RU2572479C1 - Способ варки стекла в вакуумной печи - Google Patents

Способ варки стекла в вакуумной печи Download PDF

Info

Publication number
RU2572479C1
RU2572479C1 RU2014153609/03A RU2014153609A RU2572479C1 RU 2572479 C1 RU2572479 C1 RU 2572479C1 RU 2014153609/03 A RU2014153609/03 A RU 2014153609/03A RU 2014153609 A RU2014153609 A RU 2014153609A RU 2572479 C1 RU2572479 C1 RU 2572479C1
Authority
RU
Russia
Prior art keywords
glass
stage
rate
hours
vacuum
Prior art date
Application number
RU2014153609/03A
Other languages
English (en)
Inventor
Александр Николаевич Игнатов
Анатолий Ермолаевич Поздняков
Валентина Федоровна Суркова
Анна Владимировна Фролова
Original Assignee
Открытое акционерное общество "Лыткаринский завод оптического стекла"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Лыткаринский завод оптического стекла" filed Critical Открытое акционерное общество "Лыткаринский завод оптического стекла"
Priority to RU2014153609/03A priority Critical patent/RU2572479C1/ru
Application granted granted Critical
Publication of RU2572479C1 publication Critical patent/RU2572479C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Способ используется при периодической варке и вакуумном обезвоживании гигроскопичного стекла со сдвинутой границей ИК пропускания. Стекло наваривают в платиновом сосуде 5-50 л до объема стекломассы не более 4/5 его высоты, выдерживают в течение 2-3 часов при заданной температуре варки, соответствующей вязкости (10-0,2) Па·с. Стекломассу вакуумируют до заданного остаточного давления, откачку воздуха в вакуумной печи производят минимум в 4 этапа по режиму: первый этап - до 60-75 кПа со скоростью 8000-40000 Па/мин, второй этап - до 3000-8000 Па со скоростью 250-350 Па/мин, третий этап - до 100-400 Па со скоростью 20-40 Па/мин, четвертый этап - до 50-80 Па со скоростью 0,1-2 Па/мин. Общее время вакуумирования составляет 8-13 часов. Технический результат изобретения - обезвоживание стекломассы до значения показателя поглощения <0,4 см-1 в максимуме поглощения групп ОН, что соответствует среднему пропусканию в интервале 3-5 мкм более 50%. 1 табл.

