RU2560091C2 - Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания - Google Patents

Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2560091C2
RU2560091C2 RU2012145008/07A RU2012145008A RU2560091C2 RU 2560091 C2 RU2560091 C2 RU 2560091C2 RU 2012145008/07 A RU2012145008/07 A RU 2012145008/07A RU 2012145008 A RU2012145008 A RU 2012145008A RU 2560091 C2 RU2560091 C2 RU 2560091C2
Authority
RU
Russia
Prior art keywords
exhaust gas
recirculation valve
signal
gas recirculation
functionality
Prior art date
Application number
RU2012145008/07A
Other languages
English (en)
Other versions
RU2012145008A (ru
Inventor
БРАЙТБАХ Томас
ПАВЛАК Йенс
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2012145008A publication Critical patent/RU2012145008A/ru
Application granted granted Critical
Publication of RU2560091C2 publication Critical patent/RU2560091C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

Изобретение относится к области транспорта и может быть использовано в двигателях внутреннего сгорания. Техническим результатом является повышение надежности диагностирования функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания. В способе проверки функциональности клапана (13) рециркуляции отработавших газов (ОГ) двигателя (1) внутреннего сгорания периодически изменяют положение исполнительного звена (13a) клапана (13) рециркуляции ОГ, измеряют системную величину (LM, LD), на которую влияет движение исполнительного звена (13a), и для проверки функциональности клапана (13) рециркуляции ОГ обрабатывают измерительный сигнал. 2 н. и 4 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу проверки функциональности клапана рециркуляции отработавших газов (ОГ) двигателя внутреннего сгорания (ДВС).
Уровень техники
Клапаны рециркуляции ОГ используются в ДВС для образования смеси из свежего воздуха и рециркулируемых ОГ во впускном газопроводе и для улучшения таким путем характеристик сгорания топлива, прежде всего в целях минимизации его расхода и выброса вредных веществ. Рециркуляция ОГ позволяет, например, уменьшить выброс оксидов азота (NOx). Для рециркуляции ОГ из выпускного газопровода во впускной газопровод используют непрерывно регулируемый клапан рециркуляции ОГ и регулируют степень его открытия. Однако в процессе эксплуатации клапана рециркуляции ОГ его функциональность может вследствие его загрязнения, покрытия сажей, старения и влияния иных факторов ухудшаться, что проявляется прежде всего в отклонении его фактического положения от заданного. Подобное ухудшение функциональности клапана рециркуляции ОГ отрицательно сказывается на характеристиках сгорания топлива.
Исходя из вышеизложенного, желательно обеспечить возможность простой и надежной проверки функциональности клапана рециркуляции ОГ.
Краткое изложение сущности изобретения
Согласно изобретению в нем предлагается соответствующий способ, заявленный в п.1 формулы изобретения. В соответствующих зависимых пунктах формулы изобретения, а также в последующем описании представлены предпочтительные варианты осуществления изобретения.
Преимущества изобретения
Основная идея изобретения заключается в том, чтобы подавать на исполнительное звено клапана рециркуляции ОГ периодически модулированный сигнал и анализировать в частотной области подверженную его влиянию выходную системную переменную, например сигнал от датчика давления наддува или сигнал от массового расходомера воздуха. Предлагаемый в изобретении способ может использоваться в широких пределах рабочих режимов двигателя, прежде всего в установившихся и в динамических режимах, и позволяет тем самым соблюсти требование непрерывного диагностирования клапана рециркуляции ОГ. Для реализации предлагаемой в изобретении идеи вполне достаточно использовать в любом случае предусмотренные датчики и исполнительные органы, которые серийно устанавливаются на автомобиле, благодаря чему исключаются дополнительные расходы на дополнительные измерительно-преобразовательные средства, приводные/исполнительные средства или аппаратные средства для блока управления. При осуществлении предлагаемого в изобретении способа в непрерывном режиме можно в любой момент проверять функциональность клапана рециркуляции ОГ. При незначительной модуляции управляющего сигнала соотношение сажа/NOx можно приблизительно рассматривать как линейное, и поэтому предлагаемый в изобретении способ не оказывает никакого влияния на общее количество выбросов. Хотя предлагаемый в изобретении способ в соответствии с его назначением принципиален и предполагает вмешательство в работу системы регулирования клапана рециркуляции ОГ, однако не оказывает никакого сколько-нибудь существенного влияния на количество выбросов, что делает изобретение особо пригодным для применения на практике. Изобретение может использоваться применительно к ДВС с самовоспламенением рабочей смеси от сжатия или с принудительным воспламенением рабочей смеси.
В качестве периодического управляющего сигнала можно использовать синусоидальный сигнал или сигнал прямоугольной формы. Сигнал прямоугольной формы лучше представим при меньшей частоте дискретизации, чем синусоидальный сигнал той же частоты. В принципе, однако, для модуляции пригоден любой периодический сигнал.
