RU2575518C2 - Способ управления переменными температурами барабана - Google Patents

Способ управления переменными температурами барабана Download PDF

Info

Publication number
RU2575518C2
RU2575518C2 RU2013147828/06A RU2013147828A RU2575518C2 RU 2575518 C2 RU2575518 C2 RU 2575518C2 RU 2013147828/06 A RU2013147828/06 A RU 2013147828/06A RU 2013147828 A RU2013147828 A RU 2013147828A RU 2575518 C2 RU2575518 C2 RU 2575518C2
Authority
RU
Russia
Prior art keywords
evaporator
pump
fluid
drum
steam drum
Prior art date
Application number
RU2013147828/06A
Other languages
English (en)
Other versions
RU2013147828A (ru
Inventor
Ян Джеймс ПЕРРИН
Дональд Уилльям БЭРЛИ
Рахул Дж. ТЕРДАЛКАР
II Уэсли Пол БОВЕР
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/073,230 external-priority patent/US20120247406A1/en
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Publication of RU2013147828A publication Critical patent/RU2013147828A/ru
Application granted granted Critical
Publication of RU2575518C2 publication Critical patent/RU2575518C2/ru

Links

Images

Abstract

Изобретение относится к энергетике и может быть использовано в парогенераторах для управления переменными температурами барабана. Заявленный способ включает в себя этапы, на которых создают временный градиент давления при запуске системы испарителя, при этом система испарителя содержит испаритель, барабан и насос, причем испаритель, барабан и насос находятся в сообщении по текучей среды друг с другом, осуществляют посредством насоса транспортировку текучей среды из испарителя в барабан перед тем, как текучая среда достигнет заданной температуры, и осуществляют циркуляцию текучей среды через систему испарителя посредством естественной циркуляции после того, как текучая среда достигнет точки кипения в испарителе. Кроме того, заявленный способ по второму варианту включает этап, при котором осуществляют посредством насоса транспортировку текучей среды из испарителя в барабан до тех пор, пока как текучая среда не достигнет заданной температуры, и осуществляют циркуляцию текучей среды через систему испарителя посредством естественной циркуляции после того, как текучая среда достигнет точки кипения в испарителе, т.е. создают временный градиент давления при запуске системы испарителя. Насос обеспечивает циркуляцию во время пуска, что снижает скорость изменения температуры в барабане. 2 н. и 21 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Предложен способ управления переменными температурами барабана в системе испарителя в парогенераторе рекуперации тепла. Более конкретно, предложен способ использования временной принудительной циркуляции при запуске для управления переменными температурами барабана в парогенераторе рекуперации тепла.
УРОВЕНЬ ТЕХНИКИ
Парогенераторы рекуперации тепла обычно содержат три основных компонента: испаритель, пароперегреватель и экономайзер. Различные компоненты собраны вместе для удовлетворения рабочих требований установки. Некоторые из парогенераторов рекуперации тепла могут не содержать пароперегревателя, либо могут включать в себя дополнительные компоненты, например подогреватели.
На фиг.1 изображена примерная система 100 испарителя из уровня техники с парогенератором рекуперации тепла, содержащим испаритель 102 и паровой барабан 104. Паровой барабан 104 находится в сообщении по текучей среде с испарителем 102. В парогенераторе рекуперации тепла с естественной циркуляцией тепла либо нет потока, либо установлен минимальный поток до тех пор, пока в испарителе 102 не начнется кипение. Как правило, это приводит к очень быстрому росту температуры в паровом барабане 104.
Например, для холодного пуска температура воды внутри парового барабана 104 может подняться от 15°C до 100°C менее чем за 10 минут. Это приводит к большому температурному градиенту и, соответственно, сжимающему напряжению в стенке парового барабана 104. По мере того как давление в паровом барабане 104 увеличивается, температурный градиент через стенку барабана уменьшается, и, соответственно, вызываемое давлением напряжение становится доминирующим напряжением в барабане. Вызванное давлением напряжение (с повышением давления в паровом барабане 104) является растягивающим напряжением. Диапазон напряжений для барабана определяется разностью между конечным растягивающим напряжением при полной нагрузке (давлением) и начальным сжимающим термическим напряжением. Стандарты проектирования котлов (например, ASME и EN) накладывают ограничения на напряжение при расчетном давлении. Некоторые стандарты, такие как, например, EN12952-3, также включают в себя ограничения на допустимый диапазон напряжения для цикла запуска - выключения. Эти ограничения служат для защиты от усталостных повреждений и таких явлений, как растрескивание магнетитового слоя, который образуется на поверхности стали при рабочей температуре.
