RU2568489C2 - Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах - Google Patents

Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах Download PDF

Info

Publication number
RU2568489C2
RU2568489C2 RU2013139993/05A RU2013139993A RU2568489C2 RU 2568489 C2 RU2568489 C2 RU 2568489C2 RU 2013139993/05 A RU2013139993/05 A RU 2013139993/05A RU 2013139993 A RU2013139993 A RU 2013139993A RU 2568489 C2 RU2568489 C2 RU 2568489C2
Authority
RU
Russia
Prior art keywords
polymer
carbazole
organic light
electroluminescent material
poly
Prior art date
Application number
RU2013139993/05A
Other languages
English (en)
Other versions
RU2013139993A (ru
Inventor
Александр Витальевич Аккуратов
Сергей Леонидович Никитенко
Михаил Гершович Каплунов
Павел Анатольевич Трошин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority to RU2013139993/05A priority Critical patent/RU2568489C2/ru
Publication of RU2013139993A publication Critical patent/RU2013139993A/ru
Application granted granted Critical
Publication of RU2568489C2 publication Critical patent/RU2568489C2/ru

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Изобретение относится к новым сопряженным полимерам, которые могут быть использованы в качестве электролюминесцентного материала в органических светоизлучающих диодах. Предлагается сопряженный полимер на основе карбазола и цикопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах. Предложенный сопряженный полимер имеет максимум люминесценции в диапазоне 510-570 нм, обладает повышенной стабильностью и улучшенными зарядово-транспортными свойствами. 2 н.п. ф-лы, 9 ил., 2 пр.

