RU2561254C1 - Электрогидравлический привод - Google Patents

Электрогидравлический привод Download PDF

Info

Publication number
RU2561254C1
RU2561254C1 RU2014110368/06A RU2014110368A RU2561254C1 RU 2561254 C1 RU2561254 C1 RU 2561254C1 RU 2014110368/06 A RU2014110368/06 A RU 2014110368/06A RU 2014110368 A RU2014110368 A RU 2014110368A RU 2561254 C1 RU2561254 C1 RU 2561254C1
Authority
RU
Russia
Prior art keywords
pistons
hydraulic
contact
pump
inclined disk
Prior art date
Application number
RU2014110368/06A
Other languages
English (en)
Inventor
Владимир Юрьевич Круглов
Пётр Иванович Валиков
Анатолий Иванович Шорохов
Борис Владимирович Степанов
Анатолий Анатольевич Захаров
Роман Львович Мусатов
Сергей Иванович Филиппов
Original Assignee
Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" (АО "ВНИИ "Сигнал")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" (АО "ВНИИ "Сигнал") filed Critical Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" (АО "ВНИИ "Сигнал")
Priority to RU2014110368/06A priority Critical patent/RU2561254C1/ru
Application granted granted Critical
Publication of RU2561254C1 publication Critical patent/RU2561254C1/ru

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

Привод может быть использован в регулируемых объемно-замкнутых электрогидравлических приводах. В привод введены датчик угла наклонного диска регулируемого аксиально-поршневого насоса с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями, сумматор, обратный клапан, гидравлический аккумулятор, при этом механизм управления насоса выполнен электрогидравлическим, а датчик угла кинематически соединен с наклонным диском и своим электрическим выходом соединен со вторым входом сумматора, первый вход которого является управляющим входом привода, выход сумматора соединен с электрическим входом механизма управления, напорная гидролиния вспомогательного насоса через обратный клапан соединена с гидравлическим аккумулятором и гидравлическим входом механизма управления. Технический результат - повышение КПД электрогидропривода и уменьшение стабильной частоты вращения вала гидромотора. 2 ил.

