RU2559131C2 - Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя - Google Patents

Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя Download PDF

Info

Publication number
RU2559131C2
RU2559131C2 RU2012127282/28A RU2012127282A RU2559131C2 RU 2559131 C2 RU2559131 C2 RU 2559131C2 RU 2012127282/28 A RU2012127282/28 A RU 2012127282/28A RU 2012127282 A RU2012127282 A RU 2012127282A RU 2559131 C2 RU2559131 C2 RU 2559131C2
Authority
RU
Russia
Prior art keywords
signal
frequency
spectrum
stage
shaft
Prior art date
Application number
RU2012127282/28A
Other languages
English (en)
Other versions
RU2012127282A (ru
Inventor
Валерио ЖЕРЕ
Жюльен Кристиан Паскаль ГРИФФАТОН
Эдуар Жозеф ЯДЧАК
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2012127282A publication Critical patent/RU2012127282A/ru
Application granted granted Critical
Publication of RU2559131C2 publication Critical patent/RU2559131C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Группа изобретений относится к измерительной технике, в частности к средствам измерений крутильных колебаний. Способ содержит этапы, на которых получают колебательный сигнал ускорения от акселерометра, расположенного на неподвижной детали турбинного двигателя, оценивают частотный спектр колебательного сигнала, ищут пару спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог. Причем линии распределены в спектре с обеих сторон от несущей частоты колебательного сигнала и отстоят от нее на частоту крутильных колебаний вала. Затем выполняется этап, на котором оценивают сигнал огибающей колебательного сигнала, этап на котором оценивают частотный спектр сигнала огибающей, этап поиска, на котором осуществляют поиск, по меньшей мере, одной спектральной линии в спектре сигнала огибающей, амплитуда которого превышает второй порог, и который существует на величине, кратной частоте крутильных колебаний вала; и этап, на котором оценивают уровень достоверности, связанный с предупреждающим сообщением, как функцию результата этапа поиска. В случае необходимости выдают предупреждающее сообщение. Устройство содержит акселерометр, средство приема колебательного сигнала от акселерометра, средство оценивания частотного спектра, средство поиска спектральных линий, средство оценивания сигнала огибающей, средство оценивания частотного спектра, средство оценивания уровня достоверности, средство выдачи предупреждения. Технический результат - устранение риска разрушения вала. 4 н. и 3 з.п. ф-лы, 11 ил.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к общей области турбинных двигателей.
В частности, оно относится к мониторингу авиационных турбинных двигателей, оборудованных одним или более вращающимися валами, например, такими как турбореактивный двигатель или турбовинтовой двигатель.
Известным образом, вращающийся вал турбореактивного двигателя, например, ротор низкого давления, подвергается постоянному скручивающему усилию.
Кроме того, конкретные воздействия могут динамически формировать колебания во вращающемся валу на определенной частоте, известной как частота крутильных колебаний вала. Эта определенная частота характеризует первую крутильную моду вала. В порядке примера, для ротора низкого давления турбореактивного двигателя, эта частота низка по сравнению с частотой вращения ротора.
Таким образом, возможно, что импульсный впрыск топлива в турбореактивный двигатель входит в резонанс с этой первой крутильной модой вала турбореактивного двигателя. В зависимости от амплитуды этого резонанса, может формироваться шум в кабине или может существовать риск разрушения вала в результате усталости при вибрации.
Поэтому требуется мониторинг крутильных колебаний вращающегося вала турбореактивного двигателя во избежание таких недостатков.
ЗАДАЧА И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Цель изобретения, таким образом, состоит в том, чтобы предложить надежный способ мониторинга крутильных колебаний вращающегося вала турбинного двигателя посредством использования сигналов, полученных от датчиков, которые уже присутствуют в турбинном двигателе.
Эта цель достигается посредством способа мониторинга крутильных колебаний вращающегося вала турбинного двигателя, причем способ содержит:
- этап получения колебательного сигнала ускорения от датчика, расположенного на неподвижной детали турбинного двигателя, причем этот колебательный сигнал характеризуется несущей частотой;
- этап оценивания частотного спектра колебательного сигнала;
- этап поиска пары спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог, причем линии распределены в спектре с обеих сторон от несущей частоты колебательного сигнала, и отстоят от нее на частоту крутильных колебаний вала; и
- при необходимости, этап выдачи предупреждающего сообщения.
Соответственно, изобретение также предоставляет устройство мониторинга для мониторинга крутильных колебаний вращающегося вала турбинного двигателя, причем устройство содержит:
- средство получения для получения колебательного сигнала ускорения от датчика, расположенного на неподвижной детали турбинного двигателя, причем колебательный сигнал характеризуется несущей частотой;
- средство оценивания для оценивания частотного спектра колебательного сигнала;
- средство поиска для поиска пары спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог, причем линии распределены в спектре с обеих сторон от несущей частоты колебательного сигнала, и отстоят от нее на величину частоты крутильных колебаний вала; и
- средство выдачи для выдачи предупреждающего сообщения, активируемое при необходимости.
Предпочтительно, но без ограничения, изобретение применимо, в частности, для мониторинга низкочастотных крутильных колебаний вращающегося вала турбинного двигателя. Термин "низкочастотный" употребляется здесь для обозначения частоты, которая значительно ниже частоты вращения вращающегося вала, находящегося под мониторингом, например частота крутильных колебаний равна 30% частоты вращения вала.
Преимущественно, изобретение позволяет использовать сигналы, получаемые от датчиков, которые уже присутствуют в турбинном двигателе, т.е. вибродатчиков, таких как, акселерометры, тензодатчики, микрофоны и т.д., для мониторинга крутильных колебаний, которым подвергаются вращающиеся валы турбинного двигателя. Соответствующая обработка этих сигналов позволяет выдавать предупреждающее сообщение в случае избыточной амплитуды колебаний и, при необходимости, предлагать внеплановое техническое обслуживание для ограничения шума в кабине, или даже для предотвращения поломки вращающегося вала.
Авторы изобретения обратили внимание, проницательно, что в присутствие дисбаланса на вращающемся валу, считывание и анализ колебательных сигналов ускорения, полученных от датчиков, расположенных на неподвижной детали турбинного двигателя, позволяет простым и надежным образом выявлять наличие крутильных колебаний с предварительно определенными уровнями амплитуды. На практике, хотя много усилий отдается для устранения дисбаланса, повреждающего вал ротора, дисбаланс никогда не удается полностью устранить. Другими словами, вращающиеся валы никогда не бывают полностью сбалансированы, поэтому всегда можно осуществлять их мониторинг посредством изобретения.
