RU2568976C2 - Преобразование сероводорода в водород - Google Patents

Преобразование сероводорода в водород Download PDF

Info

Publication number
RU2568976C2
RU2568976C2 RU2010147290/05A RU2010147290A RU2568976C2 RU 2568976 C2 RU2568976 C2 RU 2568976C2 RU 2010147290/05 A RU2010147290/05 A RU 2010147290/05A RU 2010147290 A RU2010147290 A RU 2010147290A RU 2568976 C2 RU2568976 C2 RU 2568976C2
Authority
RU
Russia
Prior art keywords
hydrogen
reactor
reaction chamber
gas
hydrogen sulfide
Prior art date
Application number
RU2010147290/05A
Other languages
English (en)
Other versions
RU2010147290A (ru
Inventor
Джеймс А. ВАСАС
Original Assignee
Свапсол Корп.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Свапсол Корп. filed Critical Свапсол Корп.
Publication of RU2010147290A publication Critical patent/RU2010147290A/ru
Application granted granted Critical
Publication of RU2568976C2 publication Critical patent/RU2568976C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0495Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by dissociation of hydrogen sulfide into the elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0465Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0469Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide at least one catalyst bed operating below the dew-point of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к восстановлению водорода из газов. Реактор и способ получения водорода из потока газа, содержащего сероводород или сероводород и диоксид углерода, согласно которому: в камеру вертикального реактора вводят поток указанного газа, при этом указанная камера реактора содержит внешнюю цилиндрическую оболочку, определяющую реакционную камеру, а указанная реакционная камера включает зону нагрева, мембрану и конденсатор серы, а указанный реактор содержит: впускное отверстие для ввода потока газа в реакционную камеру; зону нагрева, расположенную в реакционной камере и приспособленную для контакта с указанным потоком газа, при этом указанная зона нагрева содержит катализатор, выбранный из группы, включающей азурит, малахит и металл, содержащий 75% никеля и 25% хрома; мембрану, представляющую собой керамическую мембрану, расположенную в реакционной камере, при этом указанная керамическая мембрана является проницаемой для водорода, но не проницаема для сероводорода и паров серы, а пропуск потока определяется содержимым мембраны, сообщающейся с первым выпускным отверстием; конденсатор серы, расположенный в реакционной камере ниже мембраны и сообщающийся со вторым выпускным отверстием; отверстие для выпуска газа, сообщающееся с реакционной камерой; подвергают сероводород или, необязательно, сероводород и диоксид углерода, реакции в зоне нагрева при температуре от 400 до 700°C, при которой конверсия сероводорода составляет по меньшей мере 95%, с получением в реакционной камере водорода и паров серы и, необязательно, воды; непрерывно и немедленно удаляют водород через указанную мембрану и отводят полученный водород через первое выпускное отверстие; непрерывно конденсируют пары серы на конденсаторе серы с получением серы в виде жидкости, которую отводят через второе выпускное отверстие; и отводят отработанный в реакторе газ из реакционной камеры через отверстие для выпуска газа, при этом указанный отработанный в реакторе газ, по существу, не содержит сероводород и серу. Технический результат - повышение эффективности восстановления водорода. 2 н. и 15 з. п. ф-лы, 5 ил., 1 табл., 4 прим.

