RU2558566C2 - Регулируемый ограничитель потока для использования в подземной скважине - Google Patents
Регулируемый ограничитель потока для использования в подземной скважине Download PDFInfo
- Publication number
- RU2558566C2 RU2558566C2 RU2013148468/03A RU2013148468A RU2558566C2 RU 2558566 C2 RU2558566 C2 RU 2558566C2 RU 2013148468/03 A RU2013148468/03 A RU 2013148468/03A RU 2013148468 A RU2013148468 A RU 2013148468A RU 2558566 C2 RU2558566 C2 RU 2558566C2
- Authority
- RU
- Russia
- Prior art keywords
- specified
- fluid
- flow
- signal
- fluid mixture
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 244
- 239000000203 mixture Substances 0.000 claims abstract description 101
- 238000000034 method Methods 0.000 claims abstract description 27
- 230000008859 change Effects 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 67
- 230000005291 magnetic effect Effects 0.000 claims description 21
- 239000002902 ferrimagnetic material Substances 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- -1 permanent magnet Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000000017 hydrogel Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 2
- 238000005065 mining Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 12
- 239000011435 rock Substances 0.000 description 12
- 238000005553 drilling Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/18—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/02—Down-hole chokes or valves for variably regulating fluid flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2087—Means to cause rotational flow of fluid [e.g., vortex generator]
- Y10T137/2098—Vortex generator as control for system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2087—Means to cause rotational flow of fluid [e.g., vortex generator]
- Y10T137/2109—By tangential input to axial output [e.g., vortex amplifier]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/218—Means to regulate or vary operation of device
- Y10T137/2202—By movable element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/218—Means to regulate or vary operation of device
- Y10T137/2202—By movable element
- Y10T137/2218—Means [e.g., valve] in control input
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Fluid-Pressure Circuits (AREA)
- Multiple-Way Valves (AREA)
- Flow Control (AREA)
- Pipe Accessories (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Предложенная группа изобретений относится к горному делу и может быть применена для регулирования потока в скважине. Система содержит проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет, по меньшей мере, два входа, исполнительный механизм и переключатель потока флюида. При этом сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам. Поток указанной флюидной смеси может отклоняться по направлению к одному из указанных входных протоков указанным исполнительным механизмом. Способ регулирования сопротивления потоку в скважине включает изменение ориентации отклоняющей заслонки относительно канала, по которому протекает флюидная смесь, в результате чего поток указанной флюидной смеси отклоняется по направлению к одному из входных протоков проточной камеры. Причем указанная камера обеспечивает сопротивление потоку, изменяющееся в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам. Технический результат заключается в повышении эффективности регулирования потока в скважине. 3 н.п. и 40 з.п. ф-лы, 13 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к способам и оборудованию, применение которых связано с подземной скважиной, и, как в описанном ниже примере, в частности обеспечивает регулируемый ограничитель потока текучей среды.
Предшествующий уровень техники
Для углеводородсодержащей эксплуатационной скважины огромным преимуществом является возможность регулирования потока флюидов, поступающих из толщи пород в ствол скважины, из ствола скважины в толщу пород, и потока флюидов, перемещающихся в стволе скважины. При помощи такого регулирования может быть решен ряд задач, в том числе предотвращение образования водяного и газового конусов, минимизация выноса песка, минимизация выноса воды и/или газа, предельное повышение добычи нефти, распределение извлечения по зонам, передача сигналов и т.д.
Таким образом, понятно, что дальнейшие улучшения в области регулируемого ограничения потока текучей среды в скважине желательны с учетом вышеуказанных обстоятельств, и такие улучшения будут также полезными для множества других обстоятельств.
Сущность изобретения
Ниже приведено описание предложенной системы регулирования сопротивления потоку текучей среды, которая вносит усовершенствования в области регулируемого ограничения потока текучей среды в скважине. Ниже описаны примеры, в которых с различными целями осуществляется выборочное ограничение потока.