Способ мониторинга согласно изобретению представляет преимущество возможности реализации в реальном времени или после всего лишь короткой задержки, например, в устройстве мониторинга на борту летательного аппарата, снабженного турбинным двигателем. Устройство мониторинга может, в частности, быть включено в состав турбинного двигателя, а более точно, в устройство для мониторинга турбинного двигателя, общеизвестного как блок мониторинга двигателя (EMU).
В варианте воплощения, устройство мониторинга может располагаться на стенде вспомогательного оборудования и под крылом летательного аппарата совместно с оборудованием, специально предназначенным для мониторинга турбинного двигателя.
В еще одном варианте воплощения, способ мониторинга можно реализовать в наземном устройстве, предназначенном для мониторинга турбинного двигателя.
Следует заметить, что способ изобретения можно легко комбинировать с другими способами обнаружения для повышения надежности обнаружения и, таким образом, улучшения диагностики при обслуживании, доставляемой конечному пользователю турбинного двигателя.
В турбинном двигателе основным источником дисбаланса является крыльчатка. Тем не менее, сама турбина двигателя обычно также вносит дисбаланс. В таких обстоятельствах имеет место комбинация дисбалансов, которые осциллируют в противофазе.
В конкретной реализации, изобретение преимущественно опирается на это наблюдение, для установления связи уровня достоверности с предупреждающим сообщением. С этой целью, способ мониторинга также содержит:
- этап оценивания сигнала огибающей колебательного сигнала;
- этап оценивания частотного спектра сигнала огибающей;
- этап поиска, на котором осуществляют поиск, по меньшей мере, одной спектральной линии в спектре сигнала огибающей, амплитуда которого превышает второй порог, и который существует на величине, кратной частоте крутильных колебаний вала; и
- этап оценивания уровня достоверности, связанного с предупреждающим сообщением, как функции результата этапа поиска.
В соответствии с этой реализацией, устройство мониторинга также может содержать:
- средство оценивания для оценивания сигнала огибающей колебательного сигнала;
- средство оценивания для оценивания частотного спектра сигнала огибающей;
- средство поиска для поиска, по меньшей мере, одной спектральной линии в спектре сигнала огибающей, амплитуда которого превышает второй порог, и который существует на величине, кратной частоте крутильных колебаний вала; и
- средство оценивания для оценивания уровня достоверности, связанного с предупреждающим сообщением, как функции результата поиска.
Сигнал огибающей можно получить, например, из сигнала, который является результатом применения преобразования Гильберта к колебательному сигналу.
Таким образом, предпочтительно, в этой конкретной реализации, предупреждающему сообщению присваивается более высокий уровень достоверности, когда линия с амплитудой, превышающей второй порог, выявляется в спектре сигнала огибающей на частоте, кратной частоте крутильных колебаний вала. Таким образом, обнаружение таких линий служит подтверждением выданного предупреждения в отношении крутильных колебаний вращающегося вала.
Тем не менее, можно видеть, что отсутствие каких-либо линий в спектре сигнала огибающей не отменяет предупреждение, выданное вследствие превышения первого порога спектральными линиями в спектре колебательного сигнала.
В конкретной реализации, способ мониторинга также содержит:
- этап поиска, на котором осуществляют поиск, по меньшей мере, еще одной пары спектральных линий, распределенных в спектре колебательного сигнала с обеих сторон от несущей частоты и отстоящих от нее на величину, кратную частоте крутильных колебаний вала; и
- этап оценивания уровня опасности, связанного с предупреждающим сообщением, причем этот уровень опасности зависит от количества пар линий, найденных на этапе поиска, амплитуды которых превышают, по меньшей мере, третий порог.
В соответствии с этой реализацией, устройство мониторинга также содержит:
- средство поиска для поиска, по меньшей мере, еще одной пары спектральных линий, распределенных в спектре колебательного сигнала с обеих сторон от несущей частоты и отстоящих от нее на величину, кратную частоте крутильных колебаний вала; и
- средство оценивания для оценивания уровня опасности, связанного с предупреждающим сообщением, причем уровень опасности зависит от количества пар, найденных средством поиска, амплитуды которых превышают, по меньшей мере, третий порог.
В другом аспекте изобретения, изобретение также предоставляет турбинный двигатель, включающий в себя:
- устройство мониторинга в соответствии с изобретением; и
- акселерометр, расположенный на неподвижной детали турбинного двигателя и выполненный с возможностью доставки колебательного сигнала ускорения на устройство мониторинга.
В порядке примера, такой турбинный двигатель представляет собой турбореактивный двигатель.
В конкретной реализации, различные этапы способа мониторинга определяются инструкциями компьютерной программы.
Следовательно, изобретение также предоставляет компьютерную программу на носителе данных, причем программа подходит для реализации в устройстве мониторинга или, в более общем случае, на компьютере, причем программа включает в себя инструкции, выполненные с возможностью реализации вышеописанных этапов способа мониторинга.
Программа может быть составлена с использованием любого языка программирования, и может иметь вид исходного кода, объектного кода или кода промежуточного между исходным кодом и объектным кодом, например, в частично компилированной форме или в любой другой требуемой форме.
Изобретение предоставляет машиночитаемый носитель данных, включающий в себя, как упомянуто выше, инструкции компьютерной программы.
Носителем данных может быть любой элемент или устройство, способное хранить программы. Например, носитель может содержать средство хранения, такое как, постоянная память (ROM), например, ROM на основе компакт-диска (CD) или ROM на основе микроэлектронной схемы, или даже средство магнитной записи, например, дискета или жесткий диск.
Кроме того, носитель данных может представлять собой распространяющийся носитель, например, электрический или оптический сигнал, пригодный для переноса по электрическому или оптическому кабелю, посредством радиоволн или другими средствами. Программу согласно изобретению, в частности, можно загружать из сети типа Интернет.
Альтернативно, носитель данных может представлять интегральную схему, в которую встроена программа, причем схема выполнена с возможностью выполнения или использования при выполнении данного способа.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие характеристики и преимущества настоящего изобретения явствуют из нижеследующего описания, приведенного со ссылкой на прилагаемые чертежи, демонстрирующие вариант осуществления, не носящий ограничительного характера. В чертежах:
- фиг. 1 - схема устройства мониторинга в соответствии с изобретением, в конкретном варианте осуществления;
- фиг. 2 - схема предложенной согласно изобретению модели дисбаланса в плоскости крыльчатки, связанного с дисбалансом в плоскости турбины и воздействующего на вращающийся вал турбореактивного двигателя;
- фиг. 3A и 3B - блок-схемы, показывающие основные этапы способа мониторинга в соответствии с изобретением при реализации устройством мониторинга, показанным на фиг. 1, в конкретной реализации;
- фиг. 4A-4C показывают примеры колебательных сигналов x(t);
- фиг. 5A-5C показывают частотные спектры колебательных сигналов, показанных на фиг. 4A-4C, соответственно; и
- фиг. 6 показывает спектр огибающей колебательного сигнала, показанного на фиг. 4C.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТА ОСУЩЕСТВЛЕНИЯ
Изобретение относится к мониторингу турбинного двигателя, а более конкретно к мониторингу крутильных колебаний, которым подвергается вращающийся вал турбинного двигателя в процессе работы.
Принцип, на котором преимущественно базируется изобретение, состоит в том, что крутильные колебания вращающегося вала турбинного двигателя имеют место вокруг его рабочей скорости, и в присутствие связанного с ним дисбаланса на роторе, формируют частотную и, возможно, также амплитудную модуляцию колебательных сигналов, доставляемых вибродатчиками, расположенными на неподвижных деталях турбинного двигателя. Таким образом, изобретение использует тот факт, что, наблюдая и анализируя эти колебательные сигналы, можно выявлять крутильные колебания избыточной амплитуды.
Как упомянуто выше, на практике, невозможно полностью сбалансировать вращающиеся валы турбинного двигателя, поэтому таким валам всегда присущ некоторый дисбаланс. Поэтому, собственно говоря, не существует никаких препятствий для реализации изобретения.
В турбинном двигателе, основным источником дисбаланса является крыльчатка. Тем не менее, нередко турбина также дает свой вклад в дисбаланс, осциллируя в противофазе с дисбалансом, который существует в плоскости крыльчатки. Изобретение преимущественно применимо в обоих этих обстоятельствах.
Ниже делается ссылка на фиг. 1, которая показывает конкретный вариант осуществления устройства 1 мониторинга в соответствии с изобретением, в его окружении.
В этом конкретном варианте осуществления, вращающийся вал ABP низкого давления (фиг. 2) турбореактивного двигателя TR, установленного на летательном аппарате (не показан) подлежит мониторингу в соответствии с изобретением. Тем не менее, эти предположения не служат ограничением, и изобретение также применяется к другим турбинным двигателям, например, к турбовинтовому двигателю.
В описанном здесь варианте осуществления, устройство 1 мониторинга находится на борту летательного аппарата и встроено в устройство мониторинга или EMU 2 летательного аппарата.
Альтернативно, устройство мониторинга согласно изобретению может располагаться на стенде вспомогательного оборудования и под крылом летательного аппарата совместно с оборудованием, специально предназначенным для мониторинга турбореактивного двигателя TR, или может быть реализовано в наземном устройстве, предназначенном для мониторинга турбореактивного двигателя.
Известным образом, турбореактивный двигатель TR предоставляется с множеством рабочих датчиков 3, например датчиками для считывания: позиции, скорости, температуры, давления, вибрации и т.д. Эти датчики пригодны для доставки различных измерений на EMU 2, чтобы он мог осуществлять мониторинг работы турбореактивного двигателя TR.
Среди этих датчиков, в частности, есть акселерометр 3A, размещенный на неподвижной детали турбореактивного двигателя TR (например, на одном из подшипников вращающегося вала ABP). Такой датчик обычно используется в турбореактивных двигателях или, в более общем случае, в турбинных двигателях, и он не описан здесь более подробно.
Традиционно, акселерометр 3A выполнен с возможностью предоставлять электрический сигнал или колебательный сигнал ускорения в момент времени t, и этот сигнал обозначается x(t) и представляет величину пропорциональную измеренному ускорению. В этом примере, этот электрический сигнал является результатом ускорений, сообщаемых неподвижной детали, на которой располагается акселерометр 3A, как результат дисбаланса, присутствующего на вращающемся валу низкого давления турбореактивного двигателя TR в процессе работы. Сигнал поступает на EMU 2 и, в частности, на устройство 1 мониторинга.
Альтернативно, следует отметить, что для доставки на EMU 2 колебательного сигнала, пропорционального ускорению, можно использовать другие вибродатчики, такие как, например, микрофон или тензодатчик. В смысле, подразумеваемом в изобретении, считается, что такой сигнал составляет колебательный сигнал ускорения.
В этом примере, устройство 1 мониторинга представляет аппаратную архитектуру компьютера.
Оно содержит, в частности, процессор 11, оперативную память (RAM) 12, ROM 13 и средство 14 для связи с оборудованием на борту летательного аппарата, таким как, например, акселерометр 3A. Известным образом, такое оборудование и устройство 1 мониторинга, отвечающее изобретению осуществляют связь через шины или линии цифровых данных летательного аппарата и известны специалисту в данной области техники.
Устройство 1 мониторинга также включает в себя средство 15 для связи с сервером оператора летательного аппарата (не показан), например, посредством адресно-отчетной системы авиационной связи (ACARS).
ROM 13 включает в себя компьютерную программу в соответствии с изобретением, которая выполнена с возможностью выполнения основных этапов способа мониторинга, отвечающего изобретению, описанного ниже со ссылкой на фиг. 2-6.
Здесь предполагается, что вращающийся вал низкого давления ABP, подвергаемый мониторингу, представляет дисбаланс в плоскости крыльчатки в сочетании с дисбалансом в плоскости турбины турбореактивного двигателя TR. В результате влияния кручения вала, эти два дисбаланса осциллируют в противофазе.
Фиг. 2 показывает модель в векторной форме этих дисбалансов, которые обозначены соответственно
Figure 00000001
и
Figure 00000002
, в плоскости крыльчатки и в плоскости турбины.
При этой модели, колебательный сигнал x(t), доставляемый акселерометром 3A в момент времени t может быть записан в следующей форме:
Figure 00000003
где:
- Ωp обозначает угловую несущую частоту, несущую колебательный сигнал x(t), и представляет скорость вращения вала. Следует понимать, что:
Figure 00000004
где Fp обозначает несущую частоту, несущую колебательный сигнал;
- Ωm обозначает угловую частоту кручения вращающегося вала. Следует понимать, что:
Figure 00000005
где Fm обозначает частоту крутильных колебаний вращающегося вала. Эта частота крутильных колебаний известна и зависит от характеристик вращающегося вала;