Для повышения надежности диагностирования целесообразно вычислять или определять скользящее среднее значение измерительного сигнала и вычитать это скользящее среднее значение из исходного измерительного сигнала.
Для обработки или анализа измерительного сигнала можно использовать преобразование Фурье или метод синхронизации. Дополнительное преимущество фазочувствительного метода, прежде всего метода синхронизации, состоит в возможности непосредственного измерения им характеристики объекта регулирования в зависимости от положения его исполнительного звена. Для оценки функциональности клапана рециркуляции ОГ в этом случае необходимо лишь контролировать градиент характеристики с учетом заданных пороговых значений. Таким путем дополнительно к затрудненному ходу клапана рециркуляции ОГ можно также надежно определять возможно появляющееся изменение характеристики объекта регулирования, например, вследствие старения возвратных пружин, осаждения конденсированных паров на клапане, неправильного обращения с ним и иных факторов.
Предлагаемое в изобретении вычислительное устройство, например , блок управления, устанавливаемый на автомобиле, предназначено для осуществления предлагаемого в изобретении способа, прежде всего на программно-техническом уровне.
Другие преимущества изобретения и варианты его осуществления вытекают из последующего описания и прилагаемых к нему чертежей.
Очевидно, что описанные выше и рассматриваемые ниже отличительные особенности изобретения могут использоваться не только в их конкретно указанной комбинации, но и в других технических реализуемых сочетаниях между собой или по отдельности без выхода при этом за объем настоящего изобретения.
Ниже изобретение подробно рассмотрено на примере некоторых вариантов его осуществления со ссылкой на прилагаемые к описанию схематичные чертежи.
Краткое описание чертежей
На прилагаемых к описанию чертежах, в частности, показано:
на фиг.1 - схематичный вид ДВС с блоком управления и
на фиг.2 - блок-схема различных альтернативных путей реализации предлагаемого в изобретении способа в предпочтительном варианте его осуществления.
Описание варианта(-ов) осуществления изобретения
На фиг.1 показан ДВС 1, в котором его поршень 2 установлен в цилиндре 3 с возможностью возвратно-поступательного движения в нем. В цилиндре 3 образована камера 4 сгорания, к которой через клапаны 5 подсоединены впускной газопровод 6 и выпускной газопровод 7. Впускной газопровод 6 соединен с выпускным газопроводом 7 через клапан 13 рециркуляции ОГ, имеющий заслонку 13a в качестве исполнительного или регулирующего звена для принудительной рециркуляции ОГ. Заслонка 13a выполнена управляемой по сигналу EGR от (электронного) блока 16 управления. Помимо этого в камеру 4 сгорания выступают управляемая по сигналу TI топливная форсунка 8 и управляемая по сигналу ZW свеча 9 зажигания. Показанный на фиг.1 ДВС 1 представляет собой двигатель с принудительным воспламенением рабочей смеси. Необходимо, однако, особо отметить, что изобретение не зависит от способа воспламенения рабочей смеси в ДВС и может столь же эффективно использоваться и применительно к двигателям внутреннего сгорания с самовоспламенением рабочей смеси от сжатия.
Во впускным газопроводе 6 расположены датчик 18 давления наддува, выдающий сигнал LD, пропорциональный давлению наддува во впускным газопроводе, и дроссельная заслонка 12, угловое положение которой может регулироваться по сигналу DK. В двигателях с турбонаддувом между массовым расходомером 10 воздуха и дроссельной заслонкой 12 располагался бы компрессор турбонагнетателя.
Впускной газопровод 6 снабжен далее массовым расходомером 10 воздуха, а выпускной газопровод 7 - кислородным датчиком 11. Массовый расходомер 10 воздуха измеряет массовый расход подаваемого во впускной газопровод 6 свежего воздуха и выдает зависящий от этой величины сигнал LM. Кислородный датчик 11 измеряет содержание кислорода в ОГ в выпускном газопроводе 7 и выдает зависящий от этой величины сигнал лямбда (λ). По ходу потока ОГ за кислородным датчиком 11 расположена система выпуска ОГ (не показана), включая каталитический нейтрализатор ОГ, например, трехкомпонентный каталитический нейтрализатор ОГ. В двигателях с турбонаддувом за кислородным датчиком располагалась бы турбина турбонагнетателя.
При работе ДВС совершающий возвратно-поступательное движение поршень приводит во вращение коленчатый вал 14, которым в конечном итоге приводятся во вращение колеса автомобиля.
Очевидно, что ДВС с принудительным воспламенением рабочей смеси или с самовоспламенением рабочей смеси от сжатия может иметь более одного цилиндра, которые функционально связаны с одним и тем же коленчатым валом, а также с одним и тем же выпускным газопроводом и образуют блок цилиндров, соединенных с одним выпускным коллектором.
В предпочтительном варианте осуществления изобретения блок 16 управления управляет заслонкой 13a клапана рециркуляции ОГ путем подачи модулированных сигналов и, например, обрабатывает пропорциональный давлению наддува сигнал LD и/или пропорциональный массовому расходу воздуха сигнал LM. С этой целью блок 16 управления оснащен микропроцессором, который работает по программе, сохраненной в памяти, прежде всего в постоянной памяти, и пригодной для общего управления двигателем 1 внутреннего сгорания и/или его регулирования. Блок 16 управления выполнен при этом с возможностью осуществления предлагаемого в изобретении способа.
