RU2568483C1 - Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов - Google Patents

Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов Download PDF

Info

Publication number
RU2568483C1
RU2568483C1 RU2014144416/05A RU2014144416A RU2568483C1 RU 2568483 C1 RU2568483 C1 RU 2568483C1 RU 2014144416/05 A RU2014144416/05 A RU 2014144416/05A RU 2014144416 A RU2014144416 A RU 2014144416A RU 2568483 C1 RU2568483 C1 RU 2568483C1
Authority
RU
Russia
Prior art keywords
phase
phases
stages
cascade
movement
Prior art date
Application number
RU2014144416/05A
Other languages
English (en)
Inventor
Артак Ераносович Костанян
Анатолий Иванович Холькин
Андрей Александрович Ерастов
Вера Васильевна Белова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority to RU2014144416/05A priority Critical patent/RU2568483C1/ru
Application granted granted Critical
Publication of RU2568483C1 publication Critical patent/RU2568483C1/ru

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и концентрирования веществ. Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов заключается в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней в циклическом режиме. Каждый цикл состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы при многократном периодическом перемешивании и разделении фаз в ступенях. При этом движение каждой фазы через каскад контактных ступеней осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: перемещение определенного объема фазы по каскаду, смешение фаз в ступенях, разделение фаз в ступенях, причем смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы. Техническим результатом является повышение эффективности разделения и производительности процесса, а также снижение расхода растворителей. 3 з.п. ф-лы, 1 ил., 5 пр.