- θmF и θmT обозначают амплитуды крутильных колебаний, соответственно, в плоскости крыльчатки и в плоскости турбины;
- F и T представляют пиковые амплитуды колебательного сигнала x(t), доставляемого акселерометром. Амплитуда F является функцией вектора дисбаланса
Figure 00000001
в плоскости крыльчатки и отклика конструкции на дисбаланс. Амплитуда T является функцией вектора дисбаланса
Figure 00000002
в плоскости турбины и отклика конструкции на дисбаланс;
- φF обозначает фазовую позицию, соответствующую угловой позиции вектора дисбаланса
Figure 00000001
в плоскости крыльчатки относительно опорного угла; и
- φT обозначает фазовую позицию, соответствующую угловой позиции вектора дисбаланса
Figure 00000002
в плоскости турбины относительно упомянутого опорного угла.
Со ссылкой на фиг. 3A и 3B, ниже приведено подробное описание основных этапов способа мониторинга согласно изобретению в конкретной реализации.
В описанной реализации, способ мониторинга содержит две стадии:
- первую стадию P1 (показанную на фиг. 3A), в течение которой обнаруживается присутствие крутильных колебаний во вращающемся валу ABP, и, при необходимости, амплитуда упомянутых колебаний подвергается мониторингу и оценивается их опасность; и
- вторую стадию P2 (показанную на фиг. 3B), которая реализуется в этом примере, только если на стадии P1 регистрируются крутильные колебания избыточной амплитуды, и в течение которой уровень достоверности связывается с обнаружением.
Таким образом, на стадии P1, колебательный сигнал ускорения x(t) от датчика 3A непрерывно доставляется через средство 14 связи на устройство 1 мониторинга и сохраняется в RAM 12 (этап E10).
В порядке указания, на фиг. 4A-4C представлен внешний вид сигнала x(t) для следующих примеров:
- фиг. 4A показывает сигнал x(t), полученный, когда дисбаланс в плоскости турбины равен нулю или близок к нулю (т.е. T≈0), и для крутильных колебаний малой амплитуды (в данном случае, порядка нескольких градусов);
- фиг. 4B показывает сигнал x(t), полученный, когда дисбаланс в плоскости турбины равен нулю или близок к нулю (т.е. T≈0), для крутильных колебаний большой амплитуды; и
- фиг. 4C показывает сигнал x(t), полученный в присутствие дисбаланса в плоскости турбины и дисбаланса в плоскости крыльчатки.
Как показано на этих фигурах, сигнал x(t) не является синусоидальным, но представляет асимметрии относительно своей несущей частоты Fp.
Эти асимметрии характеризуются наличием пар спектральных линий боковых полос в частотном спектре сигнала x(t) которые симметрично распределены относительно основной линии R0, которая связана с дисбалансом(ами) большей или меньшей амплитуды.
В соответствии с изобретением, анализ количества и амплитуд этих линий боковых полос, присутствующих в частотном спектре сигнала x(t), позволяет выявлять присутствие крутильных колебаний избыточной амплитуды и определять опасность идентифицированного таким образом явления.
Таким образом, частотный спектр сигнала x(t), хранящийся в памяти 12, оценивается (этап E20). Этот частотный спектр записывается X(f), где f обозначает частоту. В описанном примере, X(f) получается путем оценивания преобразования Фурье сигнала x(t), взятого в пределах временного окна, записанного как W, предварительно определенной длины. Получение частотного спектра сигнала, изменяющегося во времени, само по себе известно и не описано здесь более подробно.
В порядке примера, фиг. 5A, 5B и 5C показывают спектры X(f) сигналов x(t), показанных, соответственно, на фиг. 4A, 4B и 4C.
Можно видеть, что в этих спектрах присутствуют пары линий боковых полос, которые располагаются с обеих сторон от основной линии, которая находится на несущей частоте Fp, и которые отстоят от нее на величину частоты Fm крутильных колебаний. Эти пары линий имеют изменяющиеся амплитуды. Ri и R-i обозначают пару спектральных линий, присутствующих на частотах Fi и F-i и удовлетворяющих условиям:
Figure 00000006
и
Figure 00000007
где i - целое число.
В соответствии с изобретением, первоначально производится поиск на предмет присутствия первой пары линий боковых полос, находящихся на частотах ±Fm с обеих сторон от основной линии R0 (этап E30).
Этот поиск осуществляется с использованием техник, известных специалисту в данной области техники. Например, величины, принимаемые спектром X(f) в предварительно определенном диапазоне, выбранном около частот ±Fm, сравниваются с порогом, отображающим уровень шума.
Если поиск не позволяет обнаружить линии на частотах ±Fm, тогда делают вывод, что первая крутильная мода вала не возбуждена. В результате, предупреждение не выдается (этап E50). Затем выбирается новое окно W колебательного сигнала x(t), и этапы E20 и E30 повторяются на этом новом окне.
В противном случае, если на этапе поиска обнаруживается первая пара линий боковых полос R1 и R-1 на частотах ±Fm, то после этого определяется амплитуда этих линий. Эта амплитуда задается величинами линий в спектре X(f).
После этого, определенные таким образом относительные амплитуды первой пары линий R1 и R-1 сравниваются с предварительно заданным порогом S11 (этап E40). Термин "относительная амплитуда" употребляется здесь в смысле отношения амплитуды рассматриваемой линии к амплитуде основной линии R0.
Альтернативно, также непосредственно можно сравнивать "абсолютные" амплитуды линий R1 и R-1 с предварительно заданным порогом.
Порог S11 составляет первый порог в смысле, подразумеваемом в изобретении. Он предварительно задан, и в этом примере он представляет относительную амплитуду линий боковых полос, за пределами которой крутильные колебания вызывают опасения и требуют выдачи предупреждения или планирования технического обслуживания. Этот порог определяется экспериментально.
В другом варианте реализации, следует понимать, что этапы E30 и E40 могут быть реализованы одновременно, путем непосредственного поиска первой пары линий с использованием порога S11.
Если, по меньшей мере, одна относительная амплитуда линий R1 и/или R-1 меньше порога S11, то считается, что нет необходимости выдавать предупреждение (этап E50): затем выбирается новое окно W колебательного сигнала x(t), и этапы E20-E40 повторяются на этом новом окне.
Если наоборот обе относительные амплитуды линий R1 и R-1 превышают первый порог S11, то принимается решение выдавать предупреждающее сообщение M (этап E60).
В описанном здесь варианте реализации, это предупреждающее сообщение M связано с двумя дополнительными элементами информации, которые характеризуют предупреждение, а именно, во-первых, уровнем опасности предупреждения и, во-вторых, уровнем достоверности предупреждения.
В другом варианте реализации, предупреждающее сообщение M связано с тем или иным из этих элементов информации.
В еще одном варианте реализации, предупреждающее сообщение M отправляется сразу же после обнаружения, что амплитуды линий R1 и R-1 пересекают первый порог, причем эта информация не связана с предупреждением.