Один аспект настоящего изобретения состоит в том, что предложена система регулирования сопротивления потоку текучей среды для использования с подземной скважиной. Данная система может содержать проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет по меньшей мере два входных протока, при этом сопротивление потоку текучей среды изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам. Поток указанной флюидной смеси отклоняется по направлению к одному из указанных входных протоков исполнительным механизмом.
Другой аспект настоящего изобретения состоит в том, что предложен способ регулирования сопротивления потоку текучей среды в скважине, описанный ниже. Данный способ может содержать изменение ориентации отклоняющей заслонки относительно канала, по которому протекает флюидная смесь, в результате чего поток указанной флюидной смеси отклоняется по направлению к одному из входных протоков проточной камеры, причем указанная камера обеспечивает сопротивление потоку текучей среды, изменяющееся в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам.
Эти и другие признаки, преимущества и выгоды будут понятны специалисту после ознакомления с подробным описанием нижеприведенных примеров и сопроводительными чертежами, на которых одинаковые элементы на различных чертежах имеют одни и те же позиционные обозначения.
Перечень фигур чертежей
На фиг.1 показан пример частичного разреза скважинной системы, которая может воплощать принципы настоящего изобретения.
На фиг.2 показан пример увеличенного масштаба разреза части указанной скважинной системы.
На фиг.3 показан пример вида в разрезе системы регулирования сопротивления потоку текучей среды, которая воплощает принципы настоящего изобретения и может быть использована в указанной скважинной системе, причем поток протекает через указанную систему относительно беспрепятственно.
На фиг.4 показан пример вида в разрезе указанной системы регулирования сопротивления потоку текучей среды, причем поток протекает через указанную систему с некоторыми ограничениями.
На фиг.5 показан пример вида в разрезе системы регулирования сопротивления потоку текучей среды, имеющей другую конфигурацию, причем поток протекает через указанную систему с некоторыми ограничениями.
На фиг.6 показан пример вида в разрезе системы регулирования сопротивления потоку текучей среды, имеющей конфигурацию, приведенную на фиг.5, причем поток протекает через указанную систему относительно беспрепятственно.
На фиг.7-11 показаны примеры структурных схем конфигураций исполнительного механизма, который может быть использован в указанной системе регулирования сопротивления потоку текучей среды.
На фиг.12 показан пример графика зависимости давления или расхода потока текучей среды от времени, согласно способу, который может воплощать принципы настоящего изобретения.
На фиг.13 показан пример вида в частичном разрезе указанного способа, применяемый для передачи сигналов от указанной системы регулирования сопротивления потоку текучей среды в удаленную точку.
Сведения, подтверждающие возможность осуществления изобретения
На фиг.1 показан пример скважинной системы 10, при помощи которой можно воплощать принципы настоящего изобретения. Как показано на фиг.1, ствол 12 скважины имеет в целом вертикальную необсаженную часть 14, проходящую вниз от обсадной трубы 16, а также в целом горизонтальную необсаженную часть 18, проходящую через толщу 20 пород.
В стволе 12 скважины установлена трубчатая колонна 22 (типа насосно-компрессорной колонны). В трубчатой колонне 22 во взаимном соединении находятся фильтры 24, системы 25 регулирования сопротивления потоку текучей среды и пакеры 26.
Пакеры 26 герметизируют кольцевое пространство 28, образованное в радиальном направлении между трубчатой колонной 22 и секцией 18 ствола скважины. При этом флюиды 30 могут поступать из интервалов или зон толщи 20 пород через изолированные между соседними парами пакеров 26 части кольцевого пространства 28.
Расположенные между каждой соседней парой пакеров 26 скважинный фильтр 24 и система 25 регулирования сопротивления потоку текучей среды находятся во взаимном соединении с трубчатой колонной 22. Скважинный фильтр 24 фильтрует флюиды 30, поступающие в трубчатую колонну 22 из кольцевого пространства 28. Система 25 регулирования сопротивления потоку текучей среды ограничивает с возможностью регулирования поступление флюидов 30 в трубчатую колонну 22 на основании определенных характеристик флюидов и/или на основании срабатывания исполнительного механизма указанной системы (как подробнее описано ниже).