При увеличении давления в паровом барабане 104 толщина стенки парового барабана 104 также увеличивается для того, чтобы гарантировать непревышения растягивающим напряжением в оболочке барабана при расчетных условиях допустимых пределов напряжения, установленных в стандартах проектирования. Однако при увеличении толщины стенки парового барабана 104 возрастает термическое напряжение. Максимальное давление, на которое может быть рассчитан барабан, таким образом, ограничено начальным переменным тепловым режимом.
Кроме того, желательно иметь столько функциональной гибкости, сколько требуется для энергетической установки с комбинированным циклом, потому что эти энергетические установки часто выключают и перезапускают при изменении потребности в электрической энергии. Добавление возобновляемых источников энергии, например солнца и ветра, увеличивает необходимость выключения и перезагрузки энергетических установок смешанного цикла из-за изменения выходной мощности этих возобновляемых ресурсов. Напряжения в барабане при таких перезапусках из-за переменных тепловых режимов также могут ограничить общее количество выключений и запусков, которое парогенераторы рекуперации тепла могут выполнить в течение срока их службы.
Таким образом, требуется снизить температуру переменных тепловых режимов в барабане. Это позволит использовать котлы барабанного типа при более высоких величинах давления, чем это может быть достигнуто с обычной естественной циркуляцией, и/или обеспечить большее число циклов запуска.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Предложен способ, включающий в себя этапы, на которых создают временный градиент давления при запуске системы испарителя, при этом система испарителя содержит: испаритель, барабан и насос, причем испаритель, барабан и насос находятся в сообщении по текучей среде друг с другом, осуществляют транспортировку текучей среды из испарителя в барабан до того, как текучая среда достигнет точки кипения в испарителе, и осуществляют циркуляцию текучей среды через систему испарителя посредством естественной циркуляции после того, как текучая среда достигнет точки кипения в испарителе.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет собой изображение системы испарителя уровня техники,
фиг.2 представляет собой изображение примерного варианта осуществления системы испарителя согласно настоящему изобретению, и
фиг.3 представляет собой еще одно изображение примерного варианта осуществления системы испарителя согласно настоящему изобретению.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение теперь будет описано более подробно со ссылкой на прилагаемые чертежи, на которых показаны различные варианты осуществления. Однако это изобретение может быть воплощено во многих различных формах и не должно рассматриваться как ограниченное изложенными здесь вариантами осуществления. Скорее, эти варианты осуществления представлены для того, чтобы данное описание было исчерпывающим и завершенным и полностью передавало объем изобретения специалистам в данной области техники. Идентичные ссылочные позиции относятся к идентичным элементам.
Следует понимать, что когда элемент упомянут как расположенный «на» другом элементе, он может находиться непосредственно на другом элементе, либо между ними могут присутствовать промежуточные элементы. Напротив, когда элемент упомянут как расположенный «непосредственно на» другом элементе, нет никаких промежуточных элементов. Используемый здесь термин «и/или» включает в себя любое и все сочетания одного или нескольких соответствующих перечисленных признаков.
Следует понимать, что хотя термины первый, второй, третий и т.д. здесь могут быть использованы для описания различных элементов, компонентов, областей, слоев и/или секций, эти элементы, компоненты, области, слои и/или секции не должны ограничиваться этими терминами. Эти термины использованы, только чтобы отличить один элемент, компонент, область, слой или секцию от другого элемента, компонента, области, слоя или секции. Таким образом, рассматриваемые ниже первый элемент, компонент, область, слой или секция могут быть названы вторым элементом, компонентом, областью, слоем или секцией в пределах концепции настоящего изобретения.
Используемая здесь терминология служит для целей описания конкретных вариантов осуществления и не предназначена для ограничения. Используемые в настоящем документе формы единственного числа «этот», «эта» или «другой» предназначены для включения также формы множественного числа, если из контекста явно не следует иное. Кроме того, следует понимать, что термины «содержит» и/или «содержащий», или «включает в себя» и/или «включающий в себя», использованные в данном описании, указывают на наличие изложенных признаков, областей, целых частей, этапов, операций, элементов и/или компонентов, но не исключают наличия или добавления одного или нескольких других признаков, областей, целых частей, этапов, операций, элементов, компонентов и/или их групп.