Для оценивания уровня опасности предупреждения, в спектре сигнала x(t) производится поиск, чтобы увидеть, присутствуют ли другие пары линий боковых полос (например, R2/R-2, R3/R-3 и т.д.) с обеих сторон от основной линии R0, на частотах, кратных частоте крутильных колебаний вала ABP, и определяются амплитуды этих пар линий (этап E70).
Учитываются только линии, амплитуды которых превышают предварительно определенный уровень шума.
Затем относительные амплитуды этих линий сравниваются с соответствующими предварительно определенными порогами ("третьими" порогами в смысле, подразумеваемом в изобретении) (этап E80).
Например, со ссылкой на фиг. 5A, относительные амплитуды линий R2 и R-2 сравниваются с порогом S12. Порог S12 выбирается отличным от порога S11.
Альтернативно, пороги S11 и S12 могут быть одинаковыми. Также следует понимать, что соответствующие амплитуды каждой линии в паре линий также можно сравнивать с разными соответствующими порогами.
После этого сравнения, устройство 1 мониторинга оценивает количество N пар линий боковых полос, которые симметрично распределены с обеих сторон от основной линии R0 на частотах, кратных частоте крутильных колебаний вала, и для которых амплитуды превышают третьи пороги (этап E90).
Это количество N составляет оценку уровня опасности предупреждения в смысле, подразумеваемом в изобретении: чем больше значение N, тем более опасным считается явление крутильных колебаний, которым подвергается вал ABP.
В примере на фиг. 4A, предполагается, что это количество равно 2, поскольку оно включает в себя пару линий на частотах ±Fm и пару линий на частотах ±2Fm.
Затем количество N вставляется в предварительно определенное поле сообщения M.
После этой первой стадии P1, реализуется вторая стадия P2 для установления связи уровня достоверности с предупреждающим сообщением M (фиг. 3B).
С этой целью, в описанной здесь реализации, производится поиск в сигнале x(t) на предмет присутствия характеристики, которая подтверждала бы предупреждение, идентифицированное на стадии P1, т.е. присутствие амплитудной модуляции в сигнале x(t).
Фиг. 4C показывает пример сигнала x(t), в котором можно наблюдать не только асимметрии относительно несущей частоты Fp, но также присутствие амплитудной модуляции.
Таким образом, во время стадии P2, устройство 1 мониторинга формирует сигнал x'(t) огибающей из сигнала x(t) временного ряда (этап E100).
Для этого первоначально оценивается преобразование Гильберта
Figure 00000008
сигнала x(t). Вычисление преобразования Гильберта сигнала временного ряда само по себе известно и не описано здесь более подробно.
Затем сигнал x'(t) огибающей в момент времени t сигнала x(t) получается с использованием следующего уравнения:
Figure 00000009
Следует понимать, что частота сигнала x'(t) огибающей равна частоте Fm крутильных колебаний вала ротора.
Затем спектр x'(t) сигнала огибающей, обозначенный X'(f), где f обозначает частоту, оценивается устройством мониторинга, с использованием преобразования Фурье, как описано выше для спектра X(f) (этап E110).
На фиг. 6 показан спектр x'(t) сигнала огибающей, соответствующего сигналу x(t), показанному на фиг. 4C. В спектре могут наблюдаться основная спектральная линия R'1 на частоте Fm крутильных колебаний, и гармоника R'2 на частоте 2Fm.
В более общем случае, следует отметить, что о присутствии амплитудной модуляции свидетельствует присутствие в спектре сигнала огибающей спектральной линии R'1, которую называют основной линией на частоте Fm крутильных колебаний вала, и, возможно, гармоник R'i на частотах F'i, кратных частоте крутильных колебаний, такой что:
Figure 00000010
где i обозначает целое число большее 1.
Таким образом, в спектре X'(f) производится поиск, чтобы определить, присутствует ли спектральная линия R'1 в сигнале X'(f) на частоте Fm крутильных колебаний вала (этап E120). Этот поиск осуществляется аналогично этапу E30 поиска.
Если ни одной линии не обнаружено (другими словами, если в колебательном сигнале x(t) не обнаружено никакой амплитудной модуляции), то предупреждающему сообщению M по умолчанию присваивается средний уровень достоверности (этап E130). В описанном здесь примере, этот средний уровень достоверности выражается флагом, установленным со значением "средний" и включенным в предварительно определенное поле сообщения M.
Если линия R'1 обнаружена, то определяется ее амплитуда: эта амплитуда задается величиной линии в спектре X'(f).
После этого, определенная таким образом амплитуда сравнивается с предварительно заданным порогом S2 (этап E140), полученным экспериментальным путем. Порог S2 является "вторым" порогом в смысле, подразумеваемом в изобретении.
Как описано выше со ссылкой на этапы E30 и E40, в другой реализации, этапы E120 и E140 можно осуществлять одновременно, путем поиска линии в сигнале X'(f) на частоте Fm крутильных колебаний непосредственно с порогом S2. Если амплитуда линии R'1 больше порога S2, то предупреждающему сообщению M присваивается высокий уровень достоверности (этап E150). В описанном здесь примере, этот высокий уровень достоверности выражается флагом, установленным со значением "высокий" и включенным в предварительно определенное поле сообщения M.
В противном случае, предупреждающему сообщению M присваивается средний уровень достоверности (т.е. флаг устанавливается со значением "средний") и оно включается в соответствующее поле сообщения (этап E130).
Другими словами, высокий уровень достоверности в смысле, подразумеваемом в изобретении, подтверждает, что обнаружены крутильные колебания избыточной амплитуды на стадии P1. Тем не менее, средний уровень достоверности не означает, что обнаружение ошибочно.
Естественно, для оценивания уровня достоверности можно принять в рассмотрение некоторое другое количество спектральных линий. Например, можно наблюдать линии, находящиеся на частоте крутильных колебаний совместно с одной или более гармониками, и соответственно адаптировать уровень достоверности.
Следует отметить, что две стадии P1 (этапы E10-E90) и P2 (этапы E100-E150) можно осуществлять с одним и тем же результатом либо одновременно, либо, напротив, последовательно (в любом порядке).
В конце этапов E130 и E150, устройство 1 мониторинга выдает предупреждающее сообщение M (этап E160). В этом примере, предупреждающее сообщение содержит уровень достоверности и уровень опасности, оцененные, соответственно, на этапах E130/E150 и E90.
В порядке примера, это сообщение M выдается средством 14 пилоту летательного аппарата, чтобы пилот мог изменить рабочую скорость турбореактивного двигателя TR.
Альтернативно, сообщение M может передаваться средством 15 на сервер оператора летательного аппарата, и оно может содержать предложение произвести техническое обслуживание турбореактивного двигателя TR.
В еще одном варианте осуществления изобретения, уровень достоверности, связанный с предупреждающим сообщением M, можно объединить, до выдачи сообщения M, с обнаруженными неисправностями, полученными из других алгоритмов мониторинга, реализованных на турбореактивном двигателе.