Description

Изобретение относится к производству стекла и может быть использовано при варке для обезвоживания гигроскопичных оптических, технических и стекол специального назначения, непременным условием эксплуатации которых является прозрачность в ИК области спектра до 5 мкм.
Прозрачность стекол в области 1-5 мкм обусловлена, главным образом, составом стекла (собственным поглощением матрицы), содержанием красящих примесей и групп ОН в структуре стекла. К группе стекол со сдвинутой полосой поглощения матрицы в ИК области спектра до 5 мкм относится редкий класс стекол, в которых в качестве стеклообразователя выступает оксид алюминия. Вследствие высокой гигроскопичности они имеют в структуре стекла большое содержание групп ОН, для которых характерна широкая основная полоса поглощения с максимумом в интервале 3,0-3,5 мкм (зависит от состава стекла), а также наличие большого количества обертонов. Такие стекла непригодны для применения в инфракрасных приборах и возникает необходимость снизить количество структурированной воды (И.М. Бужинский и др. «Влияние воды в силикатных лазерных стеклах на их характеристики», журнал «Оптико-механическая промышленность», 1982 г. №4, стр. 58-59).
Известен способ обезвоживания при варке лазерного фосфатного стекла по патенту RU 2531958 C2, опубл. 27.10.2014 г., согласно которому для удаления групп ОН стекломассу барботируют осушенным кислородом со скоростью 12,5 литров в час в течение не менее 2 часов, что позволило получить коэффициент поглощения в максимуме поглощения групп ОН при 3250 мкм ~1,3 см-1 (это соответствует 5% пропускания). Степень обезвоживания неглубокая и не решит поставленную задачу.
Большое количество публикаций в научно-технической литературе посвящено проблеме обезвоживания лазерных фосфатных стекол. О количестве воды в стекле принято судить по показателю поглощения aλ, в максимуме поглощения групп ОН. После бурления показатель поглощения снижается более чем на порядок до значения (1÷2) см-1 (пропускание 1-10%). Здесь следует акцентировать внимание на том, что в лазерных стеклах, активированных неодимом и эрбием, наличие большого содержания групп ОН в структуре стекла приводит к тушению люминесценции ионов активатора, т.е. к снижению квантового выхода люминесценции и, как следствие, к снижению кпд лазера. При полученной величине показателя поглощения после бурления осушенным кислородом квантовый выход люминесценции достигает 75÷85% (он зависит не только от количества групп ОН в составе стекла, но и от концентрации люминесцирующих ионов), и на данном уровне развития является вполне приемлемой величиной для лазерных фосфатных стекол («Оптический журнал», т. 70, №5, 2003 г., стр. 68-78).
Для стекол, работающих в ближнем инфракрасном диапазоне, приведенные величины пропускания недостаточны. Так, по требованию многих потребителей, среднее пропускание в интервале (3÷5) мкм должно быть более 50%.
Ближайшим по технической сущности к предлагаемому способу является способ варки электровакуумного стекла по патенту RU 2515443 C1, опубл. 10.05.2014 г., согласно которому наваривают стекломассу в вакуумной печи в платиновом сосуде емкостью 5-50 литров до объема не более 4/5 его высоты, выдерживают в течение 2-3 часов при заданной температуре варки при вязкости 160-35 Па·с, набор вакуума в печи производят ступенчато до 50 мбар (50000 Па), не позволяя стекломассе вспениваться, снижают температуру стекломассы до выработочной вязкости и вырабатывают ее путем отлива в блоки.
Способ относится к удалению свободных газов из стекломассы высокотемпературных стекол до минимального количества пузырей - не более 10 шт. диаметром менее 0,1 мм на килограмм. Проблема удаления структурированной воды требует гораздо более глубокого вакуума (примерно на 3 порядка меньше), но для этого типа стекол такая проблема не стояла, т.к. стеклообразователем в них выступает кремний, а такие стекла не гигроскопичны и не прозрачны в ИК области из-за высокого собственного поглощения матрицы и в принципе не пригодны для работы в ИК области спектра.
Техническим результатом изобретения является создание способа периодической варки гигроскопичного со сдвинутой границей ИК пропускания стекла в вакуумной печи и вакуумного обезвоживания его до значения показателя поглощения <0,4 см-1 в максимуме поглощения групп ОН, что соответствует среднему пропусканию в интервале 3-5 мкм более 50%.
