RU2567907C1 - Способ получения полимерных пленок с пористой градиентной структурой - Google Patents
Способ получения полимерных пленок с пористой градиентной структурой Download PDFInfo
- Publication number
- RU2567907C1 RU2567907C1 RU2014140418/13A RU2014140418A RU2567907C1 RU 2567907 C1 RU2567907 C1 RU 2567907C1 RU 2014140418/13 A RU2014140418/13 A RU 2014140418/13A RU 2014140418 A RU2014140418 A RU 2014140418A RU 2567907 C1 RU2567907 C1 RU 2567907C1
- Authority
- RU
- Russia
- Prior art keywords
- sheets
- pressure
- gradient structure
- polymeric material
- porous
- Prior art date
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем, межслойной изоляции, применяемых в области точного приборостроения. Способ включает соединение пакета из листов волокнистого полимерного материала. Пакет формируют из различной формы и размеров листов волокнистого полимерного материала по его периметру. Затем проводят соединение всех листов волокнистого полимерного материала путем их спекания одновременно при температуре на 10-20°С ниже температуры плавления волокнистого полимерного материала и давлении 50-120 кгс/см2. После спекания проводят охлаждение полученной полимерной пленки с пористой градиентной структурой под давлением 50-100 кгс/см2 до комнатной температуры при равномерном давлении по всей площади поверхности. Изобретение обеспечивает повышение гидрофобности полимерных пленок путем формирования пористой градиентной структуры с заданными свойствами. 4 з.п. ф-лы, 1 табл., 1 ил., 3 пр.
Description
Изобретение относится к области получения пленок с градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем, межслойной изоляции в полупроводниковых приборах в области точного приборостроения т.д.
Известен способ получения пористой политетрафторэтиленовой пленки, включающий биаксиальную вытяжку полуспекшегося политетрафторэтиленового материала с последующей термообработкой вытянутого материала при температуре выше плавления политетрафторэтилена, биаксиальную вытяжку пленки осуществляют до увеличения ее площади в 250 раз, причем пористая пленка имеет толщину не более чем 1/20 толщины полуспекшегося политетрафторэтилена (патент РФ №2103283, опубл. 27.01.1998). Недостатками данного способа являются значительная сложность аппаратурного оформления, многоэтапность получения непористой пленки из фторопластового порошка, невозможность задавать различную морфологию поверхности в пределах одного изделия.
Также известен способ изготовления пористых мембран, который включает в себя локальное облучение исходной пленки потоками высокоэнергетических квантов излучения, электронов или ионов и последующую обработку травителем. Перед облучением пленку покрывают защитным покрытием в виде пространственно разделенных островков и растягивают. После облучения растягивающие усилия снимают, обработку травителем ведут в две ступени, на первой из которых - при помощи травителя, создающего отверстия в покрытии и не воздействующего на исходную пленку, а на второй ступени - при помощи травителя, создающего отверстия в исходной пленке через отверстия в слое покрытия и не воздействующего на него. Покрытие может быть получено путем нанесения на исходную пленку сплошного слоя, его рассечение на островки посредством воздействия потока высокоэнергетических частиц и последующей обработки травителем, не воздействующим на исходную пленку, но вытравливающим канавки по границам островков, а перед облучением исходной пленки ее дополнительно растягивают (патент РФ №2104759, опубл. 20.02.1998). Недостатками данного способа являются значительная сложность аппаратурного оформления и многоэтапность получения конечного изделия.
Наиболее близким к предлагаемому по технической сущности и достигаемому результату, принятым за прототип, является способ получения шаблонных градиентных полимерных пленок, который включает в себя нанесение раствора на подложку для образования покрытия, выборочную полимеризацию первой части покрытия для образования нерастворимой полимерной матрицы в растворителе, изъятие основной части растворителя и полимеризацию второй части покрытия, смежной с первой частью. Процесс также может проводиться при использовании УФ-отверждаемого связующего для выборочной полимеризации покрытия УФ-излучением через маску (заявка на патент республики Корея KR20130092971, опубл. 21.08.2013).
К недостаткам этого способа относится высокая сложность аппаратурного оформления, многоэтапность процесса формирования пленки, отсутствие возможности использовать нерастворимые полимеры, отсутствие возможности получения пленки с гидрофобными и сверхгидрофобными поверхностями.