Кроме того, относительные термины, такие как «нижний» или «низовой» и «верхний» или «верховой», могут быть использованы здесь для описания отношения одного элемента к другому элементу, как показано на чертежах. Следует понимать, что относительные термины предназначены для охвата различных положений устройства в дополнение к положению, изображенному на чертежах. Например, если устройство на одном из чертежей перевернуто, элементы, описанные как расположенные на «нижней» стороне других элементов, затем будут ориентированы на «верхнюю» сторону других элементов. Таким образом, приведенный в качестве примера термин «нижний» охватывает как положение «нижний», так и положение «верхний», в зависимости от конкретной ориентации на чертеже. Аналогичным образом, если устройство на одном из чертежей перевернуто, элементы, описанные как «нижние» или «расположенные ниже» других элементов, тогда будут ориентированы «выше» других элементов. Приведенные в качестве примера термины «ниже» или «расположенные ниже», следовательно, могут охватывать и верхнее, и нижнее положение.
Если не указано иное, все используемые здесь термины (включая технические и научные термины) имеют однозначное значение, обычно понимаемое в его распространенном смысле специалистом в области техники, к которой относится данное изобретение. Кроме того, следует понимать, что термины, например те, которые определены обычно в используемых словарях, следует интерпретировать как имеющие значение, которое соответствует их смыслу в контексте данной области техники и настоящего изобретения, и не должны быть истолкованы в идеализированном или чрезмерно формальном смысле, если это здесь специально не оговорено.
Примерные варианты осуществления описаны здесь со ссылкой на виды в поперечном разрезе, которые представляют собой схематические иллюстрации идеализированных вариантов осуществления. Таким образом, следует ожидать отклонений от формы иллюстраций, вызванных, например, технологиями изготовления и/или допусками. Таким образом, описанные здесь варианты осуществления не должны рассматриваться как ограниченные показанными здесь конкретными формами областей, но должны включать в себя отклонения форм, возникшие, например, на производстве. К примеру, область, проиллюстрированная или описанная как плоская, может обычно иметь неровные и/или нелинейные признаки. Кроме того, проиллюстрированные острые углы могут быть скруглены. Таким образом, показанные на чертежах области схематичны по природе, и их формы не предназначены для иллюстрации точной формы области и не служат для ограничения объема настоящего изобретения.
В настоящем документе раскрыта система испарителя, которая содержит насос для циркуляции нагретой текучей среды из испарителя в паровой барабан. Насос обеспечивает циркуляцию во время пуска, чтобы начать нагревание парового барабана, что снижает скорость изменения температуры в барабане. Это снижение скорости изменения температуры в паровом барабане приводит к меньшим тепловым нагрузкам в барабане. В примерном варианте осуществления текучая среда представляет собой воду.
Насос может представлять собой центробежный насос, струйный насос или т.п., и его предназначением является создание градиента давления в системе испарителя, что способствует циркуляции текучей среды из испарителя в паровой барабан, пока текучая среда (например, вода), присутствующая в испарителе, не начнет кипеть. В одном варианте осуществления насос создает более низкое давление в паровом барабане относительно испарителя, пока текучая среда, присутствующая в испарителе, не начнет кипеть. После генерации более низкого давления в паровом барабане текучая среда из испарителя втягивается в паровой барабан, в результате чего барабан постепенно нагревается. Происходит постепенное нагревание, пока текучая среда в испарителе не достигнет точки кипения, после чего насос может быть выключен или изолирован. После выключения насоса естественная циркуляция способствует циркуляции текучей среды в системе испарителя.
Таким образом, насос работает в течение короткого периода времени, пока паровой барабан не достигнет температуры кипения текучей среды. Это позволяет использовать насос, который меньше по размеру, чем другие обычно используемые сопоставительные насосы. Это также уменьшает напряжение в стенке парового барабана.
Как видно из фиг.2, система 200 испарителя согласно настоящему изобретению содержит испаритель 202, паровой барабан 204 и насос 206. Насос 206 находится в сообщении по текучей среде с паровым барабаном 204 и испарителем 202. В одном варианте осуществления насос 206 расположен ниже по потоку от парового барабана 204. Паровой барабан расположен ниже по потоку от испарителя 202.