Description

Изобретение относится к области машиностроения и может быть использовано в регулируемых объемно-замкнутых электрогидравлических приводах.
Известен регулируемый электрогидравлический привод с замкнутой схемой циркуляции рабочей жидкости (Под. ред. Прокофьева, В.Н. Аксиально-поршневой регулируемый гидропривод. М.: Машиностроение, 1969 г., стр.257). В данном приводе используются объемно-замкнутые между собой аксиально-поршневые гидромашины с наклонным блоком цилиндров и двойным несиловым карданом. Насос переменной подачи приводится в действие приводным электродвигателем, а управление насосом осуществляется посредством электрогидравлического механизма управления с внутренней механической обратной связью по положению люльки насоса. Электрический вход механизма управления является управляющим входом гидропривода.
Недостатком этого привода является наличие в насосе внутренней обратной связи по положению его люльки и находящегося в ней блока цилиндров, имеющих большой момент инерции, что отрицательно сказывается на КПД привода при отработке быстро меняющихся управляющих воздействий.
Известен объемно-замкнутый гидропривод нераздельного исполнения АЮИЖ. 303379.013 РЭ (ОАО «ВНИИ «Сигнал», г. Ковров, 2004 г.), принятый за прототип. Данный гидропривод содержит гидравлически замкнутые между собой аксиально-поршневой гидромотор с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и регулируемый аксиально-поршневой насос с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями, и с механическим механизмом управления, приводной двигатель, вспомогательный насос, предохранительный клапан, первый и второй подпиточные клапаны, пополнительный бак, при этом напорная гидролиния вспомогательного насоса соединена с входами первого и второго подпиточных клапанов, выходы которых соединены с магистралями, соединяющими регулируемый насос и гидромотор, вход предохранительного клапана соединен с напорной гидролинией вспомогательного насоса, вход вспомогательного насоса соединен с пополнительным баком, корпусы механизма управления, насоса с гидромотором и выход предохранительного клапана соединены со входом вспомогательного насоса, вал приводного двигателя кинематически соединен с входными валами регулируемого и вспомогательного насосов.
Недостатками данного гидропривода являются высокие гидромеханические потери и высокие утечки, что отрицательно сказывается на величине КПД гидропривода, на значении минимальных стабильных частот вращения вала гидромотора.
Целью изобретения является повышение КПД электрогидропривода и, как следствие, уменьшение стабильной частоты вращения вала гидромотора.
Технический результат достигается тем, что в электрогидравлический привод, содержащий гидравлически замкнутые между собой аксиально-поршневой гидромотор с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями (гидромотор) и регулируемый аксиально-поршневой насос с наклонным диском и гидростатическими опорами с поршнями (регулируемый насос) и с механизмом управления, приводной двигатель, вспомогательный насос, предохранительный клапан, первый и второй подпиточные клапаны, пополнительный бак, при этом напорная гидролиния вспомогательного насоса соединена с входами первого и второго подпиточных клапанов, выходы которых соединены с магистралями, соединяющими регулируемый насос и гидромотор, вход предохранительного клапана соединен с напорной гидролинией вспомогательного насоса, вход вспомогательного насоса соединен с пополнительным баком, корпусы механизма управления, насоса с гидромотором и выход предохранительного клапана соединены со входом вспомогательного насоса, вал приводного двигателя кинематически соединен с входными валами регулируемого и вспомогательного насосов, введены датчик угла наклонного диска регулируемого насоса, сумматор, обратный клапан, гидравлический аккумулятор, при этом механизм управления регулируемого насоса выполнен электрогидравлическим, а датчик угла кинематически соединен с наклонным диском регулируемого насоса и своим электрическим выходом соединен со вторым входом сумматора, первый вход которого является управляющим входом привода Uупр, выход сумматора соединен с электрическим входом электрогидравлического механизма управления, напорная гидролиния вспомогательного насоса через обратный клапан соединена с гидравлическим аккумулятором и гидравлическим входом электрогидравлического механизма управления, а усилие R пружины, поджимающей блок цилиндров к распределителю в гидромоторе, отвечает соотношению:
Figure 00000001
,
где
mц - масса блока цилиндров (без поршней);
a 0 - проекция вибрационного ускорения на ось вала гидромотора;
g0 - проекция ускорения свободного падения на ось вала гидромотора;
z - количество поршней и гидростатических опор в гидромоторе;
mп - масса одного поршня с гидростатической опорой;
a п0 - проекция вибрационного ускорения на плоскость, перпендикулярную оси вала гидромотора;
gп0 - проекция ускорения свободного падения на плоскость, перпендикулярную оси вала гидромотора;
l1 - расстояние от центра тяжести блока цилиндров, поршней с гидростатическими опорами до его точки самоустановки;
Dц - внешний диаметр блока цилиндров, взаимодействующий с распределителем;
σp - удельное давление между блоком цилиндров и распределителем;
Sp - площадь контакта блока цилиндров и распределителя.
На фиг.1 приведена упрощенная структурная схема электрогидравлического привода, на фиг.2 - электрогидравлический привод с аксиально-поршневыми гидромашинами с наклонным диском и гидростатическими опорами (электрогидравлический механизм управления не показан).