Необходимо отметить, что приведенная на чертежах и описанная в данном документе скважинная система 10 является лишь частным примером из множества скважинных систем, в которых могут быть применены принципы настоящего изобретения. Следует четко понимать, что принципы настоящего изобретения ни в коей мере не ограничиваются какими-либо особенностями скважинной системы 10 или ее элементами, приведенными на чертежах или описанными в настоящем документе.
Например, согласно принципам данного изобретения ствол 12 скважины может не иметь в целом вертикальной части 14 или в целом горизонтальной части 18. Флюиды 30 могут не только извлекаться из толщи 20 пород, но и, в других вариантах, могут нагнетаться в толщу пород, а также могут как нагнетаться в толщу пород, так и извлекаться из толщи пород, и т.д.
Любой скважинный фильтр 24 и любая система 25 регулирования сопротивления потоку текучей среды могут не располагаться между каждой соседней парой пакеров 26. Отдельно взятая система 25 регулирования сопротивления потоку текучей среды может не соединяться с отдельно взятым скважинным фильтром 24. Может использоваться любое количество, любая конфигурация и/или любое сочетание этих элементов.
Любая система 25 регулирования сопротивления потоку текучей среды может не использоваться со скважинным фильтром 24. Например, при нагнетании флюида он может протекать через систему 25 регулирования сопротивления потоку текучей среды, но при этом может не протекать через скважинный фильтр 24.
Скважинные фильтры 24, системы 25 регулирования сопротивления потоку текучей среды, пакеры 26 и любые другие элементы трубчатой колонны 22 могут не размещаться в необсаженных частях 14, 18 ствола 12 скважины. Согласно принципам настоящего изобретения любая часть ствола 12 скважины может быть обсаженной или необсаженной, и любая часть трубчатой колонны 22 может располагаться в обсаженной или необсаженной части ствола скважины.
Таким образом, следует четко понимать, что настоящее описание изобретения раскрывает создание и применение конкретных примеров, но принципы настоящего изобретения не ограничиваются какими-либо особенностями этих примеров. Напротив, принципы данного изобретения могут воплощаться во множестве других примеров при помощи информации, содержащейся в настоящем описании изобретения.
Специалистам понятно, что полезный эффект настоящего изобретения состоит в возможности регулирования потока флюидов 30, поступающих в трубчатую колонну 22 из каждой зоны толщи 20 пород, например, для предотвращения образования в толще пород водяного конуса 32 или газового конуса 34. Регулирование потока в скважине может использоваться для других целей (но не ограничивается таковыми): распределение извлечения флюидов из зон (или нагнетания флюидов в зоны), минимизация выноса или нагнетания нежелательных флюидов, предельное повышение добычи или нагнетания желательных флюидов, передача сигналов и т.п.
В нижеприведенных примерах сопротивление потоку текучей среды, протекающему через системы 25, может быть регулируемым в зависимости и/или в ответ на определенное условие. Например, поток текучей среды, протекающий через системы 25, может быть относительно ограничен при установке трубчатой колонны 22 и при заполнении скважинного фильтра гравием, но может протекать относительно беспрепятственно при добыче из толщи 20 пород флюида 30. В другом примере поток текучей среды, перемещающийся через системы 25, может быть относительно ограничен при повышенной температуре, указывающей на прорыв пара при нагнетании пара, но может протекать относительно беспрепятственно при пониженных температурах.