Claims (7)

1. Способ мониторинга крутильных колебаний вращающегося вала (АВР) турбинного двигателя (TR), причем способ содержит:
- этап (Е10), на котором получают колебательный сигнал ускорения от акселерометра (3А), расположенного на неподвижной детали турбинного двигателя, причем этот колебательный сигнал характеризуется несущей частотой;
- этап (Е20), на котором оценивают частотный спектр колебательного сигнала;
- этап (Е30, Е40), на котором ищут пару спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог, причем линии распределены в спектре с обеих сторон от несущей частоты колебательного сигнала и отстоят от нее на частоту крутильных колебаний вала;
- этап (Е100), на котором оценивают сигнал огибающей колебательного сигнала;
- этап (Е110), на котором оценивают частотный спектр сигнала огибающей;
- этап (Е120) поиска, на котором осуществляют поиск, по меньшей мере, одной спектральной линии в спектре сигнала огибающей, амплитуда которого превышает второй порог, и который существует на величине, кратной частоте крутильных колебаний вала; и
- этап (Е130, Е150), на котором оценивают уровень достоверности, связанный с предупреждающим сообщением, как функцию результата этапа (Е120) поиска; и
- при необходимости, этап (Е160), на котором выдают предупреждающее сообщение.
2. Способ мониторинга по п. 1, отличающийся тем, что на этапе оценивания сигнала огибающей, сигнал огибающей получают из преобразования Гильберта колебательного сигнала.
3. Способ мониторинга по п. 1, дополнительно содержащий
- этап (Е70) поиска, на котором осуществляют поиск, по меньшей мере, одной другой пары спектральных линий, распределенных в спектре колебательного сигнала с обеих сторон от несущей частоты и отстоящих от нее на величину, кратную частоте крутильных колебаний вала; и
- этап (Е90), на котором оценивают уровень опасности, связанный с предупреждающим сообщением, причем этот уровень опасности зависит от количества пар линий, найденных на этапе (Е70) поиска, амплитуды которых превышают, по меньшей мере, третий порог.
4. Читаемый компьютером носитель записи, на котором записана компьютерная программа, включающая в себя инструкции для выполнения этапов способа мониторинга по п. 1.
5. Устройство (1) мониторинга для мониторинга крутильных колебаний вращающегося вала (АВР) турбинного двигателя (TR), причем устройство содержит:
- средство (11) получения для получения колебательного сигнала ускорения от акселерометра (3А), расположенного на неподвижной детали турбинного двигателя, причем колебательный сигнал характеризуется несущей частотой;
- средство (11) оценивания для оценивания частотного спектра колебательного сигнала;
- средство (11) поиска для поиска пары спектральных линий с амплитудами, превышающими, по меньшей мере, первый порог, причем линии распределены в спектре с обеих сторон от несущей частоты колебательного сигнала и отстоят от нее на частоту крутильных колебаний вала;
- средство (11) оценивания для оценивания сигнала огибающей колебательного сигнала;
- средство (11) оценивания для оценивания частотного спектра сигнала огибающей;
- средство (11) поиска для осуществления поиска, по меньшей мере, одной спектральной линии в спектре сигнала огибающей, амплитуда которого превышает второй порог и который существует на величине, кратной частоте крутильных колебаний вала; и
- средство (11) оценивания для оценивания уровня достоверности, связанного с предупреждающим сообщением, как функции результата поиска; и
- средство (14, 15) выдачи для выдачи предупреждающего сообщения, активируемое при необходимости.
6. Устройство (1) мониторинга по п. 5, дополнительно содержащее:
- средство поиска для поиска, по меньшей мере, одной другой пары спектральных линий, распределенных в спектре колебательного сигнала с обеих сторон от несущей частоты и отстоящих от нее на величину, кратную частоте крутильных колебаний вала; и
- средство (11) оценивания для оценивания уровня опасности, связанного с предупреждающим сообщением, причем уровень опасности зависит от количества пар, найденных средством поиска, амплитуды которых превышают, по меньшей мере, третий порог.
7. Турбинный двигатель (TR), включающий в себя
- устройство (1) мониторинга по п. 5; и
- акселерометр (3А), расположенный на неподвижной детали турбинного двигателя и выполненный с возможностью доставки колебательного сигнала ускорения на устройство мониторинга.
RU2012127282/28A 2009-11-30 2010-11-22 Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя RU2559131C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0958527 2009-11-30
FR0958527A FR2953289B1 (fr) 2009-11-30 2009-11-30 Procede et dispositif de surveillance de vibrations en torsion d'un arbre rotatif d'une turbomachine.
PCT/FR2010/052467 WO2011064490A1 (fr) 2009-11-30 2010-11-22 Procede et dispositif de surveillance de vibrations en torsion d'un arbre rotatif d'une turbomachine