Description

Область техники, к которой относится изобретение
Изобретение относится к восстановлению водорода из газов, более точно, к удалению и поглощению сероводорода и других загрязняющих веществ из природных и промышленных газов.
Предпосылки создания изобретения
Многие природные и технологические газы содержат сероводород, двуокись углерода и другие примеси или загрязняющие вещества. Эти примеси или загрязняющие вещества желательно удалять из природного газа до его промышленного применения. Сероводород является естественным компонентом природного газа, который при высокой концентрации сероводорода называют "высокосернистым газом".
Сероводород также образуется при очистке нефти и в ходе других процессов. Природный газ может содержать до 90% сероводорода. Сероводород является токсичным, воспламеняемым газом, выброс которого в атмосферу запрещен по закону.
Водород встречается в природе в элементарной форме, обычно в незначительных количествах в силу реакционной способности водорода. Водород является желаемым топливом, поскольку он является полностью сгорающим топливом, т.е. при его сгорании образуется только вода. К сожалению, получение водорода часто является дорогостоящим, а его хранение и транспортировка связаны с большими сложностями. Например, в стальном баллоне весом около 50 фунтов (23 кг) обычно помещается лишь около 2,5 унций (71 г) по весу водорода под давлением до 3000 фунтов/кв. дюйм (20684 кПа). Из-за очень высокого давления и исключительно высокой воспламеняемости водорода эти баллоны могут быть очень опасны.
Известны технологии удаления сероводорода и двуокиси углерода из газов. Например, сероводород и двуокись углерода могут быть отделены от газов путем экстракции растворителями, адсорбции, абсорбции или другими способами.
Также известны технологии восстановления серы из сероводорода. Например, согласно обычной технологии восстановления серы, известной как Клаус-процесс, примерно до одной трети сероводорода в газе может быть окислено воздухом или кислородом до двуокиси серы, которая вступает в реакцию с остальным сероводородом, в результате чего образуются элементарная сера и вода. Этот процесс частично осуществляют при температурах выше 850°С и частично в присутствии катализаторов, таких как активированная окись алюминия или двуокись титана. В ходе Клаус-процесса протекают следующие химические реакции:
2H2S+3O2→2SO2+2H2O;
4H2S+2SO2→3S2+4H2O.
Часто образующаяся сера имеет очень низкое качество, и ее часто относят к опасным отходам из-за загрязнения, вызываемого в основном широко используемыми аминовыми экстрагентами, которые поступают в установку Клауса вместе с сероводородом.
Другая технология описана в заявке US 2005/0191237. В ней описаны способ и устройство для получения водорода и серы из сырьевого газа, в котором разделяют сырьевой газ с целью получения фракции очищенного сероводорода, содержащей по меньшей мере около 90% по объему сероводорода, диссоциируют сероводород во фракции сероводорода, чтобы преобразовать его во фракцию очищенного сероводорода, содержащую элементарный водород и серу, разделяют и диссоциируют фракцию очищенного сероводорода, чтобы получить фракцию с высоким содержанием элементарного водорода, и получают продукт в виде элементарного водорода. Диссоциацию осуществляют при температуре от 1500 до 2000°С.
В заявке US 2002/0023538 также описан способ удаления сероводорода и других загрязняющих веществ. В этом двухстадийном способе используют первый адсорбент, находящийся в псевдоожиженном слое с температурой около 20-60°С, для удаления по меньшей мере части загрязняющих веществ и используют второй адсорбент, находящийся в другом псевдоожиженном слое с температурой около 100-300°С, для удаления другой части загрязняющих веществ из газа. Также описан преобразователь, т.е. реактор на основе нетеплового плазменного коронного разряда для преобразования загрязняющих веществ в элементарную серу и водород при температуре менее 400°С.
Краткое изложение сущности изобретения
Согласно одной из особенностей изобретения предложен способ преимущественного удаления загрязняющих веществ из газа, в котором в реактор вводят газ, содержащий сероводород и углеводород, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород и отделяют серу от газа. Этот способ может быть отображен следующей химической реакцией:
xCH4(g)+8H2S(g)→xCH4(g)+8H2(g)+S8(s),
в которой х означает любое число, которое показывает, что соотношение газообразного углеводорода и сероводорода является переменным и не имеет значения, поскольку оно остается неизменным. Нагретую область обеспечивают с помощью нагревательного элемента, представляющего собой катализатор и/или провод высокого сопротивления.
Согласно другой особенности изобретения предложен способ преимущественного удаления загрязняющих веществ из газа, в котором используют газ, содержащий сероводород, углеводород и двуокись углерода, подают газ через нагретую область с температурой около 50°С-700°С, преобразуют сероводород в серу и водород, вводят водород в реакцию с двуокисью углерода, чтобы получить воду и углерод и/или сероуглероды, окисляют водород кислородом двуокиси углерода и отделяют серу, воду и углерод и/или сероуглероды от газа. Этот способ может быть отображен следующими химическими реакциями:
ХСН4(g)+8H2S(g)+4CO2(g)→хСН4(g)+8H2O(1)+S8(s)+4C(s) и/или
CH4(g)+8H2S(g)+4CO2(g)→xCH4(g)+8H2O(1)+ сероуглероды;
в которых х означает любое число, которое показывает, что соотношение газообразного углеводорода и сероводорода является переменным и не имеет значения, поскольку оно остается неизменным. Нагретую область обеспечивают с помощью нагревательного элемента, представляющего собой катализатор и/или провод высокого сопротивления.
Согласно другой особенности изобретения предложен способ восстановления водорода из сероводорода, в котором подают сероводород через нагретую область, потребляют первое количество энергии, получают водород и серу, окисляют водород воздухом или кислородом и высвобождают второе количество энергии, при этом второе количество энергии в 10-12 раз превышает первое количество энергии. Этот способ может быть отображен следующими химическими реакциями:
8H2S(g)→8H2(g)+S8(s);
8H2(g)+4O2(g)→8H2O(g)+ энергия.
Нагретую область обеспечивают с помощью нагревательного элемента, представляющего собой катализатор и/или провод высокого сопротивления.
Согласно другой особенности изобретения предложен способ получения водорода в качестве топлива, в котором газ, содержащий сероводород, хранят в резервуаре в виде сжиженного газа, используют соединенный с резервуаром реактор, имеющий нагревательный элемент, представляющий собой по меньшей мере одно из следующего: катализатор и провод высокого сопротивления, выпускают газ из резервуара в реактор, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород и отделяют серу от газа.
Согласно другой особенности изобретения предложен газ, преимущественно не содержащий загрязняющих веществ, которые удаляют способом, в котором в реактор вводят газ, содержащий сероводород и углеводород, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород и отделяют серу от газа. Нагретую область обеспечивают с помощью нагревательного элемента, представляющего собой катализатор и/или провод высокого сопротивления.
Согласно одной из дополнительных особенностей изобретения предложена система преимущественного удаления загрязняющих веществ из газа, включающая реактор, в который подают газ, содержащий сероводород и углеводород, и нагревательный элемент внутри реактора, который соприкасается с газом, в результате чего образуются продукты, преимущественно не содержащие сероводород. Нагревательный элемент представляет собой катализатор и/или провод высокого сопротивления.
Краткое описание чертежей
На фиг.1 показан вид в перспективе одного из примеров реактора, используемого в изобретении,
на фиг.2 показана блок-схема способа согласно изобретению,
на фиг.3 показан вид в перспективе одного из примеров реакционной камеры, используемого в изобретении,
на фиг.4 показан вид "А" в разрезе примера реакционной камеры, показанной на фиг.2,
на фиг.5 показан вид в перспективе одного из примеров реакционной системы согласно изобретению.
Подробное описание изобретения