Description

Изобретение относится к области органической электроники, а именно к органическим светоизлучающим диодам. Органические светоизлучающие диоды интенсивно используют для создания дисплеев и осветительных панелей. В последнем случае особенно важно обеспечить низкую стоимость конечного продукта, что требует использования самых современных технологий и дешевых функциональных и конструкционных материалов.
Органические светоизлучающие диоды на основе полимерных материалов известны очень давно. Тем не менее, интенсивные исследования в этой области продолжаются и на сегодняшний день [1 - N.Т. Kalyani, S.J. Dhoble, Organic light emitting diodes: Energy saving lighting technology - A review. Renewable and sustainable energy reviews, 2012, 16, 2696; 2 - T. Yamada, Y. Tsubata, Recent Progress and Future Perspectives of Light Emitting Polymers for Full-color Display, J. Synth. Org. Chem. Jap.2012, 70, 473; 3 - M.S. AlSalhi, J. Alam. L.A.; Pass, M. Raja, Recent Advances in Conjugated Polymers for Light Emitting Devices. Int. J. Mol. Sci. 2011, 12, 2036; 4 - С.M. Zhong, С.H. Duan, F. Huang, H.B. Wu, Y. Cao, Chem. Mater. 2011, 23, 326].
Человеческий глаз наиболее чувствителен к зеленому свету. Поэтому зеленые органические светоизлучающие диоды перспективны для использования в сигнальной технике (предупреждающие надписи, знаки, указатели, табло и т.п.) и в декоративной светотехнике. Особый интерес представляют дешевые органические светоизлучающие диоды на основе растворимых полимерных материалов. Проблема, которая решается в данном изобретении, - это создание простых и дешевых полимеров с зеленой люминесценцией для использования их в качестве электролюминесцентных материалов в органических светоизлучающих диодах. Термин электролюминесцентный материал является общеупотребимым в области электроники и обозначает материал, способный образовывать экситоны и излучать свет при прохождении через него электрического тока.
Ранее была раскрыта формула полимера Р1, содержащего комбинацию карбазольных и хиноксалиновых звеньев, и обладающего зеленой фотолюминесценцией в растворе (Фиг. 1) [5 - J. - F. Morin, М. Leclerc, 2,7-Carbazole-Based Conjugated Polymers for Blue, Green, and Red Light Emission. Macromolecules 2002, 35, 8413-8417]. Однако исследование полимера P1 как электролюминесцентного материала в органических светоизлучающих диодах выполнено не было.
Была раскрыта также формула карбазолсодержащего полимера Р2 (Фиг. 1), который показал приемлемые характеристики в органических светоизлучающих диодах: яркость 333 кд/м2 при 10.1 В, эффективность 0.77% [6 - Y. Wang, L. Hou, K. Yang, J. Chen, F. Wang, Y. Cao, Conjugated Silole and Carbazole Copolymers: Synthesis, Characterization, Single-Layer Light-Emitting Diode, and Field Effect Carrier Mobility. Macromol. Chem. Phys. 2005. 206, 2190-2198]. Указанные оптимальные характеристики были достигнуты для полимера с содержанием силольного блока около 20%. Недостатком полимера Р2 является низкая дырочная подвижность (4·10-6 см2/В·с) и неспособность к транспорту отрицательных носителей зарядов-электронов. Низкая подвижность положительных носителей зарядов может быть связана как с нелинейным строением цепи полимера Р2 за счет замещения в положениях 3 и 6 карбазольного цикла, так и с присутствием непланарного дифенилсилольного фрагмента в качестве структурного блока. Кроме того, получение полимера Р2 является сложной синтетической задачей.
В связи с вышесказанным, актуальной является задача разработки сопряженных полимеров с максимумом люминесценции в диапазоне 520-570 нм, обладающих улучшенными зарядово-транспортными свойствами.
Поставленная задача решается в данном изобретении с помощью сопряженного полимера на основе карбазола и циклопентадитиофена Poly-1, молекулярное строение которого представлено на Фиг. 2 (молекулярное строение полимера Poly-1), и применением его в качестве электролюминесцентного материала в органических светоизлучающих диодах.
Полимер Poly-1 был получен по стандартной реакции поликонденсации Сузуки в соответствии со схемой, представленной на Фиг. 3. Средневесовая молекулярная масса полимера составила 9960 г/моль, а коэффициент полидисперсности - 1.65. ГПХ-хроматограмма для полимера Poly-1 представлена на Фиг. 4. В общем случае, для использования в органических электронных устройствах пригодны полимеры со степенью полимеризации n от 5 до 200.
Реакция поликонденсации Сузуки широко используется для синтеза материалов для органической электроники, в частности сопряженных полимеров для органических светоизлучающих диодов [7 - Y. Hoshi; S. Funyu, Preparation of Polymers for Organic Light-emitting Diodes Using Suzuki-Miyaura Coupling Reaction and Improvements of their Properties J. Synth. Org. Chem. Jap. 2012, 70, 442].
Полимер Poly-1 обладает оптимальной молекулярной структурой, обуславливающей его высокую стабильность и улучшенные зарядово-транспортные свойства. Дырочная подвижность в пленках полимера Poly-1, измеренная методом регистрации тока ограниченного объемным зарядом (SCLC), составила 4·10-3 см2/В·с. Таким образом, полимер Poly-1 превосходит полимер Р2, известный из предшествующего уровня техники, по своим электрическим свойствам на 3 порядка. Столь выраженные различия могут быть связаны с тем, что полимер Poly-1, в отличие от прототипа Р2, имеет оптимальное молекулярное строение, выражающееся, в частности, в планарной структуре основной цепи и высокой степени ее линейности, обусловленной замещением карбазольного фрагмента по положениям 2 и 7, а не 3 и 6, как в Р2.