Гидрофобность поверхности материала характеризуется показателем краевого угла смачивания поверхности θ° каплей воды, который для смачиваемых поверхностей меньше 90°, а для несмачиваемых - больше него. Супергидрофобными называют материалы, характеризуемые одновременно тремя свойствами: капля воды образует на них угол смачивания более 150°, угол скатывания, т.е. угол наклона поверхности к горизонту, при котором капля с диаметром 2-3 мм начинает скатываться, не превышает десятка градусов, и имеет место эффект самоочистки поверхности при контакте с каплями воды.
Технической задачей предлагаемого изобретения является повышение гидрофобности полимерной пленки и возможность получения полимерной пленки с регулируемой гидрофобностью поверхности.
Для решения поставленной задачи соединение слоев волокнистого полимерного материала проводят одновременно путем их спекания при температуре на 10-20°С ниже температуры плавления полимерного материала под давлением от 50-120 кгс/см2 с формированием пакета из различного количества и формы слоев по площади пленки.
Отличием от прототипа также является то, что проводят охлаждение полученной полимерной пленки с пористой градиентной структурой под давлением 50-100 кгс/см2 до комнатной температуры с равномерным давлением по всей площади пресса. В результате этой операции толщину пленки после спекания под давлением получают одинаковой по всей площади пленки.
Еще одним отличием является то, что в качестве исходного сырья для пленки используются листы волокнистого полимерного материала с толщиной волокон 0,01-50 мкм и плотностью 5÷100 г/м2.
Механизм образования пористой пленки обусловлен переходом полимерных волокон в вязкотекучее состояние в процессе спекания при температуре на 10-20°С ниже температуры плавления, что приводит к сплавлению отдельных волокон друг с другом, в зависимости от длительности выдержки под давлением меняется степень перехода волокна в расплав, что определяет количество и размер пор.
Также отличием является то, что градиент пористой структуры пленки определяется разностью давления по площади заготовки пленки - область максимального давления характеризуются минимальным количеством пор.
Также предлагаемый способ отличается тем, что микрорельеф поверхности пористой пленки зависит от формы и числа листов волокнистого полимерного материала, в результате чего сплавляемые волокна на поверхности пленки образуют различный микрорельеф поверхности пленки. Минимальное число листов в пакете равно четырем, что обусловлено особенностями работы пресса.
Наконец еще одним отличием предложенного способа является то, что в качестве волокнистых полимерных материалов можно применять один из следующих полимерных материалов: полиэфир, полисульфон, полиолефин, фторсодержащие полимерные материалы.
Краткое описание чертежей
Настоящее изобретение поясняется чертежом.
На Фиг. 1 приведен вариант компоновки листов нетканого полимерного материала в заготовке для пористой пленки с градиентной структурой, 1 - профиль распределения давления по площади заготовки пленки, 2 и 3 - варианты формы и размера листов волокнистого полимерного материала по периметру пакета для получения необходимого микрорельефа на части площади поверхности пленки, 4 - варианты размеров листов равных полной площади заготовки пленки.
Примеры выполнения способа
Пример 1
Для изготовления использовались образцы волокнистого политетрафторэтилена прямоугольной формы с размерами 20×10 мм, полученные методом лазерной абляции: диаметр нити 50 мкм, длина нити 0,2-2 мм, плотность материала 90 г/м2. Данный материал набирался в пакет по схеме, приведенной на Фиг.1, который затем подвергался термической обработке под давлением 100 кгс/см2 в гидравлическом прессе при температуре 150°С и давлении в течение 20 минут, градиент давления задавался ограничителями между плит пресса. Образец охлаждали на воздухе под давлением 50 кгс/см2 в прессе с внутренним водяным охлаждением.
Пример 2
В качестве волокнистого материала был использован фторопласт марки Ф-42, полученный методом электроспиннинга, с толщиной волокна 5 мкм и плотностью 10 г/см2. Обработка в прессе проводилась при температуре 120°С и давлении 50 кгс/см2 в течение 10 минут с последующим охлаждением под давлением 100 кгс/ см2 в прессе с водяным охлаждением. Градиент давления задавался ограничителями между плит пресса.