Электрогидравлический привод (фиг.1) содержит гидравлически замкнутые между собой гидромотор 1 и регулируемый насос 2 с механизмом управления 3, приводной двигатель 4, вспомогательный насос 5, предохранительный клапан 6, первый 7 и второй 8 подпиточные клапаны, пополнительный бак 9, при этом напорная гидролиния 10 вспомогательного насоса 5 соединена с входами первого 7 и второго 8 подпиточных клапанов, выходы которых соединены с магистралями, соединяющими регулируемый насос 2 и гидромотор 1, вход предохранительного клапана 6 соединен с напорной гидролинией 10 вспомогательного насоса 5, вход которого соединен с пополнительным баком 9, выход предохранительного клапана 6, корпусы механизма управления 3, регулируемого насоса 2 с гидромотором 1 и выход предохранительного клапана 6 соединены с входом вспомогательного насоса 5, при этом механизм управления 3 регулируемого насоса 2 выполнен электрогидравлическим, а датчик угла 11 кинематически соединен с наклонным диском 15 (фиг.2) регулируемого насоса 2 и своим электрическим выходом соединен со вторым входом сумматора 12 (фиг.1), первый вход которого является управляющим входом электрогидравлического привода, выход сумматора 12 соединен с электрическим входом электрогидравлического механизма управления 3, напорная гидролиния 10 вспомогательного насоса 5 через обратный клапан 13 соединена с гидравлическим аккумулятором 14 и с гидравлическим входом электрогидравлического механизма управления 3, а усилие R пружины 16 (фиг.2), поджимающей блок цилиндров 17 к распределителю 18 в гидромоторе 1, отвечает соотношению:
Figure 00000001
,
где
mц - масса блока цилиндров 17 (без поршней 19);
a 0 - проекция вибрационного ускорения на ось вала 20 гидромотора 1;
g0 - проекция ускорения свободного падения на ось вала 20 гидромотора 1;
z - количество поршней 19 и гидростатических опор 21 в гидромоторе 1;
mп - масса одного поршня 19 с гидростатической опорой 21;
a п0 - проекция вибрационного ускорения на плоскость, перпендикулярную оси вала 20 гидромотора 1;
gп0 - проекция ускорения свободного падения на плоскость, перпендикулярную оси вала гидромотора 1;
l1 - расстояние от центра тяжести блока цилиндров 17, поршней 19 с гидростатическими опорами 21 до его точки самоустановки;
Dц - внешний диаметр блока цилиндров 17, взаимодействующий с распределителем 18;
σp - удельное давление между блоком цилиндров 17 и распределителем 18;
Sp - площадь контакта блока цилиндров 17 и распределителя 18.
Вал приводного двигателя 4 кинематически соединен с валом 22 регулируемого насоса 2 и с валом 23 вспомогательного насоса 5. Вал 20 гидромотора 1 соединен с объектом регулирования.
Электрогидравлический привод работает следующим образом. При отсутствии управляющего сигнала на первом входе сумматора 12 (фиг.1) соответственно отсутствует сигнал на электрическом входе электрогидравлического механизма управления 3. Наклонный диск 15 (фиг.2) регулируемого насоса 2 находится в нулевом, нейтральном положении. Приводной двигатель 4 вращает вал 22 насоса 2 и вал 23 вспомогательного насоса 5. Вспомогательный насос 5 (фиг.1) подает рабочую жидкость по напорной гидролинии 10 на входы подпиточных клапанов 7 и 8 и через них в магистрали, соединяющие регулируемый насос 2 и гидромотор 1, на вход предохранительного клапана 6, на входы обратного клапана 13 и гидравлического аккумулятора 14 и на гидравлический вход электрогидравлического механизма управления 3. Таким образом, обеспечивается давление подпитки в магистралях, соединяющих регулируемый насос 2 и гидромотор 1, заполнение гидравлического аккумулятора 14 и давление питания электрогидравлического механизма управления 3. При нулевом нейтральном положении наклонного диска 15 (фиг.2) регулируемый насос 2 подачу не производит и вал 20 гидромотора 1 не вращается.
После подачи на первый вход сумматора 12 (фиг.1) управляющего сигнала для электрогидравлического привода Uупр, на второй вход сумматора 12 поступает сигнал с датчика угла 11, образуя отрицательную обратную связь электрогидравлического привода. Сигнал с выхода сумматора 12 поступает на электрический вход электрогидравлического механизма управления 3. Таким образом, на электрическом входе электрогидравлического механизма управления 3 формируется управляющий сигнал, определяющий положение наклонного диска 15 регулируемого насоса 2.
Регулируемый насос 2, пропорционально положению наклонного диска 15, подает жидкость в одну из магистралей, при этом, например, первый подпиточный клапан 7 прикрывается, а второй подпиточный клапан 8 приоткрывается, открывая путь большему потоку жидкости. В гидромоторе 1 блок цилиндров 17 (фиг.2) через накладной диск поджимается к распределителю 18. Усилие поджатая блока цилиндров 17 к распределителю 18 определяет величину момента сопротивления вращению вала 20 гидромотора 1.
Предложенное в заявке на изобретение усилие R обеспечивает уменьшение перепада давления страгивания и, следовательно, величины утечек, что способствует также уменьшению начальной величины стабильной частоты вращения вала 20 гидромотора 1.
При вращении вала 20 гидромотора 1 рабочая жидкость возвращается в регулируемый насос 2, при этом подпиточные клапаны 7 и 8 (фиг.1) обеспечивают в магистралях давление подпитки.
Для обеспечения точности отработки электрогидравлическим механизмом управления 3 сигналов большой амплитуды, частоты или работы при значительном колебании частоты вращения вала приводного двигателя 4 необходимо стабильное давление питания электрогидравлического механизма управления 3. Для уменьшения потерь гидравлической мощности вспомогательного насоса 5 и, следовательно, повышения КПД электрогидравлического привода, питание электрогидравлического механизма 3 от вспомогательного насоса 5 осуществляется через обратный клапан 13 и с помощью гидравлического аккумулятора 14.
Уменьшение минимальной стабильной частоты вращения вала 20 гидромотора 1 способствует улучшению плавности работы, чувствительности, увеличению диапазона регулирования электрогидравлического привода, при его высоком КПД.
Уменьшение гидромеханических (перепад давления страгивания в гидромоторе) и объемных (величина утечек) потерь приводит как к уменьшению суммарных потерь и повышению коэффициента полезного действия (КПД), так и к расширению зоны максимального КПД, с расширением ее в том числе в сторону меньших частот вращения. В связи с увеличением КПД уменьшаются тепловыделения и улучшается тепловое состояние электрогидравлического привода.
В ОАО «ВНИИ «Сигнал» проведены испытания электрогидравлического привода с гидромашинами с рабочим объемом 112 см3/об с предлагаемыми в формуле изобретения техническими решениями. При этом получена минимальная стабильная частота вращения - 20 об/мин (1/3 об/сек). Точность стабилизации частоты вращения предлагаемого электрогидравлического привода составила ±4,5%. Минимальная стабильная частота вращения прототипа составляет не менее 180 об/мин.