В изобретении предложен способ преимущественного удаления загрязняющих веществ из газа. Эти загрязняющие вещества включают сероводород, двуокись углерода и другие нежелательные загрязняющие вещества, а газом может являться природный газ, который также именуется "высокосернистым газом", если он имеет высокое содержания сероводорода, промышленный газ, получаемый в результате очистки нефти или других промышленных процессов, или их сочетание. Основным компонентом природного газа является метан, который может являться одним из компонентов других газов, содержащих сероводород. Хотя в качестве реагента процесса указан метан, в газ могут входить любые другие углеводороды, такие как незамещенные и замещенные углеводороды, включая разветвленные или неразветвленные алканы и алкены с числом атомов углерода от C1 до С20, предпочтительно от C1 до С6, циклоалканы, циклоалкены, ароматические углеводороды или их смеси. Их примеры включают без ограничения этан, пропан, бутан, пентан, этилен и пропилен. Конкретный углеводород зависит от конкретного газа. Кроме того, природные и промышленные газы могут содержать множество других различных загрязняющих веществ и других химикатов, таких как азот и гелий, которые конкретно не перечислены в изобретении.
Термин "преимущественно" означает по меньшей мере 50%-ное удаление, но удаление может достигать 100%. В способе согласно изобретению удаляют предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 85% и наиболее предпочтительно по меньшей мере 95% загрязняющих веществ.
При осуществлении способа преимущественного удаления загрязняющих веществ из газа в реактор вводят газ, содержащий сероводород и другие загрязняющие вещества, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород и отделяют серу от газа. Этот способ может быть отображен следующей химической реакцией:
xCH4(g)+8H2S(g)→xCH4(g)+8H2(g)+S8(s),
в которой х означает любое число, которое показывает, что соотношение газообразного углеводорода и сероводорода является переменным и не имеет значения, поскольку оно остается неизменным.
Газ может вводиться в реактор непрерывно. До загрузки реагентов в реактор он может быть герметизирован и очищен инертным газом, таким как аргон или азот. В частности, если в реактор вводят несколько газов, газ(ы) также могут проходить через смеситель до поступления в реактор. Реактор предпочтительно представляет собой трубчатый или колонный реактор непрерывного действия, и могут использоваться несколько последовательно расположенных реакторов.
В микролабораторных масштабах может использоваться термопара, заключенная в стеклянную трубку с проводом высокого сопротивления. В средних лабораторных масштабах может осуществляться реакция колонного типа в многогорловой стеклянной колбе, горла которой оснащены подогреваемой реакционной колонной с переменной температурой для размещения наполнителя и адаптерами для добавления реагентов, контроля температуры и выхода продуктов. Реактор может быть изготовлен из жаростойкого боросиликатного или кварцевого стекла, производителями которого являются такие компании, как Pyrex®, Kimble Glass, United Glass Technologies или другие компании. Температура может измеряться термометром или термопарой посредством контакта со стеклом или другими способами, такими как бесконтактное измерение в инфракрасных лучах с лазерным наведением. Охлаждение и сбор жидких и твердых продуктов может осуществляться в колбе с помощью колонны Вигро или других средств. Охлажденные газы могут поступать через коллектор для жидкостей/твердых веществ в газовый пробоотборник и регулятор расхода.
В больших масштабах реактором может являться реактор башенного типа с насадкой или любой другой реактор множеств типов, обычно используемых для контактных реагентов. Реактор может быть футерован стеклом и/или изготовлен из устойчивых к сероводороду металлов или других материалов и также может содержать проницаемый для водорода пористый керамический материал или мембранные материалы других типов, если желательно отделять водород от потока газа. Используемая в промышленном масштабе колонна может иметь устойчивые к сероводороду металлические нагревательные/охлаждающие змеевики внутри зоны реакции, поскольку катализатор в идеале должен быть предварительно нагрет до рабочей температуры. После подачи газов в реактор и начала реакции эти же змеевики используются для отвода избыточного тепла, образующегося в ходе экзотермической реакции. В одном из вариантов осуществления реактором является покрытая катализатором колонна из проницаемой для водорода конструкционной керамики внутри сероводородного баллона для непрерывного отделения высвобождающегося водорода. Оборудование не ограничено оборудованием, описанным в заявке. Может использоваться любое оборудование при условии, что оно обеспечивает выполнение стадий способа.
Для обеспечения нагретой области в реакторе предусмотрен нагревательный элемент. Нагревательным элементом может являться любой элемент или устройство, которое обеспечивает тепло, но предпочтительно покрытая катализатором паровая труба или нагретый провод высокого сопротивления. Одним из примеров провода высокого сопротивления является никелево-хромовый провод высокого сопротивления, обычно именуемый нихромовым проводом. Для повышения скорости химической реакции в нагретой области реактора могут использоваться катализаторы. Предпочтительные катализаторы включают соединения меди, такие как карбонаты, гидроокиси, окиси или сульфиды меди, соединения ванадия, такие как окиси или сульфиды ванадия и соединения вольфрама, такие как окиси или сульфиды вольфрама и их смеси, но также может использоваться любой другой катализатор, ускоряющий реакцию. Примеры катализаторов включают без ограничения минералы, такие как малахит и азурит и химикаты, такие как пятиокись ванадия, сульфид ванадия, нихромовый провод, окиси хрома, сульфид вольфрама, окиси вольфрама, сульфит молибдена и двуокись титана. Другие катализаторы включают катализаторы, указанные в патенте US 6099819. Катализаторы могут использоваться в любой форме, включая порошки, гранулы и другие формы, применимые в заданном реакторе.
Катализатором может являться покрытие на носителе, таком как кольца или валики, или частицы, которые не являются настолько мелкими, чтобы препятствовать потоку газов через нагретый слой катализатора. Например, катализатор может состоять из ванадиевой стружки с окисленной поверхностью. Катализатор предпочтительно помещают в колонну с составом, обеспечивающим структурную устойчивость к газу, проходящему через реактор, над или в контакте с коллектором для приема или выпуска серы и очищенного газа. По желанию могут использоваться множество стадий и дополнительная фильтрация, чтобы обеспечить удаление уловленных частиц.
Давление в реакторе предпочтительно находится в пределах от атмосферного давления до 3000 фунтов/кв. дюйм (20684 кПа). Для ускорения реакции, где это применимо, может использоваться более высокое давление; также может использоваться давление ниже атмосферного. Реактор нагревают, чтобы получить нагретую область с температурой 50-700°С. Если в качестве нагревательного элемента используют катализатор, видимое отделение серы от потока газа происходит после нагретой области. При использовании катализатора, помимо провода высокого сопротивления, реакция разложения сероводорода, содержащегося в газе, протекает в интервале температур примерно от 50°С до температуры выше точки плавления серы, которая составляет около 115°С при атмосферном давлении, вплоть до около 700°С. При превышении точки плавления сера может стекать с катализатора и не покрывать его.
Если в качестве катализатора для контакта с газом используется провод высокого сопротивления, обычно требуются более высокие температуры. Температура нагретой области предпочтительно составляет 400-700°С. Также могут использоваться более высокие температуры.
В ходе осуществления способа по изобретению сероводород преобразуется в водород и серу и предпочтительно элементарный водород и элементарную серу. Предпочтительным является быстрое отделение серы от газов, чтобы высвобождающийся водород не вступал в реакцию с серой.
В одном из вариантов осуществления для удаления серы используют коллектор. Коллектором может являться накопитель, движущаяся лента, барабан или другая конструкция. Коллектор также может быть оснащен скребками или другими устройствам для удаления затвердевшей серы. Может использоваться множество стадий удаления сероводорода. Если колонна-реактор состоит из пористого материала, проницаемого для водорода и не проницаемого для газа, сероводорода или серы, такого как керамический материал с контролируемой пористостью, и колонна находится внутри другой колонны, не проницаемой для водорода и имеющей соответствующую конструкцию, водород может удаляться из газа и использоваться отдельно. Если какая-либо часть водород не отделилась от газа после реакции разложения сероводорода, газ будет укреплен водородом, будет иметь более высокое энергосодержание и будет выделять меньше двуокиси углерода при сгорании, чем газ, не подвергнутый переработке способом по изобретению.