На впуске и выпуске насоса 206 расположен односторонний обратный клапан 208. Односторонний обратный клапан 208 обеспечивает только поток текучей среды из парового барабана 204 вниз по потоку в испаритель 202 через насос 206. Обратный клапан дополнительно обеспечивает только поток текучей среды из испарителя 202 вниз по потоку в паровой барабан 204. Насос 206 имеет первый клапан 210 и второй клапан 212, расположенные выше по потоку и ниже по потоку, соответственно. Первый клапан 210 и второй клапан 212 при необходимости могут изолировать насос 206 от системы 200 испарителя. Первый клапан 210 и второй клапан 212 могут приводиться в действие электрически, пневматически или вручную.
В одном варианте осуществления согласно способу работы системы 200 испарителя насос 206 используется для циркуляции текучей среды из испарителя 202 в паровой барабан 204 при запуске парогенератора рекуперации тепла для устранения быстрого роста температуры барабана, что, как правило, происходит в парогенераторе рекуперации тепла с естественной циркуляцией. После того как температура парового барабана 204 достигнет заданного значения, насос 206 изолируют, и испаритель 202 работает под естественной циркуляцией. Так как насос 206 может быть изолирован после запуска, он не должен быть рассчитан на полный поток нагрузки, давления и температуры. Это уменьшает стоимость работы насоса 206 по сравнению с сопоставительными насосами, которые используются для постоянно действующей циркуляции.
В другом варианте осуществления, изображенном на фиг.3, система 200 испарителя содержит струйный насос 306 (эжектор), который создает градиент давления в системе испарителя, что способствует циркуляции текучей среды из испарителя 202 в паровой барабан 204, пока текучая среда (например, вода), присутствующая в испарителе 202, не начнет кипеть. В одном варианте осуществления струйный насос 306 создает более низкое давление в паровом барабане относительно испарителя, пока текучая среда, присутствующая в испарителе, не начнет кипеть.
Струйный насос 306 создает низкое давление в опускной трубе 308, которая находится в сообщении по текучей среде с паровым барабаном 204, в результате чего текучая среда втягивается в паровой барабан 204 из испарителя 202. Высокая скорость потока текучей среды в узкой опускной трубе 308 создает низкое давление в опускной трубе 308 относительно парового барабана 204, что, в свою очередь, создает поток в опускной трубе 308. Когда в опускной трубе 308 создается низкое давление, паровой барабан 204 находится под более низким давлением, чем испаритель, что вызывает перетекание текучей среды из испарителя 202 в паровой барабан 204. В одном варианте осуществления низкое давление, созданное в опускной трубе 308 посредством работы струйного насоса 306, управляет циркуляцией текучей среды из испарителя 202 в паровой барабан 204.
Струйный насос 306 находится в сообщении по текучей среде с первым клапаном 310 и вторым клапаном 312. Первый клапан 310 используется для регулирования потока питательной воды в паровом барабане 204, а второй клапан 312 используется для изоляции струйного насоса 306 от опускной трубы.
Струйный насос 306 по фиг.3 работает в режиме, сходном с насосом 206 по фиг.2, с тем, чтобы обеспечить протекание временного потока текучей среды из испарителя 202 в паровой барабан 204, пока текучая среда, присутствующая в испарителе 202, не начнет кипеть.
Как было отмечено выше, использование насоса для временной циркуляции текучей среды в паровой барабан имеет ряд преимуществ. Они включают в себя использование насоса, который меньше по размеру, чем другие обычно используемые сопоставительные насосы. Это также снижает напряжение в стенке парового барабана и обеспечивает использование паровых барабанов с большей толщиной стенок, чем в используемых в настоящее время системах испарителя, в которых не применяется временная циркуляция. Это, в свою очередь, обеспечивает возможность работы парового барабана при более высоком давлении или большем количестве циклов запуска и выключения.
Хотя изобретение было описано со ссылкой на различные варианты осуществления, специалистам в данной области техники понятно, что могут быть внесены различные изменения, и элементы могут быть заменены их эквивалентами в пределах объема изобретения. Кроме того, могут быть осуществлены многие модификации для приспособления конкретной ситуации или материала к идеям изобретения в пределах от его основного объема. Таким образом, подразумевается, что настоящее изобретение не ограничивается конкретным вариантом осуществления, раскрытым в качестве наилучшего способа для осуществления данного изобретения, но что изобретение будет включать в себя все варианты осуществления, попадающие в объем приложенной формулы изобретения.