Claims (1)

  1. Электрогидравлический привод, содержащий гидравлически замкнутые между собой аксиально-поршневой гидромотор с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и регулируемый аксиально-поршневой насос с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и с механизмом управления, приводной двигатель, вспомогательный насос, предохранительный клапан, первый и второй подпиточные клапаны, пополнительный бак, при этом напорная гидролиния вспомогательного насоса соединена с гидравлическим входом механизма управления и с входами первого и второго подпиточных клапанов, выходы которых соединены с магистралями, соединяющими регулируемый аксиально-поршневой насос с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и аксиально-поршневой гидромотор с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями, вход предохранительного клапана соединен с напорной гидролинией вспомогательного насоса, вход вспомогательного насоса соединен с пополнительным баком, корпусы механизма управления, регулируемого аксиально-поршневого насоса с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями с аксиально-поршневым гидромотором с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и выход предохранительного клапана соединены с входом вспомогательного насоса, вал приводного двигателя кинематически соединен с входными валами регулируемого аксиально-поршневого насоса с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями и вспомогательного насоса, отличающийся тем, что в него введены датчик угла наклонного диска регулируемого аксиально-поршневого насоса с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями, сумматор, обратный клапан, гидравлический аккумулятор, при этом механизм управления регулируемого аксиально-поршневого насоса с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями выполнен электрогидравлическим, а датчик угла кинематически соединен с наклонным диском и своим электрическим выходом соединен со вторым входом сумматора, первый вход которого является управляющим входом электрогидравлического привода, выход сумматора соединен с электрическим входом электрогидравлического механизма управления, напорная гидролиния вспомогательного насоса через обратный клапан соединена с гидравлическим аккумулятором и гидравлическим входом электрогидравлического механизма управления, а усилие R пружины, поджимающей блок цилиндров к распределителю в аксиально-поршневом гидромоторе с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями, отвечает соотношению:
    Figure 00000001
    ,
    где mц - масса блока цилиндров (без поршней);
    a 0 - проекция вибрационного ускорения на ось вала аксиально-поршневого гидромотора с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями;
    g0 - проекция ускорения свободного падения на ось вала аксиально-поршневого гидромотора с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями;
    z - количество поршней и гидростатических опор в аксиально-поршневом гидромоторе с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями;
    mп - масса одного поршня с гидростатической опорой;
    a п0 - проекция вибрационного ускорения на плоскость, перпендикулярную оси вала аксиально-поршневого гидромотора с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями;
    gп0 - проекция ускорения свободного падения на плоскость, перпендикулярную оси вала аксиально-поршневого гидромотора с наклонным диском и контактирующими с ним гидростатическими опорами с поршнями;
    l1 - расстояние от центра тяжести блока цилиндров, поршней с гидростатическими опорами до его точки самоустановки;
    Dц - внешний диаметр блока цилиндров, взаимодействующий с распределителем;
    σp - удельное давление между блоком цилиндров и распределителем;
    Sp - площадь контакта блока цилиндров и распределителя.
RU2014110368/06A 2014-03-18 2014-03-18 Электрогидравлический привод RU2561254C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014110368/06A RU2561254C1 (ru) 2014-03-18 2014-03-18 Электрогидравлический привод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110368/06A RU2561254C1 (ru) 2014-03-18 2014-03-18 Электрогидравлический привод