Publications (2)

Publication Number Publication Date
RU2012127282A RU2012127282A (ru) 2014-01-10
RU2559131C2 true RU2559131C2 (ru) 2015-08-10

Family

ID=42041902

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012127282/28A RU2559131C2 (ru) 2009-11-30 2010-11-22 Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя

Country Status (9)

Country Link
US (1) US9097575B2 (ru)
EP (1) EP2507598B1 (ru)
JP (1) JP5694361B2 (ru)
CN (1) CN102713539B (ru)
BR (1) BR112012013075B1 (ru)
CA (1) CA2782043C (ru)
FR (1) FR2953289B1 (ru)
RU (1) RU2559131C2 (ru)
WO (1) WO2011064490A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789297C1 (ru) * 2022-02-15 2023-02-01 Артем Владиславович Дьяченко Торсиограф

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2956481B1 (fr) * 2010-02-18 2012-02-10 Snecma Procede de detection de resonance d'un arbre de rotor d'un turbomoteur
US9719366B2 (en) * 2013-06-12 2017-08-01 General Electric Company Methods and systems for blade health monitoring
US10725439B2 (en) 2014-12-02 2020-07-28 Siemens Aktiengesellschaft Apparatus and method for monitoring a device having a movable part
US10082443B2 (en) * 2016-02-26 2018-09-25 General Electric Technology Gmbh System and method for monitoring bearing health in a journal assembly
US11143013B2 (en) 2016-03-14 2021-10-12 Halliburton Energy Services, Inc. Downhole vibration characterization
GB2551112B (en) * 2016-05-25 2020-04-15 Ge Aviat Systems Ltd Aircraft component monitoring system
EP3396337B1 (en) * 2017-04-24 2023-12-27 General Electric Technology GmbH Torsional vibration monitoring and diagnostics system and method
CN113767159A (zh) 2019-03-28 2021-12-07 百乐墨水株式会社 可逆热变色性微胶囊颜料
FR3105406B1 (fr) 2019-12-18 2021-12-24 Arianegroup Sas Procédé et dispositif d’analyse des vibrations d’un élément.
EP3875925A1 (en) * 2020-03-07 2021-09-08 Honeywell International Inc. Airfield luminaire vibration monitoring
CN111504449A (zh) * 2020-04-23 2020-08-07 华能四川水电有限公司 机组不稳定工况监测方法和系统
US11626003B2 (en) 2021-02-23 2023-04-11 Rheem Manufacturing Company Systems and methods for monitoring and detecting a fault in a fluid storage tank
EP4092289A1 (en) * 2021-05-17 2022-11-23 Rolls-Royce Deutschland Ltd & Co KG System for vibration management in rotating machinery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005438A1 (en) * 1990-09-19 1992-04-02 Rem Technologies, Inc. Crack detection method for shaft at rest
RU2296970C2 (ru) * 2005-06-02 2007-04-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ диагностики автоколебаний рабочего колеса турбомашины (варианты)
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151075A (en) * 1978-05-18 1979-11-27 Mitsubishi Heavy Ind Ltd Monitoring method for vibration of rotary blade
US4408294A (en) * 1981-03-27 1983-10-04 General Electric Company Method for on-line detection of incipient cracks in turbine-generator rotors
JPS57179625A (en) * 1981-04-30 1982-11-05 Hitachi Ltd Method for diagnosing vibration in rotary machine
US4488240A (en) * 1982-02-01 1984-12-11 Becton, Dickinson And Company Vibration monitoring system for aircraft engines
JPS58219424A (ja) * 1982-06-15 1983-12-20 Kawasaki Steel Corp 回転機器検査装置
JPS59176629A (ja) * 1983-03-25 1984-10-06 Nippon Denso Co Ltd 音響発生機器の音色検査方法及び装置
JPS62151725A (ja) * 1985-12-26 1987-07-06 Toshiba Corp 回転軸系のクラツク発生異常診断装置
JPH076832B2 (ja) * 1989-05-31 1995-01-30 株式会社東芝 回転機器の振動分析方法およびその装置
US5501105A (en) * 1991-10-02 1996-03-26 Monitoring Technology Corp. Digital signal processing of encoder signals to detect resonances in rotating machines
US5365787A (en) * 1991-10-02 1994-11-22 Monitoring Technology Corp. Noninvasive method and apparatus for determining resonance information for rotating machinery components and for anticipating component failure from changes therein
US5483833A (en) * 1994-03-22 1996-01-16 Martin Marietta Energy Systems, Inc. Method and apparatus for monitoring aircraft components
US6128959A (en) * 1994-11-07 2000-10-10 Eaton Corporation Driveline vibration analyzer
US5825657A (en) * 1996-02-23 1998-10-20 Monitoring Technology Corporation Dynamic, non-uniform clock for resampling and processing machine signals
US5686669A (en) * 1996-02-29 1997-11-11 Monitoring Technology Corporation Apparatus and method for analyzing the condition and performance of turbomachines by processing signals representing rotor motion
DE19800217A1 (de) * 1998-01-06 1999-07-15 Flender Engineering & Service Verfahren zur automatisierten Diagnose von Diagnoseobjekten
US6729186B1 (en) * 2002-02-28 2004-05-04 Eaton Corporation Multi-channel vibration analyzer
JP2005538370A (ja) * 2002-09-10 2005-12-15 アルストム テクノロジー リミテッド 電気機械におけるシャフトアセンブリの振動を捕捉する方法および装置
DE50310287D1 (de) * 2002-09-10 2008-09-18 Alstom Technology Ltd Vorrichtung und verfahren zur überwachung und/oder analyse von elektrischen maschinen im betrieb
JP2005172029A (ja) * 2003-12-08 2005-06-30 Honda Motor Co Ltd ダンパー
US20050171736A1 (en) * 2004-02-02 2005-08-04 United Technologies Corporation Health monitoring and diagnostic/prognostic system for an ORC plant
JP2006113002A (ja) 2004-10-18 2006-04-27 Nsk Ltd 機械設備の異常診断システム
EP1904975A4 (en) * 2005-07-12 2014-05-14 Technion Res & Dev Foundation SYSTEM AND METHOD FOR THE ACTIVE DETECTION OF ASYMMETRY IN ROTATING STRUCTURES
US7693673B2 (en) * 2007-06-06 2010-04-06 General Electric Company Apparatus and method for identifying a defect and/or operating characteristic of a system
JP5146008B2 (ja) 2007-06-11 2013-02-20 日本精工株式会社 異常診断装置、及び異常診断方法
EP2291792B1 (en) * 2008-06-17 2018-06-13 Exxonmobil Upstream Research Company Methods and systems for mitigating drilling vibrations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005438A1 (en) * 1990-09-19 1992-04-02 Rem Technologies, Inc. Crack detection method for shaft at rest
RU2296970C2 (ru) * 2005-06-02 2007-04-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ диагностики автоколебаний рабочего колеса турбомашины (варианты)
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789297C1 (ru) * 2022-02-15 2023-02-01 Артем Владиславович Дьяченко Торсиограф