В блок 16 управления поступают входные сигналы, характеризующие измеренные датчиками рабочие параметры ДВС. Так, например, с блоком 16 управления соединены массовый расходомер 10 воздуха, кислородный датчик 11 и датчик 18 давления наддува. Помимо этого с блоком 16 управления соединен датчик 17 положения педали акселератора, выдающий сигнал FP, несущий информацию о положении нажимаемой водителем педали акселератора и тем самым о задаваемом водителем крутящем моменте. Блок 16 управления формирует выходные сигналы, позволяющие через соответствующие исполнительные органы влиять на работу ДВС 1 соответственно требуемому управлению им и/или его регулированию. Так, например, блок 16 управления соединен с клапаном 13 рециркуляции ОГ, топливной форсункой 8, свечой 9 зажигания и дроссельной заслонкой 12 и выдает необходимые для управления ими сигналы EGR, TI, ZW и DK соответственно.
Ниже со ссылкой на фиг.2 рассмотрена последовательность стадий, выполняемых при реализации предпочтительных альтернативных вариантов осуществления предлагаемого в изобретении способа. За основу в этих вариантах можно принять ДВС, показанный на фиг.1. Представленные на блок-схеме стадии не обязательно должны выполняться последовательно, а могут также выполняться одновременно.
Выполнение предлагаемого в изобретении способа начинается с необязательной стадии 101, на которой проверяют наличие соответствующих разрешающих условий и при необходимости инициируют процесс проверки, соответственно диагностирования функциональности клапана рециркуляции ОГ.
На стадии 102 на исполнительное звено 13a клапана 13 рециркуляции ОГ подают периодический сигнал с заданными амплитудой и частотой, т.е. подают нормальный управляющий сигнал с наложенным на него модулирующим сигналом. Модулирующий сигнал в предпочтительном варианте может согласно стадии 103a иметь синусоидальную или согласно стадии 103b - прямоугольную форму. Необходимо, однако, особо отметить, что для модуляции в принципе можно использовать любой периодический сигнал.
На выполняемой в основном одновременно стадии 104 измеряют системную величину, на которую влияет установочное движение, соответственно положение исполнительного звена 13a и которая в предпочтительном варианте может согласно стадии 105a представлять собой массовый расход воздуха, характеризуемый соответствующим измерительным сигналом LM, выдаваемым массовым расходомером 10 воздуха, например, пленочным термоанемометрическим расходомером воздуха, или согласно стадии 105b - давление наддува, характеризуемое соответствующим измерительным сигналом LD, выдаваемым датчиком 18 давления наддува. Необходимо, однако, особо отметить, что в принципе можно измерять любую системную величину, на которую влияет установочное движение исполнительного звена 13a.
На следующей, необязательной стадии 106 путем фильтрации нижних частот вычисляют скользящее среднее значение измерительного сигнала и вычитают это скользящее среднее значение на стадии 107 из исходного измерительного сигнала с целью повысить надежность диагностирования.
Затем обрабатывают результат такого вычитания в качестве нового измерительного сигнала, для чего согласно стадии 108a используют анализ Фурье или согласно стадии 108b - фазочувствительный метод синхронизации.
При использовании анализа Фурье согласно стадии 108a фурье-спектр исследуют на появление в нем частоты возбуждения с явно большей амплитудой по сравнению с соседними амплитудами. Подобный анализ можно проводить на основании сравнения с пороговым значением.
При использовании метода синхронизации согласно стадии 108b измеренный градиент характеристики сравнивают с заданным градиентом характеристики. Подобный анализ также можно проводить на основании сравнения с пороговым значением. При этом целесообразно избирательно выявлять модулирующую частоту в измерительном сигнале. При этом благодаря постоянному соотношению фаз между модулирующим сигналом и измерительным сигналом удается добиться высокоэффективного подавления шумов. Дополнительно появляется возможность проверки крутизны характеристики исполнительного звена, поскольку выходной сигнал синхронного усилителя пропорционален градиенту характеристики. Таким путем при наличии исполнительного звена с нелинейной характеристикой можно проверять, достигло ли также фактически исполнительное звено требуемого положения в заданных пределах.
На стадии 109 на основании соответствующего результата сравнения выявляют признаки неисправности (например, путем интегрирования релевантных частот по определенным временным интервалам или путем выявления признаков неисправности иными методами) и в завершение на стадии 110 выполняют процедуру по обработке признаков неисправности, соответственно по обнаружению неисправностей. Подобный анализ основан, например, на сравнении (больше/меньше/равно) с зависящим от конкретного применения пороговым значением или на выполнении операции вычитания (разность имеет знак плюс или минус) и позволяет тем самым сделать вывод об исправности или неисправности клапана рециркуляции ОГ. Таким путем клапан рециркуляции ОГ можно классифицировать как неисправный или исправный.