Пример 3
В примере 3 был использован фторопласт марки Ф-42, полученный методом электроспиннинга, с толщиной волокна 0,5 мкм и плотностью 5 г/см2.
Обработка в прессе проводилась при температуре 110°С и давлении 20 кгс/см2 в течение 10 минут с последующим охлаждением под давлением в прессе 50 кгс/см2 с водяным охлаждением. Градиент давления задавался ограничителями между плит пресса.
Краевые углы смачивания измерялись в 3-5 различных точках на поверхности образца, для каждого места измерения определялся средний угол по 10 последовательным изображениям капли. Разброс по углам, измеряемым в различных местах образца, может составлять несколько градусов, что отражает пространственную неоднородность шероховатости поверхности материала. Перед проведением измерений образцы для удаления пыли и водорастворимых поверхностных загрязнений отмывали в воде в течение 5 минут с использованием ультразвуковой ванны.
Исследования образца показали значительную вариацию углов смачивания в точках на расстоянии 5 мм, расположенных на прямой, связывающей области с разной шероховатостью поверхности. Этот факт наглядно отображен ростом экспериментальных углов смачивания.
Исследования образца показали значительную вариацию углов смачивания в точках на расстоянии 5 мм, расположенных на прямой, связывающей области с разной шероховатостью поверхностей. Это наглядно отображено ростом экспериментальных углов смачивания в Таблице 1.
Таблица 1 | ||||
Точка измерения | Краевой угол смачивания, θ° | |||
Пример 1 | Пример 2 | Пример 3 | прототип | |
1 | 109±5 | 101±5 | 93±2 | 95±5 |
2 | 124±4 | 114±4 | 101±5 | 98±4 |
3 | 130±4 | 125±4 | 106±2 | 100±4 |
4 | 141±5 | 138±5 | 115±5 | 104±3 |
5 | 150±3 | 142±3 | 122±3 | 107±3 |
Используемое оборудование позволило получить однородные пленки на образцах малой площади, однако, регулируя температуру и давление, можно получить поверхности с разной шероховатостью и таким образом создавать их с градиентом угла смачивания.
Claims (5)
1. Способ получения полимерных пленок с пористой градиентной структурой, включающий соединение пакета из листов волокнистого полимерного материала, отличающийся тем, что формируют пакет из различной формы и размеров листов волокнистого полимерного материала по его периметру, затем проводят соединение всех листов волокнистого полимерного материала путем их спекания одновременно при температуре на 10-20°С ниже температуры плавления волокнистого полимерного материала и давлении 50-120 кгс/см2, после чего проводят охлаждение полученной полимерной пленки с пористой градиентной структурой под давлением 50-100 кгс/см2 до комнатной температуры при равномерном давлении по всей площади поверхности.
2. Способ по п. 1, отличающийся тем, что градиент пористой структуры пленки с пористой градиентной структурой задается разностью давлений по площади пленки.
3. Способ по п. 1, отличающийся тем, что количество листов в пакете из листов волокнистого полимерного материла должно быть более четырех.
4. Способ по п. 1, отличающийся тем, что используют листы волокнистого полимерного материала с толщиной волокон 0,01-50 мкм и плотностью 5-100 г/см2.