Claims (23)

1. Способ, включающий в себя этапы, на которых создают временный градиент давления при запуске системы испарителя, при этом система испарителя содержит испаритель, барабан и насос, причем испаритель, барабан и насос находятся в сообщении по текучей среде друг с другом, осуществляют посредством насоса транспортировку текучей среды из испарителя в барабан перед тем, как текучая среда достигнет заданной температуры, и осуществляют циркуляцию текучей среды через систему испарителя посредством естественной циркуляции после того, как текучая среда достигнет точки кипения в испарителе.
2. Способ по п. 1, в котором насос представляет собой центробежный насос.
3. Способ по п. 1, в котором текучая среда представляет собой воду.
4. Способ по п. 1, в котором текучая среда представляет собой пар.
5. Способ по п. 1, в котором система испарителя дополнительно содержит клапан для изолирования насоса от системы испарителя.
6. Способ по п. 1, в котором система испарителя дополнительно содержит опускную трубу, при этом создают градиент давления в опускной трубе от области более низкого давления в паровом барабане до области высокого давления в испарителе.
7. Способ по п. 1, в котором насос расположен ниже по потоку от парового барабана и выше по потоку от испарителя.
8. Способ по п. 2, в котором струйный насос расположен ниже по потоку от парового барабана и в сообщении по текучей среде с опускной трубой, которая находится в сообщении по текучей среде с паровым барабаном.
9. Способ по п. 1, в котором заданная температура является точкой кипения в испарителе.
10. Способ по п. 9, дополнительно включающий в себя этап, на котором изолируют насос от текучей среды, как только текучая среда в испарителе достигает точки кипения.
11. Способ по п. 10, в котором этап изолирования насоса включает в себя этап, на котором закрывают первый клапан регулирования потока, расположенный выше по потоку от насоса.
12. Способ по п. 11, в котором этап изолирования насоса включает в себя этап, на котором закрывают второй клапан регулирования потока, расположенный ниже по потоку от насоса.
13. Способ по п. 1, в котором этап транспортировки текучей среды дополнительно включает в себя этап, на котором обеспечивают посредством насоса временное протекание текучей среды от испарителя в паровой барабан до того, как текучая среда в испарителе начинает кипеть.
14. Способ по п. 1, в котором насос подвергают работе на короткую продолжительность времени до того, как текучая среда достигнет точки кипения.
15. Способ по п. 1, в котором насос представляет собой струйный насос.
16. Способ по п. 15, в котором струйный насос представляет собой эжектор.
17. Способ по п. 15, в котором струйный насос нагнетает
питающую воду, подаваемую в паровой барабан, в опускную трубу.
18. Способ, включающий в себя этапы, на которых создают временный градиент давления при запуске системы испарителя, при этом система испарителя содержит испаритель, барабан и насос, причем испаритель, барабан и насос находятся в сообщении по текучей среде друг с другом, осуществляют посредством насоса транспортировку текучей среды из испарителя в барабан до тех пор, пока текучая среда не достигнет заданной температуры, и осуществляют циркуляцию текучей среды через систему испарителя посредством естественной циркуляции после того, как текучая среда достигнет точки кипения в испарителе.
19. Способ по п. 18, в котором заданная температура является точкой кипения в испарителе.
20. Способ по п. 18, в котором система испарителя дополнительно содержит клапаны для изолирования насоса от системы испарителя.
21. Способ по п. 18, в котором система испарителя дополнительно содержит опускную трубу, при этом создают градиент давления в опускной трубе от области более низкого давления в паровом барабане до области высокого давления в испарителе.
22. Способ по п. 18, в котором насос расположен ниже по потоку от парового барабана и выше по потоку от испарителя.
23. Способ по п. 18, в котором насос представляет собой струйный насос.
RU2013147828/06A 2011-03-28 2012-03-22 Способ управления переменными температурами барабана RU2575518C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/073,230 2011-03-28
US13/073,230 US20120247406A1 (en) 2011-03-28 2011-03-28 Method of controlling drum temperature transients
PCT/US2012/030035 WO2012134926A2 (en) 2011-03-28 2012-03-22 Method of controlling drum temperature transients