Приведенные примеры систем 25 регулирования сопротивления потоку текучей среды, подробно описанные ниже, также могут увеличивать сопротивление потоку текучей среды при увеличении скорости или плотности флюида (например, чтобы тем самым распределять поток по зонам, предотвращать образование водяных или газовых конусов и т.д.) или увеличивать сопротивление потоку текучей среды при уменьшении вязкости флюида (например, чтобы тем самым ограничивать поток нежелательного флюида, такого как вода или газ, в нефтедобывающей скважине). И наоборот, системы 25 регулирования сопротивления потоку текучей среды могут уменьшать сопротивление потоку текучей среды при уменьшении скорости или плотности флюида, или при увеличении вязкости флюида.
Желательность или нежелательность флюида обуславливается целью производимой операции по извлечению или нагнетанию флюида. Например, если необходимо извлечь из скважины нефть, а не воду или газ, следовательно, нефть является желательным флюидом, а вода и газ - нежелательными флюидами.
Необходимо отметить, что при определенных температурах и давлениях в скважине газообразные углеводороды могут фактически находиться в полностью или частично жидкой фазе. Таким образом, следует понимать, что при использовании в данном документе термина «газ» в это понятие входит сверхкритическая, жидкая и/или газообразная фазы вещества.
На фиг.2 показан увеличенный масштаб поперечного вида в разрезе одной из систем 25 регулирования сопротивления потоку текучей среды и части одного из скважинных фильтров 24. В этом примере флюидная смесь 36 (которая может содержать один или более флюидов, таких как нефть и вода, жидкая вода и водяной пар, нефть и газ, газ и вода, нефть, вода и газ и т.д.) поступает в скважинный фильтр 24, где проходит фильтрацию, и затем поступает на вход 38 системы 25 регулирования сопротивления потоку текучей среды.
Флюидная смесь может содержать один или более желательных или нежелательных флюидов. Флюидная смесь может сочетать в себе воду и водяной пар. В другом примере, флюидная смесь может сочетать в себе нефть, воду и/или газ.
Сопротивление потоку флюидной смеси 36 через систему 25 регулирования сопротивления потоку текучей среды оказывается на основании одной или нескольких характеристик (таких как вязкость, скорость, плотность и др.) флюидной смеси. Затем флюидная смесь 36 выводится из системы 25 регулирования сопротивления потоку текучей среды внутрь трубчатой колонны 22 через выход 40.
В других примерах совместно с системой 25 регулирования сопротивления потоку текучей среды скважинный фильтр 24 может не использоваться (например, при нагнетательных операциях); флюидная смесь 36 может протекать через различные элементы скважинной системы 10 в противоположном направлении (например, при нагнетательных операциях); совместно со скважинными фильтрами может использоваться единственная система регулирования сопротивления потоку текучей среды; совместно с одним или более скважинными фильтрами могут использоваться системы регулирования сопротивления потоку текучей среды; флюидная смесь может извлекаться из областей скважины, отличных от кольцевого пространства или трубчатой колонны, и может выводиться в области скважины, отличные от кольцевого пространства или трубчатой колонны; флюидная смесь может протекать через систему регулирования сопротивления потоку текучей среды до протекания через скважинный фильтр; со скважинным фильтром и/или с системой регулирования сопротивления потоку текучей среды выше или ниже по потоку могут находиться во взаимном соединении прочие компоненты; и т.д. Таким образом, понятно, что принципы настоящего изобретения ни в коей степени не ограничиваются особенностями варианта, приведенного на фиг.2 и раскрытого в данном документе.
Хотя тип скважинного фильтра 24, приведенный на фиг.2, известен специалисту в качестве фильтра с проволочной обмоткой, в других вариантах могут применяться фильтры иных типов и их сочетания (такие как спеченный металлический фильтр, расширяемый фильтр, фильтр с набивкой, проволочная сетка и др.). При необходимости могут использоваться дополнительные компоненты (такие как защитные кожухи, трубчатые перемычки, кабели, измерительные средства, датчики, регуляторы притока и т.д.).