Газообразный водород, образующийся при осуществлении способа согласно настоящему изобретению, может быть отделен от продуктов реакции посредством обычной мембранной технологии или другими средствами или может быть использован непосредственно для преобразования двуокиси углерода, присутствующей (естественным образом или специально добавленной) в газе, в воду в качестве основного продукта. При использовании способа согласно настоящему изобретению для разложения сероводорода на газ, содержащий двуокись углерода, водород, образующийся при разложении сероводорода, вступает в реакцию с двуокисью углерода в газе, в результате чего образуется вода, а также сера и углерод и/или вода и сероуглеродистые соединения, известные как сероуглероды.
Согласно другой особенности изобретения предложен способ преимущественного удаления загрязняющих веществ из газа, в котором используют газ, содержащий сероводород, углеводород и двуокись углерода, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород, вводят водород в реакцию с двуокисью углерода, чтобы получить воду и углерод и/или сероуглероды, окисляют водород кислородом двуокиси углерода и отделяют серу, воду и углерод и/или сероуглероды от газа. Этот способ может быть отображен следующими химическими реакциями:
хСН4(g)+8H2S(g)+4CO2(g)→xCH4(g)+8H2O(1)+S8(s)+4C(s) и/или
xCH4(g)+8H2S(g)+4CO2(g)→xCH4(g)+8H2O(1)+ сероуглероды;
в которых х означает любое число, которое показывает, что соотношение газообразного углеводорода и сероводорода является переменным и не имеет значения, поскольку оно остается неизменным.
Двуокись углерода может уже являться компонентом газа или может быть добавлена в газ с высоким содержанием сероводорода; сероводород может уже являться компонентом газа или может быть добавлен в газ с высоким содержанием двуокиси углерода. Водород, образующийся при разложении сероводорода, вступает в реакцию с кислородом двуокиси углерода и удаляет двуокись углерода, содержащуюся в газе. Предпочтительная температура этой реакции составляет 59°С и выше, чтобы высвобождающийся водород вступал в реакцию с двуокисью углерода.
В процессе высвобождения газообразного водорода и элементарной серы из сероводорода газообразный водород сгорает или окисляется под действием кислорода и выделяет энергию, как это представлено следующими уравнениями:
H2S(g)→H2(g)+S(s) и
2H2(g)+O2(g)→2H2O(g)+ энергия или
8H2S(g)→8H2(g)+S8(s) и
2H2(g)+O2(g)→2H2O(g)+ энергия.
Как показано далее в Таблице 1, в ходе этого процесса окисления водорода выделяется примерно в 12 больше энергии, чем было потреблено в ходе первой реакции высвобождения водорода из связи с серой.
Таблица 1
Реагент + Реагент + Реагент=> Продукт + Продукт + Продукт + Энтальпия (АН) кДж/моль Свободная энергия Гиббса (AG) Спонтанная Т(К)
H2S(g) H2(g) S(s) 20,2 33,0 -468,7
CH4(g) H2S(g) CH4(g) H2(g) S(s) 20,2 33,0 -468,7
CH4(g) 2H2S(g) CO2(g) CH4(g) 2H2O(1) 2S(s)+C(s) и/или сероуглероды -137,8 -14,0 331,6
2H2(g) O2(g) 2H2O(g) -483,7 -457,2 5449,0
В изобретении также предложен способ получения водорода в качестве топлива, в котором газ, содержащий сероводород, хранят в резервуаре в виде сжиженного газа, используют реактор, имеющий нагревательный элемент, который соединен с резервуаром, выпускают газ из резервуара в реактор, подают газ через нагретую область с температурой около 50-700°С, преобразуют сероводород в серу и водород, и отделяют серу от газа.
Сероводород является жидким при комнатной температуре и относительно низком давлении около 250 фунтов/кв. дюйм (1724 кПа). Его можно хранить и транспортировать, а затем преобразовывать в газообразный водород и серу в качестве побочного продукта, который может быть возвращен в повторный цикл. Кроме того, при сгорании водорода образуется только водяной пар в отличие от загрязняющих веществ, образующихся при сгорании топлива других видов.
Использование водорода в качестве топлива может быть, в частности, применимо в сфере коммунальных услуг и транспорта, поскольку водород является полностью сгорающим топливом и может храниться в виде сжиженного газа низкого давления в обычных резервуарах, таких как баллоны. Водород как таковой обладает довольно высокими реакционной способностью и воспламеняемостью. Для хранения и транспортировки водорода обычно необходимы толстостенные стальные баллоны очень высокого давления до 3000 фунтов/кв. дюйм (20684 кПа). С другой стороны, сероводород не обладает такими реакционной способностью и воспламеняемостью и может транспортироваться в тонкостенных (и, следовательно, очень мало весящих) баллонах под очень низким давлением менее 300 фунтов/кв. дюйм (2068 кПа). Баллон вмещает в 12 раз больше сероводорода, чем вмещает водорода баллон такого же размера.
В этом варианте осуществления реактор может являться частью резервуара или может быть соединен с резервуаром шлангом или другим устройством для подачи газообразного сероводорода. Если желателен газообразный водород, поток сероводорода 80 поступает в камеру 51, устойчивую к сероводороду, сере и водороду и не проницаемую для сероводорода, серы и водорода, и контактирует с покрытой катализатором нагретой областью 52, которая также является проницаемой для водорода мембраной, которая не проницаема для сероводорода и серы. Водород 81 высокой степени чистоты поступает через проницаемую для водорода мембрану и выходит из бака реактора через направляющую трубу. В этом варианте осуществления нагрев нагретой областью 52 осуществляют посредством нихромового провода 61. С целью дополнительного удаления сероводорода также может осуществляться окончательная фильтрация через другую проницаемую для водорода мембрану. Кроме того, для удаления следов сероводорода также может использоваться слой абсорбирующего сероводород материала. Сера может накапливаться под дном реактора.
В изобретении также предложен газ, преимущественно не содержащий загрязняющих веществ, которые удаляют описанными выше способами, и система для преимущественного удаления загрязняющих веществ из газа. Как показано на фиг.2, система имеет источник 1 подачи по меньшей мере сероводорода и углеводорода в реактор 3. Реактор 3 имеет нагревательный элемент, содержащий катализатор и/или провод высокого сопротивления. Для смешивания газов, поступающих из источника 1, может быть предусмотрен смеситель 2, такой как неподвижный смеситель. Продукты реактора 3 преимущественно не содержат сероводород и включают преимущественно не содержащий серу газ 4 и серу 5. Продуктом также может являться вода.
Хотя способ по изобретению может осуществляться в любой установке или системе, способной выполнять и применимой для выполнения каждой из стадий описанного способа, способ предпочтительно осуществляют с использованием предпочтительных вариантов описанной системы. Соответственно, терминология, которая используется и определения которой даны в изобретении применительно к одним способу и системе, в равной мере применима к другим способу и системе.
Далее приведены примеры, чтобы проиллюстрировать способ, систему и получаемый газ согласно изобретению. Эти примеры имеют целью помочь специалистам в данной области техники в понимании изобретения. Тем не менее изобретение ни коей мере не ограничено ими.
Примеры
Пример 1
Способ удаления сероводорода из природного газа
По центру трубки 130 из стекла Pyrex® длиной 20 см с НД 7 мм и внутренним диаметром (ВД) приблизительно 5 мм и трубки "Т" 140 из стекла Pyrex®, с противоположных сторон снабженной соответствующими резьбовыми адаптерами 145, поместили термопару 110, заключенную в трубку 120 из стекла Pyrex® с наружным диаметром (НД) 3 мм (для измерения температуры реакции), в результате чего образовалась мини-реакционная камера 150, показанная на фиг.3 и 4. Часть наружной поверхности 7-мм стеклянной трубки 130 обернули спиралью из нихромового провода 160 высокого сопротивления, состоящего на 75% из никеля и на 25% из хрома, с расстоянием около 2 мм между витками спирали, а температуру нагревательного элемента в этой реакционной камере регулировали с помощью лабораторного реостата.