Claims (6)

1. Способ проверки функциональности клапана (13) рециркуляции отработавших газов (ОГ) двигателя (1) внутреннего сгорания путем периодического изменения (103a, 103b) положения исполнительного звена (13a) клапана (13) рециркуляции ОГ путем измерения (105a, 105b) системной величины (LM, LD), на которую влияет движение исполнительного звена (13a), и путем обработки (106-110) измерительного сигнала для проверки функциональности клапана (13) рециркуляции ОГ, отличающийся тем, что для обработки измерительного сигнала используют (108b) фазочувствительный метод, который представляет собой метод синхронизации.
2. Способ по п.1, при осуществлении которого в качестве системной величины измеряют давление наддува (LD) или массовый расход воздуха (LM) во впускном газопроводе (6).
3. Способ по п.1, при осуществлении которого измерительный сигнал перед обработкой подвергают фильтрации (106), прежде всего с помощью фильтра нижних частот.
4. Способ по п.3, при осуществлении которого при фильтрации определяют (106) скользящее среднее значение измерительного сигнала, которое перед обработкой измерительного сигнала вычитают (107) из исходного измерительного сигнала, и обрабатывают результат вычитания в качестве нового измерительного сигнала.
5. Способ по одному из пп.1-4, при осуществлении которого в качестве периодического управляющего сигнала используют синусоидальный сигнал или сигнал прямоугольной формы (103a, 103b).
6. Вычислительное устройство, предназначенное для осуществления способа по одному из пп.1-5.
RU2012145008/07A 2010-03-24 2011-03-15 Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания RU2560091C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010003203A DE102010003203A1 (de) 2010-03-24 2010-03-24 Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils einer Brennkraftmaschine
DE102010003203.4 2010-03-24
PCT/EP2011/053871 WO2011117108A1 (de) 2010-03-24 2011-03-15 Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
RU2012145008A RU2012145008A (ru) 2014-05-10
RU2560091C2 true RU2560091C2 (ru) 2015-08-20