Description

Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и концентрирования веществ.
Предшествующий уровень техники
Разделение компонентов в процессах жидкостной экстракции и жидкостной хроматографии без твердого носителя базируется на различной растворимости отдельных компонентов в двух жидких фазах. Жидкостная хроматография без твердого носителя фактически является нестационарным (динамическим) вариантом жидкостной экстракции.
Известны способы разделения смеси компонентов методами жидкостной хроматографии без твердого носителя в центробежных устройствах, состоящих из спиральной трубки или цепочки камер, закрепленных на валу центрифуги. Разделение смеси компонентов осуществляют путем распределения их между двумя жидкими фазами. Смесь подается с одной из фаз, которая является подвижной фазой и прокачивается через другую (неподвижную) фазу, удерживаемую в свободном состоянии в устройстве с помощью центробежных сил. На выходе из устройства отбираются фракции компонентов [Jean - Michel Menet, Didier Thiebaut Countercurrent Chromatography // Chromatographic science series. Volume 82. 1999. Marcel Dekker, Inc. New York. Basel]. Недостатком этих способов является сложность используемых для их реализации центробежных устройств.
Известны также хроматографические способы для разделения смеси компонентов путем распределения их между легкой и тяжелой жидкими фазами в виде спиральной трубки, намотанной на один или несколько барабанов планетарной центрифуги. Трубку заполняют неподвижной жидкой фазой, через которую прокачивают подвижную фазу. Барабанам с намотанной трубкой с помощью планетарного механизма придают сложное вращательное движение вокруг собственной оси и одновременно вокруг центральной оси центрифуги. Смесь компонентов (пробу) вводят в форме импульса с подвижной фазой в спиральную трубку, где в результате многократного распределения и перераспределения компонентов между двумя жидкими фазами происходит их разделение. На выходе подвижной фазы из устройства отбирают обогащенные фракции отдельных компонентов [А.Е. Костанян. Журнал «Химическая технология». 2004. №8. С. 39].
Недостатками этих известных способов являются сложность и дороговизна.
Известен также способ экстракционного разделения смеси компонентов [патент RU 2304453] путем распределения их между легкой и тяжелой жидкими фазами в канале спиралевидной формы, которым для удерживания одной из них в канале с помощью пульсатора сообщают возвратно-поступательное движение.
Недостатками этого известного способа являются сложность его технологического оформления и недостаточно высокая эффективность, обусловленная обратным перемешиванием жидкостей в канале при сообщении им возвратно-поступательного движения.
Известен способ хроматографического разделения смеси компонентов [патент RU 2342970], заключающийся в многократном распределении их между легкой и тяжелой жидкими фазами в хроматографической колонке, содержащей ряд камер, соединенных в форме змеевика. Одну из фаз удерживают в колонке, а другую прокачивают через колонку, при этом ей сообщают движение с периодически изменяющейся скоростью с помощью центробежных сил, вращая колонку вокруг ее центральной оси или организуя возвратно-поступательное движение фаз в ней с помощью пульсатора.
Известен также способ экстракционно-хроматографического разделения смеси компонентов путем распределения их между легкой и тяжелой жидкими фазами [патент RU 2342971], которым сообщают движение с периодически изменяющейся скоростью в канале спиралевидной формы, а смесь вводят в виде импульса в промежуточное сечение канала. Фазы прокачивают в чередующейся последовательности через канал в противоположных направлениях. Противоточное движение фаз в устройстве обеспечивают с помощью центробежных сил, вращая устройство вокруг его центральной оси или организуя возвратно-поступательное движение фаз в нем с помощью пульсатора.
Недостатками и этого известного способа, как и в описанных выше технических решениях, является сложность его технологического оформления, связанная с необходимостью применения центрифуги или специального пульсатора для удерживания одной из фаз или организации противоточного движения фаз в устройстве.
Наиболее близким техническим решением является противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов [патент RU 2403949] (прототип), заключающийся в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней. Подлежащую разделению смесь компонентов вводят в промежуточную ступень каскада в виде импульса. Перемещение фаз осуществляют в циклическом режиме, каждый цикл которого состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы. При этом проводят многократное периодическое перемешивание и гравитационное разделение фаз в ступенях, причем одну фазу удерживают в ступенях в полупериоде движения через ступени другой фазы.
Недостатком данного способа является недостаточно высокая эффективность разделения, особенно при разделения компонентов с близкими свойствами, и низкая производительность. Разделение смесей компонентов по известному способу связано с большим расходом растворителей (фаз) и требует большого числа экстракционных ступеней, что усложняет технологическое оформление способа и затрудняет его практическую реализацию.
Изобретение направлено на повышение эффективности противоточно-циклического способа многоступенчатого экстракционного разделения смеси компонентов, в том числе улучшение селективности разделения компонентов, повышение производительности и сокращение расхода растворителей.
Раскрытие изобретений