Publications (1)

Publication Number Publication Date
RU2561254C1 true RU2561254C1 (ru) 2015-08-27

Family

ID=54015540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110368/06A RU2561254C1 (ru) 2014-03-18 2014-03-18 Электрогидравлический привод

Country Status (1)

Country Link
RU (1) RU2561254C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593325C1 (ru) * 2015-09-07 2016-08-10 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" (АО "ВНИИ "Сигнал") Электрогидравлический привод
RU2646169C1 (ru) * 2017-05-26 2018-03-01 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический привод
RU2688783C1 (ru) * 2018-07-16 2019-05-22 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический привод

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431182A (en) * 1994-04-20 1995-07-11 Rosemount, Inc. Smart valve positioner
RU2099765C1 (ru) * 1985-07-02 1997-12-20 Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический следящий привод
RU2119185C1 (ru) * 1988-04-08 1998-09-20 Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический следящий привод
US6512960B1 (en) * 1999-05-11 2003-01-28 Samson Aktiengesellschaft Positioner and method for operating the positioner
RU2347952C1 (ru) * 2007-10-16 2009-02-27 Вера Семеновна Рождественская Электрогидравлический следящий привод объемного регулирования

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2099765C1 (ru) * 1985-07-02 1997-12-20 Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический следящий привод
RU2119185C1 (ru) * 1988-04-08 1998-09-20 Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический следящий привод
US5431182A (en) * 1994-04-20 1995-07-11 Rosemount, Inc. Smart valve positioner
US6512960B1 (en) * 1999-05-11 2003-01-28 Samson Aktiengesellschaft Positioner and method for operating the positioner
RU2347952C1 (ru) * 2007-10-16 2009-02-27 Вера Семеновна Рождественская Электрогидравлический следящий привод объемного регулирования

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593325C1 (ru) * 2015-09-07 2016-08-10 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" (АО "ВНИИ "Сигнал") Электрогидравлический привод
RU2646169C1 (ru) * 2017-05-26 2018-03-01 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический привод
RU2688783C1 (ru) * 2018-07-16 2019-05-22 Акционерное общество "Всероссийский научно-исследовательский институт "Сигнал" Электрогидравлический привод

Similar Documents

Publication Publication Date Title
RU2561254C1 (ru) Электрогидравлический привод
CN102434415B (zh) 一种基于串联泵转位角的低噪音轴向柱塞泵
CN104153958B (zh) 一种径向柱塞泵的排量调节用交流伺服电机驱动装置
US6837141B1 (en) Polyphase hydraulic drive system
CN104196720B (zh) 一种变量叶片泵排量调节用交流伺服电机驱动装置
JP2018193981A (ja) 著しく低速・高トルク型で摩擦損失と作動油漏れの少ないピストンポンプ/モータ
CN102606443A (zh) 一种电磁直接驱动电液伺服泵
RU2593325C1 (ru) Электрогидравлический привод
CN103195480B (zh) 可变膨胀比的叶片式气动马达
EP3115602B1 (en) Hydraulic transmission, power generating apparatus of renewable-energy type, and method of operating the same
Fornarelli et al. Investigation of a pressure compensated vane pump
CN107420072A (zh) 一种基于静液传动技术的双马达驱动液压抽油机
RU181367U1 (ru) Многовинтовой летательный аппарат с гидравлическим приводом несущих винтов с фиксированным шагом лопастей
CN104500492A (zh) 双蝶形协同配流泵驱动的电静液作动器
CN106286104A (zh) 双桨叶双向水平轴海流能发电装置
US3153909A (en) Automatic hydraulic transmission
FR3075278B1 (fr) Regulation de pompe hydraulique
RU2554152C1 (ru) Электрогидравлический следящий привод
RU2554153C1 (ru) Электрогидравлический следящий привод
CN110439777A (zh) 一种由负载控制液压排量的液压电机柱塞泵
CN104583607A (zh) 液压马达驱动装置
JP2015127558A5 (ru)
TW201901025A (zh) 以迴轉力回饋控制轉速之動力轉換器
CN107524576B (zh) 一种降噪音的轴向柱塞泵
CN206770146U (zh) 小型电动液压柱塞泵