RU2567935C1 - Способ определения интервалов залегания газоносных пластов в скважине - Google Patents

Способ определения интервалов залегания газоносных пластов в скважине Download PDF

Info

Publication number
RU2567935C1
RU2567935C1 RU2015103790/03A RU2015103790A RU2567935C1 RU 2567935 C1 RU2567935 C1 RU 2567935C1 RU 2015103790/03 A RU2015103790/03 A RU 2015103790/03A RU 2015103790 A RU2015103790 A RU 2015103790A RU 2567935 C1 RU2567935 C1 RU 2567935C1
Authority
RU
Russia
Prior art keywords
logging
well
gas
intervals
borehole
Prior art date
Application number
RU2015103790/03A
Other languages
English (en)
Inventor
Раис Салихович Хисамов
Рустам Хамисович Халимов
Гайса Лёмиевич Мусаев
Фарид Анфасович Махмутов
Ирек Мияссарович Юнусов
Original Assignee
Открытое акционерное общество "Татнефть" им. В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Татнефть" им. В.Д. Шашина filed Critical Открытое акционерное общество "Татнефть" им. В.Д. Шашина
Priority to RU2015103790/03A priority Critical patent/RU2567935C1/ru
Application granted granted Critical
Publication of RU2567935C1 publication Critical patent/RU2567935C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к нефтяной и газовой промышленности, в частности к геофизическим исследованиям скважин, и может быть использовано для оценки местоположения газонасыщенных терригенных и карбонатных пород. Технический результат направлен на повышение точности определения интервалов залегания газоносных пластов в скважине. При определении интервалов залегания газоносных пластов в скважине исследования проводят на стадии разбуривания кондуктора скважины. Предварительно оценивают глубинность исследования всех каротажных приборов и выявляют прибор с наименьшей глубинностью исследования. Ствол скважины бурят долотом с диаметром, позволяющим выполнять исследования прибором с наименьшей глубинностью исследования, прорабатывают ствол скважины долотом и устраняют сужения ствола скважины. Заполняют ствол скважины глинистым буровым раствором, проводят плотностной гамма-гамма-каротаж (ГГКп) совместно с нейтронным каротажем по тепловым нейтронам (ННКт) и гамма-каротажем (ГК), дублируют каротаж в предполагаемом интервале залегания. Поднимают приборы из скважины, разбуривают ствол скважины долотом с диаметром в соответствии с диаметром кондуктора. При анализе полученных результатов выделяют интервалы с высокими показаниями ННКт и с симметричными низкими показаниями кривой плотности по ГГКп и ГК. 2 ил.