Основной задачей настоящего изобретения было создание эффективного и простого в технологическом оформлении противоточно-циклического способа многоступенчатого экстракционного разделения смеси компонентов.
Технический результат достигается тем, что противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов заключается в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней в циклическом режиме, каждый цикл которого состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы при многократном периодическом перемешивании и разделении фаз в ступенях, при этом движение каждой фазы через каскад контактных ступеней осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: перемещение определенного объема фазы по каскаду; смешение фаз в ступенях; разделение фаз в ступенях, причем смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы.
Целесообразно, что перемещение фазы по каскаду осуществляют в объеме, равном объему, занимаемому этой фазой в единичной ступени.
Технический результат достигается также тем, что смесь подают с одной из фаз в течение количества этапов, не превышающего половину общего количества этапов в полупериоде движения этой фазы.
Важно, что количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла.
Нами обнаружено, что когда полупериод движения через каскад каждой фазы разбивают на несколько этапов, на каждом из которых последовательно осуществляют операции: перемещение определенного объема фазы по каскаду из ступени в ступень, смешение фаз и разделение фаз в ступенях, а смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы, существенно повышается эффективность (селективность) разделения компонентов смеси. Как правило, с увеличением производительности процессов разделения снижается эффективность разделения компонентов. Нами установлено, что когда смесь подают периодически в последующих циклах процесса, повышается производительность, сокращается расход растворителей и при этом повышается эффективность разделения.
Наибольший положительный эффект достигается, когда из ступени в ступень перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени, и смесь подают с одной из фаз в течение количества этапов, не превышающего половину общего количества этапов в полупериоде движения этой фазы, а количество этапов в полупериодах движения фаз устанавливают индвидуально для каждого цикла.
Краткое описание чертежей
Изобретение поясняется описанием конкретных примеров его выполнения и прилагаемым чертежом, на котором иллюстрируется движение фаз при реализации способа, когда полупериод движения легкой фазы состоит из трех этапов, а полупериод движения тяжелой фазы состоит из двух этапов. При этом на каждом из этапов последовательно осуществляют три операции: 1 - перемещение определенного объема фазы по каскаду из ступени в ступень; 2 - смешение фаз в ступенях; 3 - разделение фаз в ступенях, причем из ступени в ступень перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени. Для наглядности упомянутые операции 1, 2 и 3 на чертеже показаны лишь для ступеней, в которые поступают подаваемые в каскад новые объемы фаз в полупериодах их движения.
Смесь разделяемых компонентов подают в контактные ступени каскада с легкой фазой в течение начальных этапов полупериодов ее движения.
Когда смесь подают периодически в последующих циклах процесса, предлагаемый способ может быть реализован в двух режимах:
1. Стационарный режим: длительность полупериодов движения фаз (определяемая количеством этапов и перемещаемым по каскаду объемом фазы) поддерживают постоянной во всех циклах. При этом после некоторого числа циклов наступает стационарный режим процесса, когда в каждом цикле с потоками фаз из каскада ступеней выводят постоянные количества разделенных компонентов.
2. Нестационарный режим: длительность полупериодов движения фаз в каждом цикле регулируют таким образом, чтобы один (целевой) компонент или группа компонентов удерживалась (накапливалась) в каскаде, в то время как остальные компоненты смеси выводились из каскада с потоками фаз. При этом после некоторого числа циклов получают концентрат одного (целевого) компонента или группы компонентов.
В приводимых ниже примерах противоточно-циклический процесс многоступенчатого экстракционного разделения смеси компонентов проводят следующим образом.
Каскад последовательно соединенных контактных ступеней заполняют легкой и тяжелой жидкими фазами. Объемное соотношение фаз в ступенях задают при заполнении каскада. С противоположных концов каскада в чередующейся последовательности подают в него и выводят из него потоки фаз. Процесс проводят в циклическом режиме, каждый цикл которого включает определенную длительность полупериодов движения тяжелой и легкой фаз. При этом движение через каскад каждой фазы в полупериоде ее движения осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: 1 - перемещение определенного объема фазы из ступени в ступень; 2 - смешение фаз в ступенях; 3 - разделение фаз в ступенях. Подлежащую разделению смесь подают в течение определенного времени с одной из фаз в каждом цикле процесса и для каждой фазы устанавливают длительность полупериода ее движения таким образом, чтобы обеспечить раздельный выход компонентов с выходящими из каскада потоками фаз. Перемещаясь по каскаду ступеней с потоками фаз, смесь компонентов совершает челночное движение и многократно и в нестационарном режиме перераспределяется между фазами, благодаря чему компоненты с различными коэффициентами распределения движутся с различной скоростью в разных фазах и разделяются на фракции. Фракции отдельных компонентов выводят из каскада с потоками тяжелой и легкой фаз в отдельных циклах процесса.