Технический результат достигается тем, что в способе варки стекла в вакуумной печи путем наваривания стекломассы в платиновом сосуде до объема не более 4/5 его высоты, выдержки в течение 2-3 часов при заданной температуре варки, вакуумирования до заданного остаточного давления, при необходимости снижения температуры стекломассы до выработочной вязкости и вырабатывания ее путем отлива в блоки, в отличие от известного, откачку воздуха производят в 4 этапа:
на первом этапе - до 60-75 кПа со скоростью 8000-40000 Па/мин,
на втором - со скоростью 250-350 Па/мин до 3000-8000 Па,
на третьем - со скоростью 20-40 Па/мин до 100-400 Па,
на четвертом - со скоростью 0,1-2 Па/мин до 50-80 Па,
при общем времени вакуумирования 8-13 часов.
Предложенный способ вакуумирования стекломассы обеспечивает безопасность процессу варки и позволяет получить стекло без пузырей и включений и с минимальным количеством групп ОН, т.е. прозрачным в ближнем ИК диапазоне длин волн до 5 мкм. При времени вакуумирования <8 часов нельзя достичь требуемые параметры, при времени вакуумирования >13 часов существует большая вероятность попадания микроскопических включений материала тигля, что неприемлемо для эксплуатации подобных стекол.
Экспериментальные варки для моделирования процессов обезвоживания стекломассы проводились на стекле АКС5 в 19-литровом платиновом тигле. Режим варки стекла следующий. Количество загружаемых боев и шихты соответствовало 1/2, 2/3 и 4/5 от высоты тигля. Эксперименты проводились при вязкостях 9,5 Па·с; 1,5 Па·с; 0,3 Па·с, что соответствовало температуре расплава 1425°C, 1460°C и 1495°C. После достижения заданной температуры делалась выдержка 2-3 часа, за это время успевают пройти все основные реакции, затем приступали к откачке воздуха до определенного уровня вакуума. Особенностью процесса набора вакуума является внезапное вспенивание стекломассы при определенных уровнях разрежения, которые соответствуют выходу пузырей определенных размеров. Это может привести к заливу тигля с внешней стороны, короткому замыканию и его порче. Чтобы обеспечить безопасный набор вакуума, требовалось экспериментально определить скорость набора вакуума для разных вязкостей стекломассы, что и было сделано на большом количестве варок. Конкретные примеры приведены в таблице. Откачку воздуха в печи производили до 60, 70, и 75 кПа со скоростью 8333-40000 Па/мин. На втором этапе откачивали воздух до уровней 7900, 5000 и 3000 Па со скоростью 253, 290 и 350 Па/мин соответственно. На третьем этапе откачивали воздух до уровней 390, 250 и 100 Па со скоростью 21, 30 и 40 Па/мин соответственно. На четвертом этапе достигали давления 80, 50 и 67 Па со скоростью 2,0, 0,9 и 0,13 Па/мин соответственно. Общее время вакуумирования составляло 8-13 часов. После этого стекломассу студили до выработочной вязкости и отливали через донный патрубок в блоки, отжигали при температуре 690°C, затем контролировали.
Обсуждение полученных результатов.
Проведенные эксперименты показали, что для того, чтобы обеспечить безопасный режим навара стекла и получения среднего пропускания в области (3-5) мкм >50% в образце толщиной 1 см необходимо соблюдать следующие требования:
1. Вязкость стекломассы (10-0,2)Па·с, (температура 1425-1495°C).
2. Объем стекломассы не должен быть больше 4/5 от высоты тигля.
3. Откачку воздуха в печи производить как минимум в четыре этапа: до 60-75 кПа со скоростью (8000-40000) Па/мин, затем до 3000-8000 Па со скоростью 250-350 Па/мин, далее до 100-400 Па со скоростью 20-40 Па/мин и на последнем этапе со скоростью 0,1-2 Па/мин до 50-80 Па.
4. Общее время вакуумирования составляет 8-13 часов. При вакуумировании менее 8 часов невозможно достичь пропускания более 50%, а увеличение времени вакуумирования нецелесообразно по причине появления включений материала тигля.
Как видно из опытных варок и таблицы, предложенный способ позволяет получать обезвоженное стекло со средним пропусканием в интервале длин волн 3-5 мкм в пределах (51-75)% в образцах толщиной 1 см.
Заявленный способ обезвоживания правомерно переносить на другие марки стекол с аналогичными параметрами и предъявляемыми требованиями.
Figure 00000001