Description

Изобретение относится к нефтяной и газовой промышленности, в частности к геофизическим исследованиям скважин, и может быть использовано для оценки местоположения газонасыщенных терригенных и карбонатных пород.
Известен способ изучения геологических разрезов скважин, включающий геофизические исследования, определение плотности пород по шламу, непрерывно отбираемому в процессе бурения. Операцию разделения разреза на геологические циклы осадконакопления проводят по данным гармонического анализа кривых геофизических исследований скважин, преобразуя кривые геофизических исследований скважин в последовательности кривых - главных гармонических составляющих с периодами, равными размерам элементарных циклитов в соответствующих интервалах разреза. Выявляют границы интервалов с непрерывной гармонической характеристикой, определяя тем самым точки смены циклов осадконакопления, по которым судят о местоположении несогласий (Опубликованная заявка на изобретение РФ №92003522, опубл. 19.06.1995).
Недостатком известного способа является неточность соответствия местоположения несогласий с наличием газа в продуктивных пластах.
Наиболее близким к предложенному изобретению по технической сущности является способ определения газонасыщенных интервалов в заколонном пространстве скважины, согласно которому по стволу скважины проводят акустический каротаж, регистрируют и проводят анализ полного волнового сигнала и фазокорреляционных диаграмм. При этом отраженные от муфтовых соединений поверхностные волны регистрируют после полного затухания прямых акустических волн, проходящих от излучателя к приемникам без отражений. Наличие и положение газонасыщенных интервалов определяют по отсутствию или многократному ослаблению отраженных поверхностных волн (Патент РФ №2304215, опубл. 10.08.2007 - прототип).
Известный способ не обладает достаточной точностью определения интервалов газоносных пластов, т.к. его проведение невозможно в открытом стволе скважины и способ проводится через эксплуатационную колонну.
В предложенном изобретении решается задача повышения точности определения интервалов залегания газоносных пластов в скважине.
Задача решается тем, что в способе определения интервалов залегания газоносных пластов в скважине, включающем проведение геофизических исследований в скважине и анализ полученных результатов, согласно изобретению исследования проводят на стадии разбуривания кондуктора скважины, предварительно оценивают глубинность исследования всех каротажных приборов и выявляют прибор с наименьшей глубинностью исследования, ствол скважины бурят долотом с диаметром, позволяющим выполнять исследования прибором с наименьшей глубинностью исследования, прорабатывают ствол скважины долотом и устраняют сужения ствола скважины, заполняют ствол скважины глинистым буровым раствором, проводят плотностной гамма-гамма-каротаж (ГГКп) совместно с нейтронным каротажем по тепловым нейтронам (ННКт) и гамма-каротажем (ГК), дублируют каротаж в предполагаемом интервале залегания, поднимают приборы из скважины, разбуривают ствол скважины долотом с диаметром в соответствии с диаметром кондуктора, а при анализе полученных результатов выделяют интервалы с высокими показаниями ННКт и с симметричными низкими показаниями кривой плотности по ГГКп и ГК.
Сущность изобретения
Оценка местоположения газоносных пластов в интервалах терригенного и карбонатного разреза имеет важное практическое значение. Так, газоносные пласты (насыщенные азотом) в карбонатном разрезе нижнепермских и верхнекаменоугольных отложений затрудняют, а то и вовсе не позволяют выполнять проводку ствола скважины при бурении на нижележащие горизонты. Необходимо в этом случае перекрывать промежуточной колонной интервалы газонасыщенных пород.
Существующие способы оценки местоположения газоносных пластов в интервале терригенных отложений верхнепермских, неогеновых и четвертичных отложений, перекрываемых кондукторными колоннами, основаны на сопоставлении кривой цементометрии кондуктора по методу ГГКп (гамма-гамма-цементомер) и НГК. Газоносные пласты определяются по высоким показаниям ГГКп и НГК при условии качественного цементажа кондуктора по акустическому цементомеру. При некачественном цементаже кондукторных колонн (по АКЦ) метод не работает. Кроме того, данный способ практически неприменим для оценки местонахождения газоносных пластов в карбонатных отложениях нижнепермского и каменоугольного возраста, перекрытых эксплуатационной колонной, в силу значительно меньшего коэффициента пористости карбонатных коллекторов по сравнению с терригенными и недостаточной разрешающей способностью гамма-гамма-цементомеров.
Решение данной проблемы возможно путем применения для оценки кривой плотности пород двухзондового прибора метода рассеянного гамма-излучения (ГГКп). Регистрация рассеянного гамма-излучения двумя зондами: большим (IБ) и малым (IM) позволяет при расчете плотности пород исключить значительное влияние бурового раствора и глинистой корки на показания метода. Так, на малый зонд большее влияние оказывает буровой раствор и глинистая корка, а на большой зонд - вскрытые скважиной породы. Расчет кривой плотности двухзондовых приборов основан на показаниях большого и малого зонда, результатов калибровки каналов и измерения в эталонных средах (IМЭ) и (IБЭ). Так, для получения диаграммы плотности с аппаратурой РГП-2 является выражение
F(δ)=K1(IБ/IМ)-K2IM,
где Κ1 находится по отношению IМЭ/IБЭ, а K2=0.6/IМЭ; K1 и K2 - метрологические характеристики прибора.
Физическая сущность технологии основана на том, что газонасыщенные породы обладают меньшей плотностью по сравнению с водо- и нефтенасыщенными. Показания нейтронных методов (НГК или ННКт) зависят от водородосодержания горных пород. При этом для заинверсионных зондов зависимость показаний от водородосодержания пород обратная. Так, для пород, насыщенных газом, показания НГК или ННКт бóльшие, чем для тех же пород, насыщенных водой или нефтью (в газонасыщенных коллекторах общее количество водорода меньше, чем в тех же коллекторах, насыщенных водой или нефтью).
Итак, по кривой ГК выделяют пласты с низкими показателями, или неглинистые пласты, по ГГКп рассчитывают кривую плотности пород, производят нормализацию кривых (наложение) кривой большого зонда компенсационного нейтронного каротажа с кривой плотности, рассчитанной по ГГКп, признаком наличия газоносного пласта является несовпадение кривых, а именно интервалы с высокими показаниями ННКт и с симметричными низкими показаниями кривой плотности по ГГКп и ГК.
Пример практического применения.
Проводят исследования в скважине на стадии разбуривания кондуктора скважины. Оценивают глубинность исследования всех каротажных приборов и выявляют прибор с наименьшей глубинностью исследования. В нашем случае методы нейтронного каротажа (ННКт двумя зондами: большим ННКб и малым ННКм) и ГК регистрируют аппаратурой КСАТ - РК5 (разработка ОАО «Геотрон», г. Тюмень), а плотностной каротаж - аппаратурой ГГК-2 (разработка ОАО НПФ «ГЕОФИЗИКА», г. Уфа). Глубинность исследования нейтронных зондов 40-45 см, глубинность исследования прибора плотностного каротажа - 15 см с диаметром исследования скважин от 146 до 300 мм. То есть прибором с наименьшей глубинностью исследования является прибор плотностного каротажа (аппаратура ГГК-2). Ствол скважины бурят долотом с диаметром, позволяющим выполнять исследования прибором с наименьшей глубинностью исследования, в наших примерах практического применения в терригенном разрезе исследования были проведены в скважине диаметром 150 мм, а в примере карбонатного разреза - 215,9 мм. Прорабатывают ствол скважины долотом и устраняют сужения ствола скважины. Заполняют ствол скважины глинистым буровым раствором. Проводят плотностной гамма-гамма-каротаж (ГГКп) совместно с нейтронным каротажем по тепловым нейтронам (ННКт) и гамма-каротажем (ГК). Дублируют каротаж в предполагаемом интервале залегания, поднимают приборы из скважины, разбуривают ствол скважины долотом с диаметром в соответствии с диаметром кондуктора. При анализе полученных результатов выделяют интервалы с высокими показаниями ННКт и с симметричными низкими показаниями кривой плотности по ГГКп и ГК.
В результате выявлено следующее.
Терригенный разрез шешминского горизонта уфимского яруса в скважине №23 Ново-Елховского месторождения представлен на фиг. 1.
Интервал: 108,6-131,0 м представлен песчаниками по верхнему прослою 108,6-120,2 м (заштрихован) газонасыщенными (низкие показания кривой плотности по ГГКп и высокие показания кривой ННКб) и по нижнему прослою битумонасыщенными (в этом интервале кривые плотности по ГГКп и ННКб практически совпадают друг с другом).
Карбонатный разрез каширского горизонта московского яруса в скважине №7637 Ново-Елховского месторождения представлен на фиг. 2. В данной скважине в процессе бурения в интервале каширского горизонта возникли осложнения, связанные с газопроявлением. Для продолжения бурения до проектного горизонта возникла необходимость определения интервалов газоносных пластов с целью перекрытия их промежуточной колонной. Для этого в скважине был проведен промежуточный каротаж. Выполнена предлагаемая в изобретении технология нормализации кривых ННКт (на фиг. 2 кривая NKDT тонкая) с кривой плотности по ГГКп (кривая GGK, толстая), которая позволила выявить интервалы газоносных пластов (на фиг. 2 интервалы газоносных пластов заштрихованы), перекрыть их промежуточной колонной и успешно завершить бурение скважины до проектного горизонта.
Применение предложенного способа позволит решить задачу повышения точности определения интервалов залегания газоносных пластов в скважине.