Пример 1. Процесс разделения проводят в стационарном режиме, как описано выше. Для создания двухфазной жидкостной системы используют растворители гексан - метанол - этилацетат - вода в соотношении 1:1:1:1, после смешения которых образуются две водно-органические фазы. Разделяемые компоненты - кофеин (коэффициент распределения между тяжелой и легкой фазами Кк=0.13) и аспирин (Ка=0.5) в равных количествах присутствуют в исходной смеси. Процесс проводят в каскаде, состоящем из 60 последовательно соединенных контактных ступеней, каждая объемом 1.2 мл; общий объем каскада 72 мл. Объемное соотношение тяжелой и легкой фаз в ступенях 1:1. С противоположных концов каскада в чередующейся последовательности подают в него и выводят из него потоки фаз с одинаковым средним расходом 2 мл/мин. Среднее время пребывания каждой фазы в одной ступени (время, необходимое для перемещения из ступени в ступень объемов фаз, равных их объемам в одной ступени) составляет 1.2·0.5/2=0.3 мин; время пребывания каждой фазы в каскаде 18 мин. В каждом цикле движение через каскад тяжелой фазы осуществляют в 54 этапа, а легкой фазы - в 132 этапа. На каждом из этапов по каскаду перемещают объем фазы, равный объему, занимаемому этой фазой в одной ступени (0.6 мл), как показано на чертеже, и последовательно проводят операции перемещения, смешения и разделение фаз. Подлежащую разделению смесь кофеина и аспирина подают в каждом цикле процесса с тяжелой фазой в течение первого этапа ее движения по каскаду. После шести циклов устанавливается стационарный режим процесса. После этого в каждом цикле из противоположных концов каскада с тяжелой фазой выводят все количество введенного (100%) кофеина, а с легкой фазой - все количество (100%) аспирина. Расход растворителей в каждом цикле составляет: тяжелой фазы - 32.4 мл, легкой фазы - 79.2 мл.
Пример 2 (по прототипу). Процесс проводят как в примере 1, но по известному способу смесь подают в виде импульса только в первом цикле процесса и движение фаз в полупериодах не разбивают на отдельные этапы (осуществляют в один этап). Процесс завершают в течение одного цикла. Объем перемещаемой по каскаду тяжелой фазы в течение 1-го полупериода - 32 мл. Во 2-м полупериоде с легкой фазой отдельными фракциями выводят смесь, содержащую 95% от общего количества кофеина и 3% от общего количества аспирина, и смесь, содержащую 97% от общего количества аспирина и 5% от общего количества кофеина. Расход растворителей составляет: тяжелой фазы - 32 мл, легкой фазы - 416 мл.
Пример 3. Разделяют трехкомпонентную смесь кофеина, аспирина и кумарина (Ккум=1.3). Процесс проводят как в примере 1, но смесь подают только в первом цикле процесса и количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла: 1-ый цикл - движение через каскад тяжелой фазы осуществляют в 66 этапов (объем перемещаемой по каскаду фазы - 39.6 мл), легкой фазы в 84 этапов (объем перемещаемой по каскаду фазы - 50.4 мл); 2-й цикл - движение через каскад тяжелой фазы в 36 этапов, легкой фазы в 216 этапов. В течение двух циклов завершают процесс. В 1-м цикле с тяжелой фазой выводят 40% кофеина, а с легкой фазой - все количество (100%) кумарина. Во 2-м цикле с тяжелой фазой выводят 60% кофеина, а с легкой фазой - все количество (100%) аспирина. Расход растворителей в двух циклах составляет: тяжелой фазы - 61.2 мл, легкой фазы - 180 мл.
Пример 4 (по прототипу). Процесс проводят как в примере 3, но по известному способу смесь подают в виде импульса и движение фаз в полупериодах не разбивают на отдельные этапы, а длительность полупериодов движения фаз не изменяют при переходе от одного цикла к другому циклу. Процесс завершают в течение трех циклов. Объем перемещаемой по каскаду фазы в течение каждого полупериода - 39.6 мл. В 1-м цикле с тяжелой фазой выводят смесь, содержащую 43% от общего количества кофеина и 2% от общего количества аспирина, а с легкой фазой - 85% от общего количества кумарина. Во 2-м цикле с тяжелой фазой выводят смесь, содержащую 57% от общего количества кофеина и 72% от общего количества аспирина, а с легкой фазой - 11% кумарина. В первом полупериоде 3-го цикла из каскада выводят отдельными фракциями 26% от общего количества аспирина и 4% от общего количества кумарина. Расход растворителей составляет: тяжелой фазы - 187.2 мл, легкой фазы - 79.2 мл.
Пример 5. Процесс разделения проводят по условиям примера 1, но в нестационарном режиме и разделяют трехкомпонентную смесь кофеина, аспирина и кумарина. В каждом цикле вводят одинаковое количество компонентов. Количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла: 1-ый цикл - движение через каскад тяжелой фазы осуществляют в 72 этапа, легкой фазы - 96 этапов; 2-й цикл - движение тяжелой фазы - 44 этапа, легкой фазы - 44 этапа. В третьем цикле завершают процесс. В 1-м цикле с тяжелой фазой выводят 70% кофеина, а с легкой фазой - все количество (100%) введенного в первом цикле кумарина. Во 2-м цикле с тяжелой фазой выводят 30% от общего количества введенного в одном цикле кофеина, а с легкой фазой - 80% введенного кумарина. В 3-м цикле с тяжелой фазой выводят отдельными фракциями 120% от общего количества введенного в одном цикле кумарина и смесь, содержащую концентраты кофеина (200% от общего количества введенного в одном цикле кофеина) и аспирина (все количество введенного в трех циклах аспирина - 300%).
Как следует из приведенных примеров, предлагаемый противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов позволяет существенно повысить как эффективность разделения, так и производительность процесса. При этом снижается расход растворителей.

Claims (4)

1. Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов, заключающийся в многократном распределении их между легкой и тяжелой жидкими фазами, перемещаемыми в чередующейся последовательности в противоположных направлениях через каскад последовательно соединенных контактных ступеней в циклическом режиме, каждый цикл которого состоит из полупериода движения тяжелой фазы и полупериода движения легкой фазы при многократном периодическом перемешивании и разделении фаз в ступенях, при этом движение каждой фазы через каскад контактных ступеней осуществляют последовательно в несколько этапов, на каждом из которых последовательно проводят три операции: перемещение определенного объема фазы по каскаду, смешение фаз в ступенях, разделение фаз в ступенях, причем смесь подают в первом цикле или в первом и в последующих циклах процесса с одной из фаз в течение количества этапов меньшего, чем общее количество этапов в полупериоде движения этой фазы.
2. Способ по п. 1, отличающийся тем, что перемещение фазы по каскаду осуществляют в объеме, равном объему, занимаемому этой фазой в единичной ступени.
3. Способ по п. 1, отличающийся тем, что смесь подают с одной из фаз в течение количества этапов, не превышающего половину общего количества этапов в полупериоде движения этой фазы.
4. Способ по п. 1, отличающийся тем, что количество этапов в полупериодах движения фаз устанавливают индивидуально для каждого цикла.
RU2014144416/05A 2014-11-06 2014-11-06 Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов RU2568483C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014144416/05A RU2568483C1 (ru) 2014-11-06 2014-11-06 Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014144416/05A RU2568483C1 (ru) 2014-11-06 2014-11-06 Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов

Publications (1)

Publication Number Publication Date
RU2568483C1 true RU2568483C1 (ru) 2015-11-20

Family

ID=54597998

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014144416/05A RU2568483C1 (ru) 2014-11-06 2014-11-06 Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов

Country Status (1)