С третьей стороны 165 трубки "Т" 140 в реакционную трубку 130 подавали контрольные газы. Осуществили испытания с использованием катализаторов, в ходе которых катализатор (не показан) поместили в пространство между стеклянной трубкой 120 термопары и внутренней поверхностью реакционной стеклянной трубки 130. Создали мини-реактор путем установки реакционной трубки 130 слегка вниз под углом около 10 градусов относительно горизонтали и предотвращения перемещения вниз катализатора с помощью пористого стопора 125 из стекловолокна, как это показано на фиг.3. Для регулирования расхода газа на выходе из реакционной трубки 130 использовали кусок четвертьдюймовой трубки (гибкой трубки) ГО Tygon ® 170, один конец которой прикрепили к нижнему концу стеклянной реакционной трубки 130, а противоположный конец соединили со стеклянным барботером или расходомерной трубкой (не показана). При использовании в этой установке контрольных газов, представлявших собой смесь природного газа и сероводорода, и пятиокиси ванадия в качестве катализатора, на выходе из реактора при температуре от около 115 до 700°С и атмосферном давлении отсутствовал сероводород, улавливаемый органами обоняния человека, т.е. его содержание в частях на миллиард было очень низким (концентрация 4,7 мдрд-1 обычно считается улавливаемой органами обоняния человека).
Без использования катализатора реакция не наблюдалась. При замене химического катализатора нихромовым проводом высокого сопротивления, помещенным внутрь стеклянной трубки, а не снаружи, наблюдалась такая же реакция, но при температурах около 400°С и выше.
Пример 2
Способ удаления сероводорода и двуокиси углерода из природного газа
По центру трубки 130 из стекла Pyrex® длиной 20 см с НД 7 мм и внутренним диаметром (ВД) приблизительно 5 мм и трубки "Т" 140 из стекла Pyrex®, с противоположных сторон снабженной соответствующими резьбовыми адаптерами 145, поместили термопару 110, заключенную в трубку 120 из стекла Pyrex® с наружным диаметром (НД) 3 мм (для измерения температуры реакции), в результате чего образовалась мини-реакционная камера 150. Часть наружной поверхности 7-мм стеклянной трубки 130 обернули спиралью из нихромового провода 160 высокого сопротивления, состоящего на 75% из никеля и на 25% их хрома, с расстоянием около 2 мм между витками спирали, а температуру нагревательного элемента в этой реакционной камере регулировали с помощью лабораторного реостата.
С третьей стороны 165 трубки "Т" 140 в реакционную трубку 130 подавали контрольные газы. Осуществили испытания с использованием катализаторов, в ходе которых катализатор (не показан) поместили в пространство между стеклянной трубкой 120 термопары и внутренней поверхностью реакционной стеклянной трубки 130. Создали мини-реактор путем установки реакционной трубки 130 слегка вниз под углом около 10 градусов относительно горизонтали и предотвращения перемещения вниз катализатора с помощью пористого стопора 125 из стекловолокна. Для регулирования расхода газа на выходе из реакционной трубки 130 использовали кусок четвертьдюймовой трубки (гибкой трубки) ID Tygon ® 170, один конец которой прикрепили к нижнему концу стеклянной реакционной трубки 130, а противоположный конец соединили со стеклянным барботером или расходомерной трубкой (не показана). При использовании в этой установке контрольных газов, представлявших собой смесь природного газа, сероводорода и двуокиси углерода, в соотношении 2 моль сероводорода на 1 моль двуокиси углерода, и малахита в качестве катализатора, на выходе из реактора при температуре от около 115 до 300°С и атмосферном давлении отсутствовал сероводород, улавливаемый органами обоняния человека, т.е. его содержание в частях на миллиард было очень низким (концентрация 4,7 млрд-1 обычно считается улавливаемой органами обоняния человека).
Без использования катализатора реакция не наблюдалась. При замене химического катализатора нихромовым проводом высокого сопротивления, помещенным внутрь стеклянной трубки, а не снаружи, наблюдалась такая же реакция, но при температурах около 400°С и выше.
Пример 3
Способ восстановления водорода из сероводорода
По центру трубки 130 из стекла Pyrex® длиной 20 см с НД 7 мм и внутренним диаметром приблизительно 5 мм и трубки "Т" 140 из стекла Pyrex®, с противоположных сторон снабженной соответствующими резьбовыми адаптерами 145, поместили термопару 110, заключенную в трубку 120 из стекла Pyrex® с наружным диаметром (НД) 3 мм (для измерения температуры реакции), в результате чего образовалась мини-реакционная камера 150. Часть наружной поверхности 7-мм стеклянной трубки 130 обернули спиралью из нихромового провода 160 высокого сопротивления, состоящего на 75% из никеля и на 25% их хрома, с расстоянием около 2 мм между витками спирали, а температуру нагревательного элемента в этой реакционной камере регулировали с помощью лабораторного реостата.
С третьей стороны 165 трубки "Т" 140 в реакционную трубку 130 подавали контрольные газы. Осуществили испытания с использованием катализаторов, в ходе которых катализатор (не показан) поместили в пространство между стеклянной трубкой 120 термопары и внутренней поверхностью реакционной стеклянной трубки 130. Создали мини-реактор путем установки реакционной трубки 130 слегка вниз под углом около 10 градусов относительно горизонтали и предотвращения перемещения вниз катализатора с помощью пористого стопора 125 из стекловолокна. Для регулирования расхода газа на выходе из реакционной трубки 130 использовали кусок четвертьдюймовой трубки (гибкой трубки) ID Tygon ® 170, один конец которой прикрепили к нижнему концу стеклянной реакционной трубки 130, а противоположный конец соединили со стеклянным барботером или расходомерной трубкой (не показана). При использовании в этой установке сероводорода в качестве контрольного газа и пятиокиси ванадия в качестве катализатора получили водород, не имевший запаха сероводорода.
Без использования катализатора реакция не наблюдалась. При замене химического катализатора нихромовым проводом высокого сопротивления, помещенным внутрь стеклянной трубки, а не снаружи, наблюдалась такая же реакция, но при температурах около 400°С и выше.
Пример 4
Способ удаления сероводорода из газа в более крупных лабораторных масштабах
Как показано на фиг.5, использовали заполненную катализатором вертикальную боросиликатную колонну 230 с НД 25 мм производства компании United Glass Technologies, Inc. В колонну 230 и трубку "Т" 240 с соответствующими резьбовыми адаптерами 245 поместили термопару 210, заключенную в стеклянную трубку 220, в результате чего образовалась реакционная камера 250. Часть наружной поверхности колонны 230 обернули спиралью нихромового провода высокого сопротивления 260.
С третьей стороны 265 трубки "Т" 240 в колонну 230 подавали контрольные газы. Перемещение катализатора вниз предотвращали посредством пористого стопора из стекловолокна 225. Поток газа, выходящий из колонны 230, поступал в накопитель 270, представлявший собой сужающуюся колбу 3 объемом 500 см3 из боросиликатного стекла Wilmad®. Для отбора проб продукта использовали глазную пипетку 275. Для конденсации воды и серы использовали пару заключенных в кожух конденсаторов 280, по наружным кожухам которых циркулировала сильно охлажденная вода. Два адаптера 246 удерживали ротаметр 290, который представляет собой расходомер для визуального контроля потока газа, выходящего из реактора. Для последовательного соединения с газоанализатором и другим реактором использовали вторую трубку "Т" 241.
В описанном проточном реакторе непрерывного действия сероводород и двуокись углерода (в соотношении 2 моль H2S на 1 моль CO2), составлявшие 50% газовой смеси, и метан, составлявший остальные 50% газовой смеси, ввели в реакцию, которая после кратковременного контакта с малахитом в качестве катализатора при температуре 154°С продолжалась до завершения примерно на 99,89%. Жидкие и твердые продукты (воду, серу и углерод) собрали в трехгорлую колбу с круглым дном, помещенную под колонну, а очищенный метан в виде непрерывного потока выпускали из колбы через низкотемпературный конденсатор в газовый хроматограф (отбор проб осуществляли приблизительно каждые 40 мин). Было установлено, что с термодинамической точки зрения эта реакция является благоприятной при комнатной и более высокой температуре, и протекает исключительно быстро с резким уменьшением объема и повышением температуры, поскольку является экзотермической.
Хотя изобретение подробно описано со ссылкой на конкретные варианты его осуществления, специалистам в данной области техники ясно, что в него могут быть внесены различные изменения и усовершенствования, не выходящие за пределы существа и объема изобретения. Таким образом, подразумевается, что такие усовершенствования и варианты охраняются настоящим изобретением при условии, что они входят в объем прилагаемой формулы изобретения и ее эквивалентов.