Важнейшей особенностью полимера Poly-1 является его сбалансированный спектр люминесценции. В спектре фотолюминесценции наблюдается два максимума: при 550 и 584 нм, что соответствует зеленой цветности свечения (Фиг 5., спектр фотолюминесценции полимера Poly-1). Материалы с подобными характеристиками являются оптимальными для использования в зеленых органических светоизлучающих диодах.
Конструкция органического светоизлучающего диода на основе полимера Poly-1 представлена на Фиг. 6. В одном из возможных вариантов она состоит из прозрачной электропроводящей подложки на основе оксида олова, допированного индием (ITO) 0, дырочно-инжектирующего слоя 1, первичного дырочно-транспортного слоя 2, вторичного дырочно-транспортного слоя 3, электролюминесцентного слоя 4, представленного пленкой полимера Poly-1, электрон-транспортного слоя 5 и металлического катода 6.
Возможны упрощенные варианты конструкции органического светоизлучающего диода, в соответствии с которыми в обозначенной на Фиг. 6 последовательности слоев могут отсутствовать вторичный дырочно-транспортный слой 3, или первичный дырочно-транспортный слой 2, или дырочно-инжектирующий слой 1, или электрон-транспортный слой 5. Может отсутствовать сразу 2 слоя, например слои 1 и 2, 2 и 3, 1 и 5, 2 и 5, 3 и 5. В самом простом варианте могут отсутствовать сразу 3 слоя: 2, 3 и 5. В этом случае органический светоизлучающий диод будет состоять из прозрачной электропроводящей подложки на основе оксида олова, допированного индием (ITO), дырочно-инжектирующего слоя, электролюминесцентного слоя, представленного пленкой полимера Poly-1 и металлического катода.
Дырочно-инжектирующие слои представлены, как правило, комплексом поли(этилендиокситиофена) с полистиролсульфоновой кислотой (PEDOT:PSS) и оксидами ряда металлов в высших степенях окисления: MoO3, WO3, V2O5, Nb2O5, NiO, CuO.
Дырочно-транспортный слой представлен, как правило, производными ароматических полиаминов. В частности, могут использоваться различные полимерные формы трифениламина.
Электрон-транспортный слой представлен, как правило, органическим полупроводником с проводимостью n-типа. Это может быть соединение на основе конденсированных азот-содержащих гетероциклов, например батокупроин или батофенантролин, производные триазина, бензотиадиазола, бензооксадиазола и др. Электрон-транспортный слой может быть представлен оксидами металлов, например TiO2 и ZnO.
Органический светоизлучающий диод на основе полимера Poly-1 показал следующие характеристики:
Яркость составила 240 кд/м2 при напряжении 7 В;
Эффективность по току 0.2 кд/А;
Порог появления света около 2.5 В;
Положение максимумов в спектре электролюминесценции 550 и 587 нм.
Вольт-амперная и вольт-яркостная кривые для светодиода на основе полимера Poly-1 представлены на Фиг. 7 и Фиг. 8, спектр электролюминесценции представлен на Фиг. 9.
Данное изобретение иллюстрируется следующими примерами.
Пример 1. Синтез полимера Poly-1
В двугорлую колбу на 25 мл поместили 649.5 мг мономера M1, 616.6 мг мономера М2, 0.9 мл 2М водного раствора K2CO3 и 15 мл свежеперегнанного толуола. Реакционную смесь тщательно дегазировали (многократная заморозка, вакуумирование и разморозка) и в токе аргона добавляли 5 мг катализатора Pd[PPh3]4 и 1 каплю аликвата 336 (aliquat 336), после чего дегазацию проводили еще два раза. Полученную смесь нагревали на масляной бане при 110°C в течение 3 часов, после чего охлаждали до комнатной температуры, разбавляли 100 мл толуола и прибавляли 600 мл метанола. Осажденный полимер переносили в целлюлозную гильзу, которую помещали в экстрактор Сокслета. Далее проводили последовательную экстракцию ацетоном (2 часа), гексаном (2 часа) и, наконец, толуолом (5 часов). Толуольную фракцию концентрировали до объема 50 мл и прибавляли метанол. Осажденный полимер отделяли фильтрованием и сушили в вакууме. Выход полимера составил 44%. Анализ полимера проводили на ГПХ колонке в сравнении с серией полистирольных стандартов. Средневесовая молекулярная масса составила Mw=9960 г/моль, PDI=1.65.
Пример 2. Изготовление органического светоизлучающего диода
Органический светоизлучающий диод имел конструкцию, представленную на Фиг. 6. При этом не использовались дырочно-транспортные слои 2 и 3, а также электрон-транспортный слой 5. В качестве подложек использовали специальные стеклянные пластины размером 2.5×2.5 см, одна сторона которых покрыта электропроводящим слоем оксида индия-олова (ITO). Нанесение дырочно-инжектирующего слоя MoO3 осуществляли методом испарения в вакууме. Слой полимера Poly-1 наносили из раствора в хлорбензоле (концентрация 10 мг/мл) при скоростях вращения подложки 1500 об/мин. Поверх в вакууме напыляли сплав алюминия с кальцием в качестве катода. Площадь светящейся поверхности около 50 мм2.
Органический светоизлучающий диод на основе полимера Poly-1 показал следующие характеристики
Яркость составила 240 кд/м2 при напряжении 7 В.
Эффективность по току 0.2 кд/А.
Порог появления света около 2.5 В.
Положение максимумов в спектре электролюминесценции 550 и 587 нм.