Also Published As

Publication number Publication date
US9097575B2 (en) 2015-08-04
CN102713539A (zh) 2012-10-03
FR2953289A1 (fr) 2011-06-03
JP5694361B2 (ja) 2015-04-01
EP2507598B1 (fr) 2019-08-14
RU2012127282A (ru) 2014-01-10
US20120229290A1 (en) 2012-09-13
BR112012013075A2 (pt) 2016-11-22
EP2507598A1 (fr) 2012-10-10
CN102713539B (zh) 2016-01-27
JP2013512446A (ja) 2013-04-11
FR2953289B1 (fr) 2012-04-27
BR112012013075B1 (pt) 2020-04-14
CA2782043C (fr) 2018-03-20
WO2011064490A1 (fr) 2011-06-03
CA2782043A1 (fr) 2011-06-03

Similar Documents

Publication Publication Date Title
RU2559131C2 (ru) Способ и устройство для мониторинга крутильных колебаний вращающегося вала турбинного двигателя
CN103998775B (zh) 用于确定风能源设备的转子叶片的机械损坏的方法
US8380450B2 (en) Determination of blade vibration frequencies and/or amplitudes
CN105318959A (zh) 用于监测蒸汽涡轮的轴线的次同步扭转振荡的方法和系统
EP2610604B1 (en) Method for oscillation measurement on rotor blades of wind power installations
CN105426644A (zh) 模态阻尼识别方法、装置和系统
US20150105970A1 (en) Global airframe health characterization
US8474307B2 (en) Method for detecting resonance in a rotor shaft of a turbine engine
KR101949622B1 (ko) 샤프트 트레인을 가지는 기계 플랜트를 작동하기 위한 방법
JP5698766B2 (ja) ガスタービンエンジンによる少なくとも1つの異物の吸込みの自動検出方法
Guglielmo et al. Full load stability test (FLST) on LNG compressor
Chao et al. An experimental investigation on the effects of exponential window and impact force level on harmonic reduction in impact-synchronous modal analysis
Rao et al. In situ detection of turbine blade vibration and prevention
Kocur et al. Shop rotordynamic testing-options, objectives, benefits and practices
Dovhan et al. Development of the system for vibration diagnosis of bearing assemblies using an analog interface
Tamrakar et al. Crack Depth Estimation in Shaft for an Overhung Rotating Shaft System: An Experimental Investigation
Amirza et al. Investigation of Dynamic Characteristics of Vibrating Components and Structure Through Vibration Measurement and Operational Modal Analysis
EP2503307A1 (en) Method for assessment of the winding head vibration of an electric machine
Keller Jr Comparison of resistance-based strain gauges and fiber bragg gratings in the presence of electromagnetic interference emitted from an electric motor
Ibraheem et al. Experimental Investigation for Single Plan Balancing Impellers between Bearings Using Frequency Response Function
Nazolin Evaluation of the Possibility of Flaw Detection in Turbine Generator Stator According to Spectrum of Vibroacoustic Signal
Cavalini Jr et al. Experimental Analysis of a Model Based Crack Identification Approach for Rotating Machines
Chandra et al. Detection and monitoring of shaft misalignment in rotors using Hilbert Huang transform
Robinette et al. Determining Physical Properties for Rotating Components Using a Free-Free Torsional FRF Technique
Rossi et al. Torsional vibrations in rotordynamic systems: smart investigation methods

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner