсорбента, содержащий второй адсорбент, и в котором стадия контактирования первого адсорбента с подаваемым природным газом дополнительно определяется как введение подаваемого природного газа в первый слой адсорбента блока многослойной адсорбции для получения обедненного C8 потока природного газа.
10. Установка для получения сжиженного природного газа из подаваемого природного газа, содержащая:
первый слой адсорбента, содержащий первый адсорбент, который предпочтительно адсорбирует углеводороды C8 или выше по сравнению с углеводородами, имеющими менее 8 атомов углерода;
второй слой адсорбента после первого слоя адсорбента, причем указанный второй слой адсорбента содержит второй адсорбент, который отличается от первого адсорбента и который предпочтительно адсорбирует углеводороды C5-C7 по сравнению с углеводородами, имеющими менее 5 атомов углерода, при этом второй адсорбент имеет более высокую селективность и емкость адсорбции углеводородов C5-C7 по сравнению с первым адсорбентом; и
ступень сжижения, расположенную ниже по потоку от второго слоя адсорбента.
RU2014148137/04A 2012-05-01 2013-04-19 Способы и установки для получения сжиженного природного газа RU2575846C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/461,046 2012-05-01
US13/461,046 US8685146B2 (en) 2012-05-01 2012-05-01 Processes and apparatuses for preparing liquified natural gas
PCT/US2013/037313 WO2013165702A2 (en) 2012-05-01 2013-04-19 Processes and apparatuses for preparing liquified natural gas

Publications (1)

Publication Number Publication Date
RU2575846C1 true RU2575846C1 (ru) 2016-02-20

Family

ID=49511551

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014148137/04A RU2575846C1 (ru) 2012-05-01 2013-04-19 Способы и установки для получения сжиженного природного газа

Country Status (10)

Country Link
US (1) US8685146B2 (ru)
EP (1) EP2844723B1 (ru)
CN (1) CN104271715B (ru)
AU (1) AU2013256814B2 (ru)
CA (1) CA2867311C (ru)
ES (1) ES2639778T3 (ru)
MY (1) MY164557A (ru)
PL (1) PL2844723T3 (ru)
RU (1) RU2575846C1 (ru)
WO (1) WO2013165702A2 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130339A1 (en) * 2014-02-25 2015-09-03 Dow Global Technologies Llc Process control method for extracting natural gas liquids from natural gas
CA2939755C (en) * 2014-02-27 2021-10-26 Dow Global Technologies Llc Method for regenerating adsorbent media used for extracting natural gas liquids from natural gas
MX2016011532A (es) * 2014-03-18 2016-12-02 Dow Global Technologies Llc Remocion secuencial de liquidos de gas natural (ngls) de una corriente de gas natural.
WO2015156971A1 (en) * 2014-04-09 2015-10-15 Exxonmobil Upstream Research Company Methods and systems for purifying natural gases
EA201791685A1 (ru) 2015-01-27 2018-01-31 Дау Глоубл Текнолоджиз Ллк Отделение азота от газообразного углеводорода с использованием пиролизованной сульфированной макропористой ионообменной смолы
EP3250308A2 (en) 2015-01-27 2017-12-06 Dow Global Technologies LLC Separation of c2+ paraffins from methane using regenerable macroporous alkylene-bridged adsorbent in a packed moving bed with microwave regeneration
US10639583B2 (en) 2015-06-17 2020-05-05 Basf Corporation Adsorbent for hydrocarbon recovery
US10850225B2 (en) 2018-07-17 2020-12-01 Uop Llc Processes for removing heavy hydrocarbons and water from a stream of natural gas
WO2021032319A1 (de) 2019-08-22 2021-02-25 Linde Gmbh Verfahren und anlage zur bearbeitung von erdgas
US20220259512A1 (en) 2019-09-27 2022-08-18 Linde Gmbh Method and system for obtaining components from natural gas
US20210339187A1 (en) * 2020-05-01 2021-11-04 Basf Corporation Adsorbent bed with increased hydrothermal stability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303233A1 (de) * 2003-01-28 2004-08-05 Linde Ag Verfahren zur adsorptiven Abtrennung von höheren Kohlenwasserstoffen aus Erdgas
WO2009074737A2 (fr) * 2007-09-24 2009-06-18 Ifp Procede de liquefaction d'un gaz naturel sec
RU2008103606A (ru) * 2005-07-06 2009-08-20 Басф Каталистс, Ллк (Us) Объединенный способ удаления тяжелых углеводородов, аминовой очистки и осушки