Claims (1)

  1. Способ варки стекла в вакуумной печи путем наваривания стекломассы в платиновом сосуде до объема стекломассы не более 4/5 его высоты, выдержки в течение 2-3 часов при заданной температуре варки, вакуумирования до заданной степени вакуума, снижения температуры стекломассы до выработочной вязкости и ее выработки в блоки, отличающийся тем, что откачку воздуха производят по программе в четыре этапа, на первом этапе - до 60-75 кПа со скоростью 8000-40000 Па/мин, на втором - со скоростью 250-350 Па/мин до 3000-8000 Па, на третьем - со скоростью 20-40 Па/мин до 100-400 Па и со скоростью - 0,1-2 Па/мин до 50-80 Па, общее время вакуумирования составляет 8-13 часов.
RU2014153609/03A 2014-12-29 2014-12-29 Способ варки стекла в вакуумной печи RU2572479C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014153609/03A RU2572479C1 (ru) 2014-12-29 2014-12-29 Способ варки стекла в вакуумной печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014153609/03A RU2572479C1 (ru) 2014-12-29 2014-12-29 Способ варки стекла в вакуумной печи

Publications (1)

Publication Number Publication Date
RU2572479C1 true RU2572479C1 (ru) 2016-01-10

Family

ID=55072181

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014153609/03A RU2572479C1 (ru) 2014-12-29 2014-12-29 Способ варки стекла в вакуумной печи

Country Status (1)

Country Link
RU (1) RU2572479C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146884A1 (de) * 2001-06-06 2002-12-19 Schott Glas Verfahren zur Unterdruckläuterung von alkalifreien Aluminoborosilikat-Glasschmelzen
EP1698596A1 (en) * 2003-12-26 2006-09-06 Nippon Electric Glass Co., Ltd. Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
RU2449956C1 (ru) * 2008-02-27 2012-05-10 Асахи Гласс Компани, Лимитед Устройство вакуумной дегазации и способ вакуумной дегазации для расплавленного стекла
US8276402B2 (en) * 2009-10-20 2012-10-02 Japan Super Quartz Corporation Method and apparatus for manufacturing vitreous silica crucible
RU2515443C1 (ru) * 2013-01-15 2014-05-10 Открытое акционерное общество "Лыткаринский завод оптического стекла" Способ варки и вакуумного осветления высокотемпературных стекол

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146884A1 (de) * 2001-06-06 2002-12-19 Schott Glas Verfahren zur Unterdruckläuterung von alkalifreien Aluminoborosilikat-Glasschmelzen
EP1698596A1 (en) * 2003-12-26 2006-09-06 Nippon Electric Glass Co., Ltd. Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
RU2449956C1 (ru) * 2008-02-27 2012-05-10 Асахи Гласс Компани, Лимитед Устройство вакуумной дегазации и способ вакуумной дегазации для расплавленного стекла
US8276402B2 (en) * 2009-10-20 2012-10-02 Japan Super Quartz Corporation Method and apparatus for manufacturing vitreous silica crucible
RU2515443C1 (ru) * 2013-01-15 2014-05-10 Открытое акционерное общество "Лыткаринский завод оптического стекла" Способ варки и вакуумного осветления высокотемпературных стекол

Similar Documents

Publication Publication Date Title
JP2858637B2 (ja) 溶融シリカガラス製品の製造方法
JPWO2008069194A1 (ja) 合成不透明石英ガラス及びその製造方法
WO2006068062A1 (ja) フッ化金属単結晶体の引上げ装置および該装置を用いたフッ化金属単結晶体の製造方法
RU2572479C1 (ru) Способ варки стекла в вакуумной печи
JP2016088949A (ja) Mn賦活複フッ化物蛍光体の処理方法
CN112608025A (zh) 一种高纯Ge-Sb-Se系统红外硫系玻璃的制备方法
JP2011105591A5 (ru)
JPS616144A (ja) 光フアイバ用ガラス母材の焼結方法
US20160200620A1 (en) Method for producing iron-doped silica glass
RU2515443C1 (ru) Способ варки и вакуумного осветления высокотемпературных стекол
US4304052A (en) Drying intumescent material
CN102618929A (zh) 一种掺镱、铒的钇钪镓石榴石晶体及其制备方法
US20180059288A1 (en) Lanthanum fluoride single crystal and optical component
CN107162413A (zh) 一种氟碲酸盐玻璃及其制备方法
CN102776563A (zh) 一种用于铸锭炉的排杂方法
CN102367505A (zh) 一种提高罩式炉退火带材表面光亮度的方法
CN114455845B (zh) 一种Er3+/Yb3+/Nd3+共掺近红外超宽带发射碲酸盐光纤玻璃及其制备方法
JP2008162839A (ja) 石英ガラスルツボの製造方法
Jiang et al. Re-clustering of neodymium ions in neodymium, buffer ion-codoped alkaline-earth fluoride transparent ceramics
JP2012006786A (ja) フッ化金属単結晶体の製造方法
RU2788077C1 (ru) Способ обработки янтаря
JP5219949B2 (ja) 金属フッ化物結晶及び真空紫外発光素子
CN102851516B (zh) 一种汞齐提纯方法及容器
Serqueira et al. Effect of Na 2 O concentration on the lifetime of Er 3+-doped sodium silicate glass
JP4640292B2 (ja) 石英ガラス体製造方法