Publications (2)

Publication Number Publication Date
RU2013147828A RU2013147828A (ru) 2015-05-10
RU2575518C2 true RU2575518C2 (ru) 2016-02-20

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207688A (en) * 1967-10-20 1970-10-07 Head Wrightson & Co Ltd Improvements in and relating to steam generating installations
EP0357590A1 (de) * 1988-08-29 1990-03-07 AUSTRIAN ENERGY & ENVIRONMENT SGP/WAAGNER-BIRO GmbH Abhitze-Dampferzeuger
RU2124672C1 (ru) * 1992-05-08 1999-01-10 Коккерий Меканикель Эндюстри С.А. Котел-утилизатор и способ его эксплуатации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207688A (en) * 1967-10-20 1970-10-07 Head Wrightson & Co Ltd Improvements in and relating to steam generating installations
EP0357590A1 (de) * 1988-08-29 1990-03-07 AUSTRIAN ENERGY & ENVIRONMENT SGP/WAAGNER-BIRO GmbH Abhitze-Dampferzeuger
RU2124672C1 (ru) * 1992-05-08 1999-01-10 Коккерий Меканикель Эндюстри С.А. Котел-утилизатор и способ его эксплуатации

Similar Documents

Publication Publication Date Title
US8776521B2 (en) Systems and methods for prewarming heat recovery steam generator piping
US8448439B2 (en) Electric power plant, and method for running electric power plant
US20120137683A1 (en) Run-up method for a solar steam power plant
JP2010216477A (ja) 熱回収蒸気発生器及び関連する蒸気ラインを予め加温するためのシステム及び方法
EP2899374A1 (en) Apparatus and method for reactor power control of steam turbine power generation system
JP2013502538A (ja) オーバーロード制御バルブを有する発電プラントシステム
AU2007353757A1 (en) Immediate response steam generating system and method
KR100837688B1 (ko) 일체형원자로의 기동 냉각 시스템 및 이를 이용한 이차측가열 운전 방법
JPS5835304A (ja) 高圧給水加熱器のウオ−ミング方法及び同装置
RU2575518C2 (ru) Способ управления переменными температурами барабана
JP6231228B2 (ja) 複合サイクルガスタービンプラント
AU2012237667B2 (en) Method of controlling drum temperature transients
CN106545840A (zh) 一种提高准东煤锅炉节能的系统及节能方法
US20170306801A1 (en) Method for shortening the start-up process of a steam turbine
US20110174240A1 (en) Controlling variables in boiler pressure vessels
CN207350317U (zh) 一种锅炉给水泵暖泵管路
JP5985737B2 (ja) 発電所および発電所設備を運転するための方法
KR101925214B1 (ko) 증기 터빈 및 이의 조립 및 분해 방법
EP3029280B1 (en) A method for starting a steam turbine
CN204553048U (zh) 一种发电机组的启动系统
KR101834658B1 (ko) 서보 밸브 제어장치
CA2454559A1 (en) Nuclear power plant
CN107152319A (zh) 一种超临界机组邻机蒸汽互援系统及其方法
CN107076408A (zh) 由于采用多锅筒配置而具有减小壁厚的锅筒式蒸汽发生器
JPS6136125B2 (ru)