Claims (17)

1. Способ получения водорода из потока газа, содержащего сероводород или сероводород и диоксид углерода, согласно которому:
а) в камеру вертикального реактора вводят поток указанного газа, при этом указанная камера реактора содержит внешнюю цилиндрическую оболочку, определяющую реакционную камеру, а указанная реакционная камера включает зону нагрева, мембрану и конденсатор серы, а указанный реактор содержит:
i. впускное отверстие для ввода потока газа в реакционную камеру;
ii. зону нагрева, расположенную в реакционной камере и приспособленную для контакта с указанным потоком газа, при этом указанная зона нагрева содержит катализатор, выбранный из группы, включающей азурит, малахит и металл, содержащий 75% никеля и 25% хрома;
iii. мембрану, представляющую собой керамическую мембрану, расположенную в реакционную камере, при этом указанная керамическая мембрана является проницаемой для водорода, но непроницаема для сероводорода и паров серы, а пропуск потока определяется содержимым мембраны, сообщающейся с первым выпускным отверстием;
iv. конденсатор серы, расположенный в реакционной камере ниже мембраны и сообщающийся со вторым выпускным отверстием;
v. отверстие для выпуска газа, сообщающееся с реакционной камерой;
б) подвергают сероводород или, необязательно, сероводород и диоксид углерода, реакции в зоне нагрева при температуре от 400 до 700°C, при которой конверсия сероводорода составляет по меньшей мере 95%, с получением в реакционной камере водорода и паров серы и, необязательно, воды;
в) непрерывно и немедленно удаляют водород через указанную мембрану и отводят полученный водород через первое выпускное отверстие;
г) непрерывно конденсируют пары серы на конденсаторе серы с получением серы в виде жидкости, которую отводят через второе выпускное отверстие; и
д) отводят отработанный в реакторе газ из реакционной камеры через отверстие для выпуска газа, при этом указанный отработанный в реакторе газ по существу не содержит сероводород и серу.
2. Способ по п. 1, в котором отработанный в реакторе газ содержит не детектируемое количество сероводорода (менее 4,7 млрд-1).
3. Способ по п. 1, в котором указанный газ представляет собой природный газ.
4. Способ по п. 1, в котором указанный реактор содержит одну или более камер реактора, соединенных последовательно.
5. Способ по п. 1, в котором указанный катализатор представлен в форме порошка или гранул.
6. Способ по п. 1, в котором указанный катализатор размещен на носителе.
7. Способ по п. 1, в котором указанный катализатор содержит азурит.
8. Способ по п. 1, в котором указанный катализатор содержит малахит.
9. Способ по п. 1, в котором указанный катализатор содержит металл, содержащий 75% никеля и 25% хрома.
10. Способ по п. 1, в котором давление в камере реактора составляет примерно от атмосферного давления до давления 20684 кПа.
11. Способ по п. 1, в котором поток газа содержит до 90% сероводорода.
12. Способ по п. 1, в котором поток газа содержит смесь природного газа, сероводорода и диоксида углерода, при этом сероводород присутствует в соотношении 2 моль к 1 моль диоксида углерода, а указанный катализатор содержит малахит, что обеспечивает получение отработанного в реакторе газа, содержащего не детектируемое количество сероводорода (менее 4,7 млрд-1).
13. Способ по п. 1, в котором указанный катализатор содержит малахит, а конверсия сероводорода составляет по меньшей мере 99,9%.
14. Реактор для непрерывной и, по существу, полной конверсии сульфида водорода в водород и серу в виде жидкости в одной вертикальной камере реактора, при этом указанная камера реактора содержит внешнюю цилиндрическую оболочку, определяющую реакционную камеру, а указанная реакционная камера включает зону нагрева, мембрану и конденсатор серы, а указанный реактор содержит:
i. впускное отверстие для ввода потока газа в реакционную камеру;
ii. зону нагрева, расположенную в реакционной камере и приспособленную для контакта с указанным потоком газа, при этом указанная зона нагрева содержит катализатор, выбранный из группы, включающей азурит, малахит и металл, содержащий 75% никеля и 25% хрома;
iii. мембрану, представляющую собой керамическую мембрану, расположенную в реакционную камере, при этом указанная керамическая мембрана является проницаемой для водорода, но непроницаема для сероводорода и паров серы, а пропуск потока определяется содержимым мембраны, сообщающейся с первым выпускным отверстием;
iv. конденсатор серы, расположенный в реакционную камере ниже мембраны и сообщающийся со вторым выпускным отверстием;
v. отверстие для выпуска газа, сообщающееся с реакционной камерой.
15. Реактор по п. 14, дополнительно содержащий коллектор, сообщающийся с реакционной камерой, для удаления серы из реактора.
16. Реактор по п. 15, в котором указанным коллектором является приемный резервуар, движущаяся лента или барабан.
17. Реактор по п. 14, в котором указанная камера реактора содержит термоустойчивое боросиликатное или кварцевое стекло.
RU2010147290/05A 2008-04-21 2009-04-21 Преобразование сероводорода в водород RU2568976C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12495408P 2008-04-21 2008-04-21
US61/124,954 2008-04-21
US12/427,571 2009-04-21
US12/427,571 US20090263312A1 (en) 2008-04-21 2009-04-21 Hydrogen Sulfide Conversion to Hydrogen
PCT/US2009/041294 WO2009132031A2 (en) 2008-04-21 2009-04-21 Hydrogen sulfide conversion to hydrogen