Claims (1)

  1. Способ определения интервалов залегания газоносных пластов в скважине, включающий проведение геофизических исследований в скважине и анализ полученных результатов, отличающийся тем, что исследования проводят на стадии разбуривания кондуктора скважины, предварительно оценивают глубинность исследования всех каротажных приборов и выявляют прибор с наименьшей глубинностью исследования, ствол скважины бурят долотом с диаметром, позволяющим выполнять исследования прибором с наименьшей глубинностью исследования, прорабатывают ствол скважины долотом и устраняют сужения ствола скважины, заполняют ствол скважины глинистым буровым раствором, проводят плотностной гамма-гамма-каротаж (ГГКп) совместно с нейтронным каротажем по тепловым нейтронам (ННКт) и гамма-каротажем (ГК), дублируют каротаж в предполагаемом интервале залегания, поднимают приборы из скважины, разбуривают ствол скважины долотом с диаметром в соответствии с диаметром кондуктора, а при анализе полученных результатов выделяют интервалы с высокими показаниями ННКт и с симметричными низкими показаниями кривой плотности по ГГКп и ГК.
RU2015103790/03A 2015-02-05 2015-02-05 Способ определения интервалов залегания газоносных пластов в скважине RU2567935C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015103790/03A RU2567935C1 (ru) 2015-02-05 2015-02-05 Способ определения интервалов залегания газоносных пластов в скважине

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015103790/03A RU2567935C1 (ru) 2015-02-05 2015-02-05 Способ определения интервалов залегания газоносных пластов в скважине

Publications (1)

Publication Number Publication Date
RU2567935C1 true RU2567935C1 (ru) 2015-11-10

Family

ID=54537250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015103790/03A RU2567935C1 (ru) 2015-02-05 2015-02-05 Способ определения интервалов залегания газоносных пластов в скважине