Family

ID=43799450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012145008/07A RU2560091C2 (ru) 2010-03-24 2011-03-15 Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания

Country Status (5)

Country Link
CN (1) CN102791995B (ru)
BR (1) BR112012024042B1 (ru)
DE (1) DE102010003203A1 (ru)
RU (1) RU2560091C2 (ru)
WO (1) WO2011117108A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708759C1 (ru) * 2016-09-07 2019-12-11 Ниссан Мотор Ко., Лтд. Способ управления двигателем и устройство управления

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219781A1 (de) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Verfahren und Steuergerät zum Abgleich und zur Diagnose eines Abgasrückführmassenstrommessers
GB2570336B (en) 2018-01-22 2020-03-04 Ford Global Tech Llc An exhaust gas recirculation valve diagnostic method
GB2570335B (en) 2018-01-22 2020-03-11 Ford Global Tech Llc An exhaust gas recirculation valve control method
CN112539121B (zh) * 2020-11-27 2022-03-01 潍柴动力股份有限公司 一种egr系统的积碳在线检测方法、检测装置及机动车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513616A (en) * 1993-03-01 1996-05-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for determining a failure of an EGR apparatus
US5996337A (en) * 1998-02-06 1999-12-07 Engelhard Corporation Dynamic calorimetric sensor system
DE10025133A1 (de) * 2000-05-20 2001-12-06 Volkswagen Ag Verfahren zum Überprüfen eines Abgasrückführungssystems
EP1930581A1 (en) * 2005-09-02 2008-06-11 Toyota Jidosha Kabushiki Kaisha Valve controller of internal combustion engine
RU2342543C2 (ru) * 2003-04-16 2008-12-27 Вестпорт Павер Инк Двигатель внутреннего сгорания с впрыском газообразного топлива
WO2009019231A3 (en) * 2007-08-03 2009-05-22 Spheretech Internat Diagnostic method for an internal combustion engine through analysis of its exhaust gases and a device for implementing same
US20090229355A1 (en) * 2008-03-17 2009-09-17 Denso Corporation Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508926A (en) * 1994-06-24 1996-04-16 General Motors Corporation Exhaust gas recirculation diagnostic
US7174246B2 (en) * 2001-06-13 2007-02-06 Luk Lamellen Und Kupplungsbau Betelligungs Kg Method and system for regulating the torque-transmission capacity of a frictionally engaged, torque transmitting assembly
JP4354283B2 (ja) * 2004-01-20 2009-10-28 本田技研工業株式会社 排気還流装置のリーク検出装置
ATE530791T1 (de) * 2007-07-12 2011-11-15 Schaeffler Technologies Gmbh Verfahren zur tastpunktermittlung einer automatisierten kupplung
DE102009027010A1 (de) * 2009-06-18 2010-12-23 Robert Bosch Gmbh Verfahren zur Diagnose eines Aktors eines Ladedrucksystems einer Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513616A (en) * 1993-03-01 1996-05-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for determining a failure of an EGR apparatus
US5996337A (en) * 1998-02-06 1999-12-07 Engelhard Corporation Dynamic calorimetric sensor system
DE10025133A1 (de) * 2000-05-20 2001-12-06 Volkswagen Ag Verfahren zum Überprüfen eines Abgasrückführungssystems
RU2342543C2 (ru) * 2003-04-16 2008-12-27 Вестпорт Павер Инк Двигатель внутреннего сгорания с впрыском газообразного топлива
EP1930581A1 (en) * 2005-09-02 2008-06-11 Toyota Jidosha Kabushiki Kaisha Valve controller of internal combustion engine
WO2009019231A3 (en) * 2007-08-03 2009-05-22 Spheretech Internat Diagnostic method for an internal combustion engine through analysis of its exhaust gases and a device for implementing same
US20090229355A1 (en) * 2008-03-17 2009-09-17 Denso Corporation Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708759C1 (ru) * 2016-09-07 2019-12-11 Ниссан Мотор Ко., Лтд. Способ управления двигателем и устройство управления