5. Способ по п. 1, отличающийся тем, что в качестве волокнистого полимерного материала используется один из материалов, выбранный из группы: полиэфир, полисульфон, полиолефин, фторсодержащий полимерный материал.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014140418/13A RU2567907C1 (ru) | 2014-10-07 | 2014-10-07 | Способ получения полимерных пленок с пористой градиентной структурой |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014140418/13A RU2567907C1 (ru) | 2014-10-07 | 2014-10-07 | Способ получения полимерных пленок с пористой градиентной структурой |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2567907C1 true RU2567907C1 (ru) | 2015-11-10 |
Family
ID=54537236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014140418/13A RU2567907C1 (ru) | 2014-10-07 | 2014-10-07 | Способ получения полимерных пленок с пористой градиентной структурой |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2567907C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2106363C1 (ru) * | 1992-01-16 | 1998-03-10 | Е.И.Дю Пон де Немурс энд Компани | Способ предварительного уплотнения пористого плоского слоя термопластичного полимера, армированного волокном |
RU2143443C1 (ru) * | 1998-10-01 | 1999-12-27 | Меньшов Сергей Викторович | Способ изготовления листовых облицовочных изделий из полимерных отходов |
RU2337003C1 (ru) * | 2006-12-25 | 2008-10-27 | Общество с ограниченной ответственностью "Красноярская Химическая Компания" | Способ изготовления резинополимерных пластин |
KR20130092971A (ko) * | 2010-04-14 | 2013-08-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 패턴화된 경사 중합체 필름 및 방법 |
RU2505402C2 (ru) * | 2009-03-13 | 2014-01-27 | Дзе Проктер Энд Гэмбл Компани | Изделие со скреплением и способ его изготовления |
-
2014
- 2014-10-07 RU RU2014140418/13A patent/RU2567907C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2106363C1 (ru) * | 1992-01-16 | 1998-03-10 | Е.И.Дю Пон де Немурс энд Компани | Способ предварительного уплотнения пористого плоского слоя термопластичного полимера, армированного волокном |
RU2143443C1 (ru) * | 1998-10-01 | 1999-12-27 | Меньшов Сергей Викторович | Способ изготовления листовых облицовочных изделий из полимерных отходов |
RU2337003C1 (ru) * | 2006-12-25 | 2008-10-27 | Общество с ограниченной ответственностью "Красноярская Химическая Компания" | Способ изготовления резинополимерных пластин |
RU2505402C2 (ru) * | 2009-03-13 | 2014-01-27 | Дзе Проктер Энд Гэмбл Компани | Изделие со скреплением и способ его изготовления |
KR20130092971A (ko) * | 2010-04-14 | 2013-08-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 패턴화된 경사 중합체 필름 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101821049B1 (ko) | 1차원의 고분자 나노섬유들이 준정렬된 그리드 형상으로 직교하여 적층되어 기공 분포 및 기공 크기가 제어된 3차원 고분자 나노섬유 멤브레인 및 그 제조방법 | |
KR102352507B1 (ko) | 복합막의 제조 방법 및 복합막의 제조 장치 | |
US8011518B2 (en) | Crystalline polymer microporous film, manufacturing method of the same, and filtration filter | |
TWI526243B (zh) | Porous multi - layer filter | |
US11547973B2 (en) | Asymmetric polytetrafluoroethylene composite having a macro-textured surface and method for making the same | |
KR102101688B1 (ko) | 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그것들의 제조 방법 | |
US20160001235A1 (en) | Filtration membranes | |
JPWO2017018483A1 (ja) | 電池用セパレータおよびその製造方法 | |
WO2016080200A1 (ja) | ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法 | |
JP5470139B2 (ja) | 結晶性ポリマー微孔性膜及びその製造方法、並びに、該結晶性ポリマー微孔性膜を用いた濾過用フィルター | |
JP5470137B2 (ja) | 結晶性ポリマー微孔性膜及びその製造方法、並びに、該結晶性ポリマー微孔性膜を用いた濾過用フィルター | |
KR20170093789A (ko) | 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그들의 제조 방법 | |
TW201807866A (zh) | 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法 | |
WO2017094486A1 (ja) | 電池用セパレータおよびその製造方法 | |
RU2567907C1 (ru) | Способ получения полимерных пленок с пористой градиентной структурой | |
JP2011212607A (ja) | 結晶性ポリマー微孔性膜及び濾過用フィルター | |
KR20160026820A (ko) | 다공질 폴리테트라플루오로에틸렌막 및 그의 제조 방법 | |
TWI730999B (zh) | 積層聚烯烴微多孔膜、電池用隔膜及其製造方法以及積層聚烯烴微多孔膜捲繞體之製造方法 | |
JP5914789B1 (ja) | ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法 | |
TW201736479A (zh) | 聚烯烴微多孔膜及其製備方法、積層聚烯烴微多孔膜、輥及聚烯烴微多孔膜的評價方法 | |
JP6876571B2 (ja) | Lib用セパレータ製造システム | |
WO2020090792A1 (ja) | ポリオレフィン微多孔膜及び液体フィルター | |
WO2023139869A1 (ja) | 多孔質膜及び多孔質膜積層体 | |
KR20200044564A (ko) | 불소계 수지 다공성 막 및 이의 제조 방법 | |
WO2023139868A1 (ja) | 多孔質膜、多孔質膜積層体及び多孔質膜の製造方法 |