Publications (2)

Publication Number Publication Date
RU2010147290A RU2010147290A (ru) 2012-05-27
RU2568976C2 true RU2568976C2 (ru) 2015-11-20

Family

ID=40887924

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010147290/05A RU2568976C2 (ru) 2008-04-21 2009-04-21 Преобразование сероводорода в водород

Country Status (7)

Country Link
US (3) US20090263312A1 (ru)
EP (1) EP2288428A2 (ru)
CN (1) CN102065983A (ru)
CA (1) CA2722190A1 (ru)
MX (1) MX2010011621A (ru)
RU (1) RU2568976C2 (ru)
WO (1) WO2009132031A2 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031752A2 (en) 2009-09-08 2011-03-17 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ co2 capture
EP2707583B1 (en) 2011-05-11 2019-07-10 Ohio State Innovation Foundation Oxygen carrying materials
PL2890717T3 (pl) 2012-08-31 2020-08-10 Immunogen, Inc. Testy i zestawy diagnostyczne do wykrywania receptora folianu
EP2953892B1 (en) 2013-02-05 2023-04-05 Ohio State Innovation Foundation Methods for fuel conversion
CN104752385B (zh) * 2015-01-26 2018-02-02 汕头市骏码凯撒有限公司 一种ic封装用超软键合丝及其制造方法
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
PH12017000155A1 (en) * 2017-05-25 2019-01-21 V Celis Roberto Device and method of dissociating water in a power plant
WO2019027972A1 (en) 2017-07-31 2019-02-07 Ohio State Innovation Foundation REACTOR SYSTEM WITH UNEQUAL OPERATING PRESSURE OF REACTOR ASSEMBLY
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
WO2020033500A1 (en) 2018-08-09 2020-02-13 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
AU2020271068A1 (en) 2019-04-09 2021-09-30 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
IL296627A (en) * 2020-03-20 2022-11-01 Standard H2 Inc Process and apparatus for obtaining hydrogen and sulfur from hydrogen sulfide
CN113916949B (zh) * 2021-09-30 2024-01-26 中国科学院西北生态环境资源研究院 一种用于烃类化合物单分子氢同位素测定的催化裂解装置及方法
CN115072670B (zh) * 2022-05-19 2023-06-13 西南石油大学 一种熔融盐分解硫化氢制取单质硫和氢气的反应装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962409A (en) * 1973-10-29 1976-06-08 Agency Of Industrial Science & Technology Process for production of hydrogen and sulfur from hydrogen sulfide as raw material
US5397556A (en) * 1992-12-16 1995-03-14 The Regents Of The Unviversity Of California Process for recovery of sulfur from acid gases
EP1411029A1 (en) * 2001-06-15 2004-04-21 David Systems & Technology S.L. Catalytic membrane reactor that is used for the decomposition of hydrogen sulphide into hydrogen and sulphur and the separation of the products of said decomposition
RU2232128C2 (ru) * 1998-08-25 2004-07-10 Гастек Н.В. Способ извлечения серы из газа, содержащего сероводород