Claims (2)

1. Сопряженный полимер на основе карбазола и циклопентадитиофена, имеющий следующее строение:
Figure 00000001

где n=5-200.
2. Применение сопряженного полимера на основе карбазола и циклопентадитиофена по п. 1 в качестве электролюминесцентного материала в органических светоизлучающих диодах.
RU2013139993/05A 2013-08-29 2013-08-29 Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах RU2568489C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013139993/05A RU2568489C2 (ru) 2013-08-29 2013-08-29 Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013139993/05A RU2568489C2 (ru) 2013-08-29 2013-08-29 Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах

Publications (2)

Publication Number Publication Date
RU2013139993A RU2013139993A (ru) 2015-03-10
RU2568489C2 true RU2568489C2 (ru) 2015-11-20

Family

ID=53279569

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013139993/05A RU2568489C2 (ru) 2013-08-29 2013-08-29 Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах

Country Status (1)

Country Link
RU (1) RU2568489C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2311428C2 (ru) * 2001-12-27 2007-11-27 Х.К.Штарк ГмБХ Нейтральные политиофены, способ получения нейтральных политиофенов
RU2419648C2 (ru) * 2005-05-20 2011-05-27 Мерк Патент Гмбх Соединения для органических электронных устройств
RU2011152999A (ru) * 2009-05-27 2013-07-10 Басф Се Дикетопирролопиррольные полимеры для применения в органических полупроводниковых устройствах

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2311428C2 (ru) * 2001-12-27 2007-11-27 Х.К.Штарк ГмБХ Нейтральные политиофены, способ получения нейтральных политиофенов
RU2419648C2 (ru) * 2005-05-20 2011-05-27 Мерк Патент Гмбх Соединения для органических электронных устройств
RU2011152999A (ru) * 2009-05-27 2013-07-10 Басф Се Дикетопирролопиррольные полимеры для применения в органических полупроводниковых устройствах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. WANG et al. Conjugated Silole and Carbazole Copolymers: Synthesis, Characterization, Single-Layer Light-Emitting Diode, and Field Effect Carrier Mobility. Macromol. Chem. Phys. 2005, 206, p. 2190-2198. F. MORIN et al. 2,7-Carbazole-Based Conjugated Polymers for Blue, Green, and Red Light Emission. Macromolecules.- 2002, v.35, p.8413-8417. *

Also Published As

Publication number Publication date
RU2013139993A (ru) 2015-03-10

Similar Documents

Publication Publication Date Title
Shih et al. Stable and efficient white electroluminescent devices based on a single emitting layer of polymer blends
Kulkarni et al. Quinoxaline-containing polyfluorenes: synthesis, photophysics, and stable blue electroluminescence
Liu et al. White Electroluminescence from a Single Polymer System: Improved Performance by Means of Enhanced Efficiency and Red‐Shifted Luminescence of the Blue‐Light‐Emitting Species
JP5568303B2 (ja) 新規のポリマー
Cook et al. Efficient deep blue fluorescent polymer light-emitting diodes (PLEDs)
US8637853B2 (en) Optoelectronic device
Cook et al. High brightness deep blue/violet fluorescent polymer light-emitting diodes (PLEDs)
Santos et al. Fluorene co-polymers with high efficiency deep-blue electroluminescence
Lee et al. Synthesis of new polyfluorene copolymers with a comonomer containing triphenylamine units and their applications in white‐light‐emitting diodes
Park et al. Synthesis and characterization of blue light emitting polymers based on arylene vinylene
Usluer et al. Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene‐based conjugated polymers bearing randomly distributed side chains
Chen et al. Efficient blue organic light-emitting devices based on solution-processed starburst macromolecular electron injection layer
Jeong et al. Synthesis and characterization of indeno [1, 2‐b] fluorene‐based white light‐emitting copolymer
Huh et al. A soluble self-doped conducting polyaniline graft copolymer as a hole injection layer in polymer light-emitting diodes
Zhang et al. Synthesis and properties of novel electrophosphorescent conjugated polyfluorenes based on aminoalkyl-fluorene and bipyridine with rhenium (I) complexes
Liu et al. Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2, 1, 3-benzothiadiazole derivatives as the red dopant
JP2004115587A (ja) 高分子蛍光体、その製造方法および有機エレクトロルミネッセンス素子
Liu et al. Electroluminescence performances of 1, 1-bis (4-(N, N-dimethylamino) phenyl)-2, 3, 4, 5-tetraphenylsilole based polymers in three cathode architectures
Kimyonok et al. Synthesis, photophysical and electroluminescence properties of anthracene-based green-emitting conjugated polymers
Wang et al. Optical and Electroluminescent Studies of White‐Light‐Emitting Copolymers Based on Poly (9, 9‐dioctylfluorene) and Fluorenone Derivatives
Ying et al. Novel, blue light-emitting polyfluorenes containing a fluorinated quinoxaline unit
Jin et al. Enhancement of electroluminescence properties of red diketopyrrolopyrrole-doped copolymers by oxadiazole and carbazole units as pendants
RU2568489C2 (ru) Сопряженный полимер на основе карбазола и циклопентадитиофена и его применение в качестве электролюминесцентного материала в органических светоизлучающих диодах
US9543522B2 (en) Electroluminescent device
JP3956608B2 (ja) フッ素を含有する共役ポリマー