Country Status (1)

Country Link
RU (1) RU2567935C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1835940A1 (ru) * 1990-10-29 1995-09-20 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Способ выделения коллекторов нефти и газа в скважинах
US20030205082A1 (en) * 2001-10-11 2003-11-06 Herron Michael M. Method of using nuclear spectroscopy measurements acquired while drilling
RU2304215C1 (ru) * 2006-01-24 2007-08-10 Александр Рафаилович Князев Способ определения газонасыщенных интервалов в заколонном пространстве скважин
RU2439622C1 (ru) * 2010-08-26 2012-01-10 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин (ОАО НПП "ВНИИГИС") Способ определения состава углеводородов в пластах - коллекторах нефтегазовых скважин
RU2476671C1 (ru) * 2011-07-07 2013-02-27 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин" (ОАО НПП "ВНИИГИС") Способ определения характера насыщения пластов-коллекторов нефтегазовых скважин по комплексу нейтронных методов (варианты)
RU2537521C2 (ru) * 2011-02-28 2015-01-10 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Способ выделения в разрезах скважин коллекторов, насыщенных газогидратами

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1835940A1 (ru) * 1990-10-29 1995-09-20 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Способ выделения коллекторов нефти и газа в скважинах
US20030205082A1 (en) * 2001-10-11 2003-11-06 Herron Michael M. Method of using nuclear spectroscopy measurements acquired while drilling
RU2304215C1 (ru) * 2006-01-24 2007-08-10 Александр Рафаилович Князев Способ определения газонасыщенных интервалов в заколонном пространстве скважин
RU2439622C1 (ru) * 2010-08-26 2012-01-10 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин (ОАО НПП "ВНИИГИС") Способ определения состава углеводородов в пластах - коллекторах нефтегазовых скважин
RU2537521C2 (ru) * 2011-02-28 2015-01-10 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Способ выделения в разрезах скважин коллекторов, насыщенных газогидратами
RU2476671C1 (ru) * 2011-07-07 2013-02-27 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин" (ОАО НПП "ВНИИГИС") Способ определения характера насыщения пластов-коллекторов нефтегазовых скважин по комплексу нейтронных методов (варианты)

Similar Documents

Publication Publication Date Title
Chatterjee et al. Porosity estimation from pre-stack seismic data in gas-hydrate bearing sediments, Krishna-Godavari basin, India
CN105277982B (zh) 一种泥页岩总有机碳含量地震预测方法
RU2505676C2 (ru) Способ определения коэффициента обводненности и состава притока нефтяной скважины
CN107783187B (zh) 一种将测井速度和地震速度结合建立三维速度场的方法
CN102220865B (zh) 一种检测灰岩地层孔隙压力的方法
AU2010263041A1 (en) Source rock volumetric analysis
RU2483333C2 (ru) Обработка изображения на основе объема исследования
NO20101136L (no) Karakterisering av bruddlengder og formasjonsresistivitet ut ifra matrise induksjonsdata
MX2013012178A (es) Metodos y sistemas para estimar la resistividad y porosidad de la formacion.
MX2014004885A (es) Metodo para determinar en tiempo real la porosidad y la saturacion de agua de una formacion subterranea usando datos de registro de gas y perforacion.
BRPI1001536A2 (pt) mÉtodo para determinar permeabilidades eficazes de formaÇÕes terrestres
US6718265B2 (en) Petrophysical property estimation using an acoustic calibration relationship
CN112255688A (zh) 一种基于岩石物理理论的三维地震反演地层压力的方法
CN101285381A (zh) 一种泄漏模式波反演软地层横波速度的方法
JPH0213879A (ja) 坑井中で検層プローブにより記録したデータから堆積岩中の有機物含有量を予測する方法
Hasan et al. Geophysical research on rock mass quality evaluation for infrastructure design
Lie et al. A successful geophysical prediction of fractured porous basement reservoir-Rolvsnes oil discovery 2015, Utsira High
CN103744121A (zh) 碳氢比地层流体饱和度测井方法
Bonter et al. Giant oil discovery west of Shetland-challenges for fractured basement formation evaluation
RU2567935C1 (ru) Способ определения интервалов залегания газоносных пластов в скважине
Deng et al. A new index used to characterize the near-wellbore fracture network in naturally fractured gas reservoirs
CN113534263B (zh) 一种不依赖测井资料的含油气饱和度预测方法
Bibor et al. Unconventional shale characterization using improved well logging methods
Vasvari On the applicability of Dual Laterolog for the deter-mination of fracture parameters in hard rock aquifers
Banik et al. Predrill prediction of subsalt pore pressure from seismic impedance