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116130A (en) * 1959-02-27 1963-12-31 Phillips Petroleum Co Separation of gases and liquids by sorption
NL297067A (ru) * 1962-09-04 1900-01-01
DE4339500A1 (de) * 1993-11-19 1995-05-24 Engelhard Process Chem Gmbh Simultane Sorption von Wasser und organischen Verbindungen
CA2165378A1 (en) * 1995-01-23 1996-07-26 Arthur Shirley Purification of natural gas
US6033638A (en) 1998-03-20 2000-03-07 Campbell; Larry E. Sequential adsorptive capture and catalytic oxidation of volatile organic compounds in a reactor bed
US6682711B2 (en) 2001-04-27 2004-01-27 Chevron U.S.A. Inc. Protection of Fischer-Tropsch catalysts from traces of sulfur
US6610124B1 (en) 2002-03-12 2003-08-26 Engelhard Corporation Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
US7063732B2 (en) * 2003-07-28 2006-06-20 Fuelcell Energy, Inc. High-capacity sulfur adsorbent bed and gas desulfurization method
FR2868962B1 (fr) * 2004-04-15 2006-06-16 Inst Francais Du Petrole Procede de purification d'un gaz naturel par adsorption des mercaptans.
US7799117B1 (en) * 2006-09-27 2010-09-21 Uop Llc Gas treatment process by temperature swing adsorption
FR2911516B1 (fr) 2007-01-19 2009-11-13 Total Sa Procede de purification d'un melange gazeux contenant des gaz acides
WO2009059290A1 (en) 2007-11-01 2009-05-07 Yang Ralph T Natural gas desulfurization
FI20070944A0 (fi) * 2007-12-05 2007-12-05 Ravintoraisio Oy Uusi syötävä koostumus
CN100595263C (zh) * 2008-04-22 2010-03-24 成都五环新锐化工有限公司 从富含甲烷的混合气体中生产液化天然气的前端组合净化工艺
US7780764B2 (en) * 2008-06-27 2010-08-24 Praxair Technology, Inc. Methods and systems for helium recovery
US8381544B2 (en) 2008-07-18 2013-02-26 Kellogg Brown & Root Llc Method for liquefaction of natural gas
CN101508923B (zh) * 2009-03-12 2012-10-10 西安长庆科技工程有限责任公司 一种天然气脱水脱重烃装置及工艺方法
US8414683B2 (en) 2010-05-28 2013-04-09 Uop Llc Integrated process for floating liquefied natural gas pretreatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303233A1 (de) * 2003-01-28 2004-08-05 Linde Ag Verfahren zur adsorptiven Abtrennung von höheren Kohlenwasserstoffen aus Erdgas
RU2008103606A (ru) * 2005-07-06 2009-08-20 Басф Каталистс, Ллк (Us) Объединенный способ удаления тяжелых углеводородов, аминовой очистки и осушки
WO2009074737A2 (fr) * 2007-09-24 2009-06-18 Ifp Procede de liquefaction d'un gaz naturel sec

Also Published As

Publication number Publication date
CN104271715A (zh) 2015-01-07
EP2844723A4 (en) 2015-12-16
EP2844723B1 (en) 2017-06-21
AU2013256814A1 (en) 2014-10-02
CA2867311A1 (en) 2013-11-07
PL2844723T3 (pl) 2017-11-30
AU2013256814B2 (en) 2015-07-09
MY164557A (en) 2018-01-15
CA2867311C (en) 2016-09-20
ES2639778T3 (es) 2017-10-30
CN104271715B (zh) 2017-01-18
US8685146B2 (en) 2014-04-01
WO2013165702A2 (en) 2013-11-07
EP2844723A2 (en) 2015-03-11
US20130291723A1 (en) 2013-11-07
WO2013165702A3 (en) 2013-12-27

Similar Documents

Publication Publication Date Title
RU2575846C1 (ru) Способы и установки для получения сжиженного природного газа
RU2408664C2 (ru) Объединенный способ удаления тяжелых углеводородов, аминовой очистки и осушки
AU2012223563B2 (en) Pressure-temperature swing adsorption process for the separation of heavy hydrocarbons from natural gas streams
RU2634711C2 (ru) Способ удаления тяжелых углеводородов
RU2613914C9 (ru) Способ переработки природного углеводородного газа
CN103497804B (zh) 一种低温毛细凝聚脱出天然气中重烃的方法
RU2602908C1 (ru) Способ очистки природного газа от примесей при его подготовке к получению сжиженного метана, этана и широкой фракции углеводородов
JP2010158678A (ja) プロパン吸着剤及び前処理精製装置、並びに原料空気の前処理方法
US20140230650A1 (en) Method to retrofit system with enhanced capacity for removing mercury from a produced hydrocarbon fluid.
EP4061913A1 (en) Systems and processes for heavy hydrocarbon removal
US9670422B2 (en) Process for the removal of mercury from hydrocarbon streams containing oxygen
JP2005013832A (ja) 空気液化分離装置用吸着剤及びそれを用いた空気の精製方法
Mohd Ghazali Natural Gas Dehydration Optimization
WO2012047548A2 (en) Process for regeneration of adsorbent beds