Also Published As

Publication number Publication date
WO2011117108A1 (de) 2011-09-29
BR112012024042A2 (pt) 2016-08-30
CN102791995A (zh) 2012-11-21
DE102010003203A1 (de) 2011-09-29
RU2012145008A (ru) 2014-05-10
BR112012024042B1 (pt) 2020-09-29
CN102791995B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN108343530B (zh) 用于排气再循环系统诊断的方法和系统
RU2718368C2 (ru) Способ (варианты) и система для предотвращения помпажа
US7832259B2 (en) Fuel system diagnostics by analyzing engine crankshaft speed signal
CN102374060B (zh) 在燃烧期间估计和控制声学噪声的方法
Taglialatela et al. Determination of combustion parameters using engine crankshaft speed
US8694226B2 (en) Control apparatus for internal combustion engine, control method for internal combustion engine and non-transitory computer-readable recording medium
US9051866B2 (en) Method and apparatus for monitoring a particulate filter
US7895827B2 (en) Method and apparatus for controlling engine operation during regeneration of an exhaust aftertreatment system
WO2011141994A1 (ja) 内燃機関におけるegr率の特定方法及び内燃機関の制御装置
RU2560091C2 (ru) Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания
US20120330575A1 (en) Estimating engine system parameters based on engine cylinder pressure
GB2501703A (en) Method of estimating a variation of a quantity of soot accumulated in a particulate filter
JP5459302B2 (ja) 内燃機関制御システムの異常診断装置
RU2645856C2 (ru) Способ диагностики двигателя с наддувом и соответствующий двигатель
US7447587B2 (en) Cylinder to cylinder variation control
KR20180022975A (ko) 연료 분사 시스템의 결함 부품을 식별하기 위한 방법
CN102808702B (zh) 用于估算内燃发动机的燃烧转矩的方法和用于内燃发动机的控制单元
JP2009002281A (ja) 吸入空気量検出装置
Siano et al. A non-linear regression technique to estimate from vibrational engine data the instantaneous in-cylinder pressure peak and related angular position
US8843322B2 (en) Method and device for monitoring an exhaust gas recirculation system and computer program
JPWO2014080523A1 (ja) 内燃機関の制御装置
Taglialatela-Scafati et al. Diagnosis and control of advanced diesel combustions using engine vibration signal
US20120303240A1 (en) Method for operating an internal combustion engine
JP5929823B2 (ja) 内燃機関の制御装置
Thomas Experimental Setup and Testing of a Variable Valve Actuation Enabled Cam-Less Natural Gas Engine