Country Link
RU (1) RU2568483C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637960C1 (ru) * 2017-02-28 2017-12-08 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов
CN112494989A (zh) * 2020-12-25 2021-03-16 安徽金轩科技有限公司 一种呋喃铵盐生产肟酸连续萃取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549332A (en) * 1969-01-13 1970-12-22 Upjohn Co Countercurrent liquid-liquid extraction device
SU741904A1 (ru) * 1978-01-26 1980-06-25 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Центробежный экстрактор
RU2131470C1 (ru) * 1993-12-02 1999-06-10 Оутокумпу Энжинеринг Контракторс ОЙ Способ жидкостно-жидкостной экстракции металлов и устройство для его осуществления
RU2342970C2 (ru) * 2006-10-24 2009-01-10 Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ хроматографического разделения смеси компонентов
RU2403949C1 (ru) * 2009-10-05 2010-11-20 Учреждение Российской Академии Наук Институт Общей И Неорганической Химии Им. Н.С. Курнакова Ран (Ионх Ран) Пульсационно-циклический способ экстракционного разделения смеси компонентов и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549332A (en) * 1969-01-13 1970-12-22 Upjohn Co Countercurrent liquid-liquid extraction device
SU741904A1 (ru) * 1978-01-26 1980-06-25 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Центробежный экстрактор
RU2131470C1 (ru) * 1993-12-02 1999-06-10 Оутокумпу Энжинеринг Контракторс ОЙ Способ жидкостно-жидкостной экстракции металлов и устройство для его осуществления
RU2342970C2 (ru) * 2006-10-24 2009-01-10 Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ хроматографического разделения смеси компонентов
RU2403949C1 (ru) * 2009-10-05 2010-11-20 Учреждение Российской Академии Наук Институт Общей И Неорганической Химии Им. Н.С. Курнакова Ран (Ионх Ран) Пульсационно-циклический способ экстракционного разделения смеси компонентов и устройство для его осуществления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637960C1 (ru) * 2017-02-28 2017-12-08 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов
CN112494989A (zh) * 2020-12-25 2021-03-16 安徽金轩科技有限公司 一种呋喃铵盐生产肟酸连续萃取方法

Similar Documents

Publication Publication Date Title
FI81268B (fi) Kontinuerligt separationsfoerfarande baserat pao seriestroemning.
EP1912716B1 (fr) Procede et dispositif de separation de fractions d'un melange
JP2002528738A (ja) 長さが変動性であるクロマトグラフィー帯域を用いる分離方法および装置
Ignatova et al. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction
Hewitson et al. Intermittent counter-current extraction—Equilibrium cell model, scaling and an improved bobbin design
RU2568483C1 (ru) Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов
Hewitson et al. Intermittent counter-current extraction—Effect of the key operating parameters on selectivity and throughput
Kostanyan Multiple dual mode counter-current chromatography with periodic sample injection: Steady-state and non-steady-state operation
CN103182198B (zh) 一种以模拟移动床分离不同分子量高分子的方法
JP2007525655A (ja) 液体供給物の複数の成分を液体遠心クロマトグラフィーによって分離する方法および装置
Goll et al. Continuous fractionation of multicomponent mixtures with sequential centrifugal partition chromatography
RU2342971C2 (ru) Способ экстракционно-хроматографического разделения смеси компонентов
da Silva Jr et al. Chromatographic separation and purification of mitotane racemate in a Varicol multicolumn continuous process
RU2637960C1 (ru) Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов
CN103961902A (zh) 从原料液中分离与浓缩目标组分的模拟移动床色谱分离系统及其方法
RU2342970C2 (ru) Способ хроматографического разделения смеси компонентов
RU2403949C1 (ru) Пульсационно-циклический способ экстракционного разделения смеси компонентов и устройство для его осуществления
US7553421B2 (en) Method for optimally sizing cells of a centrifugal partition chromatography device
WO2010010366A1 (en) Counter-current chromatographic arrangement
US10675558B2 (en) Dispersed mobile-phase countercurrent chromatography
RU2304453C2 (ru) Способ экстракционного разделения смеси компонентов
NL8003912A (nl) Werkwijze voor het scheiden of zuiveren van mengsels met behulp van een adsorberende vaste stof.
RU2681627C1 (ru) Аппарат для проведения процессов жидкость-жидкостной хроматографии
Kostanyan Analysis of the three-step cyclic process of countercurrent extraction
Zhang et al. Influence of pH on enantioselective extraction of aromatic acid enantiomers in centrifugal contactor separators: experiments and simulation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201107