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US354393A (en) * 1886-12-14 Carl feiedeich glaus
US349981A (en) * 1886-09-28 Gael fbiedbich glaus
US2979384A (en) * 1958-12-22 1961-04-11 Parsons Co Ralph M Process for production of hydrogen and sulfur
US3374183A (en) * 1961-03-30 1968-03-19 Ethyl Corp Copper oxide-alumina catalyst composition
FR2369209A1 (fr) * 1976-11-02 1978-05-26 Inst Francais Du Petrole Procede d'oxydation du soufre et des composes du soufre
JPS53130291A (en) * 1977-04-20 1978-11-14 Agency Of Ind Science & Technol Method and apparatus for producing hydrogen using hydrogen sulfide as raw material
US4618723A (en) * 1982-12-10 1986-10-21 The Standard Oil Company Reduction of carbon oxides with hydrogen sulfide
US4921936A (en) * 1984-08-27 1990-05-01 Sultech, Inc. Process for destruction of toxic organic chemicals and the resultant inert polymer by-product
US5306475A (en) * 1987-05-18 1994-04-26 Ftu Gmbh Technische Entwicklung Und Forschung Im Umweltschutz Reactive calcium hydroxides
US4999178A (en) * 1988-12-08 1991-03-12 Bowman Melvin G Thermochemical cycle for splitting hydrogen sulfide
US5334363A (en) * 1992-12-01 1994-08-02 Marathon Oil Company Process for recovering sulfur and hydrogen from hydrogen sulfide
US5380987A (en) * 1993-11-12 1995-01-10 Uop Electric heater cold pin insulation
US5578189A (en) * 1995-01-11 1996-11-26 Ceramatec, Inc. Decomposition and removal of H2 S into hydrogen and sulfur
US6461408B2 (en) * 1995-11-06 2002-10-08 Robert E. Buxbaum Hydrogen generator
US6299744B1 (en) * 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
CA2318734C (en) * 1998-01-26 2007-07-03 Tda Research, Inc. Catalysts for the selective oxidation of hydrogen sulfide to sulfur
AU3914600A (en) 1999-03-24 2000-10-09 University Of Wyoming System for recovery of sulfur and hydrogen from sour gas
US6497855B1 (en) * 2000-03-22 2002-12-24 Lehigh University Process for the production of hydrogen from hydrogen sulfide
US6852291B1 (en) * 2000-10-11 2005-02-08 Innovadyne Technologies, Inc. Hybrid valve apparatus and method for fluid handling
US6572678B1 (en) * 2001-12-28 2003-06-03 Membrane Technology And Research, Inc. Natural gas separation using nitrogen-selective membranes of modest selectivity
US7001446B2 (en) * 2002-03-05 2006-02-21 Eltron Research, Inc. Dense, layered membranes for hydrogen separation
US20030182860A1 (en) * 2002-04-01 2003-10-02 Devries Peter D. Method and apparatus for providing hydrogen
CA2488295A1 (en) * 2002-06-04 2003-12-11 University Of Wyoming Membrane for hydrogen recovery from streams containing hydrogen sulfide
CA2501054A1 (en) * 2002-10-09 2004-04-22 Hyradix, Inc. Hydrogen generator having sulfur compound removal and processes for the same
RU2239594C1 (ru) * 2003-10-07 2004-11-10 Институт катализа им. Г.К. Борескова СО РАН Способ разложения сероводорода
US7455828B2 (en) * 2004-03-01 2008-11-25 H2S Technologies, Ltd. Process and apparatus for converting hydrogen sulfide into hydrogen and sulfur
US20080173586A1 (en) * 2005-05-19 2008-07-24 Kanazirev Vladislav I Method of removing impurities from gas or liquid streams using copper oxide and halide salt
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
KR100764891B1 (ko) 2005-12-13 2007-10-09 한국화학연구원 황화수소 광분해용 가시광 금속산화물계 광촉매와, 상기가시광 촉매를 이용한 황화수소의 광분해반응으로 수소를제조하는 방법
US7938893B2 (en) * 2006-04-18 2011-05-10 Gas Technology Institute Membrane reactor for H2S, CO2 and H2 separation
FR2903976B1 (fr) * 2006-07-18 2008-11-21 Inst Francais Du Petrole Procede de production d'hydrogene a partir d'hydrogene sulfure
US7985332B2 (en) * 2007-12-20 2011-07-26 Exxonmobil Research And Engineering Company Electrodesulfurization of heavy oils using a divided electrochemical cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962409A (en) * 1973-10-29 1976-06-08 Agency Of Industrial Science & Technology Process for production of hydrogen and sulfur from hydrogen sulfide as raw material
US5397556A (en) * 1992-12-16 1995-03-14 The Regents Of The Unviversity Of California Process for recovery of sulfur from acid gases
RU2232128C2 (ru) * 1998-08-25 2004-07-10 Гастек Н.В. Способ извлечения серы из газа, содержащего сероводород
EP1411029A1 (en) * 2001-06-15 2004-04-21 David Systems & Technology S.L. Catalytic membrane reactor that is used for the decomposition of hydrogen sulphide into hydrogen and sulphur and the separation of the products of said decomposition

Also Published As

Publication number Publication date
WO2009132031A2 (en) 2009-10-29
WO2009132031A3 (en) 2009-12-17
US20140186259A1 (en) 2014-07-03
MX2010011621A (es) 2011-01-14
EP2288428A2 (en) 2011-03-02
US20120076721A1 (en) 2012-03-29
CN102065983A (zh) 2011-05-18
US9290386B2 (en) 2016-03-22
RU2010147290A (ru) 2012-05-27
CA2722190A1 (en) 2009-10-29
US20090263312A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
RU2568976C2 (ru) Преобразование сероводорода в водород
Chivers et al. The thermal decomposition of hydrogen sulfide over transition metal sulfides
US8926737B2 (en) Process for producing purified natural gas
US7138101B2 (en) Two-stage catalytic process for recovering sulfur from an H2S-containing gas stream
Ma et al. The catalytic reduction of SO2 by CO over lanthanum oxysulphide
WO2002032810A1 (en) Method and apparatus for removing sulfur compound in gas containing hydrogen sulfide, mercaptan, carbon dioxide and aromatic hydrocarbon
US7108842B2 (en) Process for the catalytic partial oxidation of H2S using staged addition of oxygen
US11413574B2 (en) Systems, methods and materials for hydrogen sulfide conversion
EP1866061A1 (en) Process for producing a gas stream depleted of hydrogen sulphide
US7291320B2 (en) Process for the selective oxidation of hydrogen sulfhide
GB2513962A (en) Catalytic treatment
CA3188100A1 (en) Melt pyrolysis of hydrocarbon feedstock containing nitrogen and/or hydrogen sulphide
Vakili et al. Removal of hydrogen sulfide from gaseous streams by a chemical method using ferric sulfate solution
CA2902660A1 (en) Method for removing sulphur dioxide from gas streams, using titanium dioxide as catalyst
Lee Heterogeneous Catalytic H2S Oxidation within Supercritical CO2 for a New Sulfur Recovery Process
Srinivas et al. Hybrid Sulfur Recovery Process for Natural Gas Upgrading Last Technical Report before Novation from URS Corp. to CrystaTech, Inc.
GB2221853A (en) Claus reaction furnace
SORIANO et al. Catalytic production of elemental sulfur from the thermal decomposition of H2S in the presence of CO2
Bedrossian Iron promoted activated alumina for scavenging free oxygen in claus converters

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170422