На фиг.2 приведено упрощенное изображение системы 25 регулирования сопротивления потоку текучей среды, но в предпочтительном примере, как подробно описано ниже, система может содержать различные каналы и устройства для выполнения разных функций. Кроме того, предпочтительно, что система 25 по меньшей мере частично проходит в окружном направлении вокруг трубчатой колонны 22 или данная система может быть встроена в стенку трубчатой конструкции, являющейся частью трубчатой колонны и находящейся с ней во взаимном соединении.
В других вариантах система 25 может не проходить в окружном направлении вокруг трубчатой колонны или не быть встроенной в стенку трубчатой конструкции. Например, система 25 может быть сформирована в плоской конструкции и т.д. Система 25 может находиться в отдельном корпусе, прикрепленном к трубчатой колонне 22, или иметь такую ориентацию, при которой ось выхода 40 параллельна оси трубчатой колонны. Система 25 может находиться на каротажном кабеле или прикрепляться к устройству, имеющему не трубчатую форму. Принципы данного изобретения могут быть воплощены при любой ориентации или конфигурации системы 25.
На фиг.3 приведен пример разреза системы 25 регулирования сопротивления потоку текучей среды, выполненного по линии 3-3 с фиг.2. Пример системы 25 регулирования сопротивления потоку текучей среды, показанный на фиг.3, может использоваться в скважинной системе 10, показанной на фиг.1 и 2, или может быть использован в других скважинных системах в соответствии с принципами настоящего изобретения.
Как показано на фиг.3, флюидная смесь 36 протекает от входа 38 к выходу 40 через канал 44, входные протоки 46, 48 и проточную камеру 50. Протоки 46, 48 являются ответвлениями от канала 44, пересекающими камеру 50 во входах 52, 54.
Не смотря на то, что на фиг.3 протоки 46, 48 отходят от входного канала 44 приблизительно под одинаковым углом, в других примерах протоки 46, 48 могут проходить не симметрично относительно канала 44. Например, проток 48 может отходить от входного канала 44 под меньшим углом по сравнению с протоком 46 так, что если элемент 62 исполнительного механизма не выдвинут (как показано на фиг.3), большая часть флюидной смеси 36 будет протекать в камеру 50 через проток 48.
Как показано на фиг.3, большая часть флюидной смеси 36 поступает в камеру 50 через проток 48 вследствие известного эффекта Коанда или эффекта «стенки». Однако в других примерах флюидная смесь 36 может поступать в камеру 50 по существу поровну через протоки 46, 48.
Сопротивление потоку флюидной смеси 36, протекающей через систему 25, зависит от пропорций, в которых указанная флюидная смесь протекает в указанную камеру через соответствующие протоки 46, 48 и входы 52, 54. Как показано на фиг.3, приблизительно половина флюидной смеси 36 поступает в камеру 50 по протоку 46 через вход 52, и приблизительно половина флюидной смеси поступает в указанную камеру по протоку 48 через вход 54.
В таком случае поток протекает через систему 25 относительно беспрепятственно. Флюидная смесь 36 может свободно протекать между различными конструктивными элементами 56 по направлению к выходу 40.
На фиг.4 показан вариант системы 25, имеющей другую конфигурацию, в которой сопротивление потоку текучей среды, протекающему через указанную систему, выше по сравнению с конфигурацией, приведенной на фиг.3. Предпочтительно, данное увеличение сопротивления потоку текучей среды, протекающему через систему 25, обусловлено не изменением характеристики флюидной смеси 36 (хотя в других примерах увеличение сопротивления потоку текучей среды может быть вызвано изменением характеристики флюидной смеси).
Как показано на фиг.4, отклоняющая заслонка 58 смещена относительно канала 44 так, что поток флюидной смеси 36 отклонен в большей степени в направлении ответвляющегося протока 46. Таким образом, большая часть флюидной смеси 36 поступает в камеру 50 по протоку 46 через вход 52, и меньшая часть указанной флюидной смеси поступает в указанную камеру через вход 54.
Когда большая часть флюидной смеси 36 поступает в камеру 50 через вход 52, поток флюидной смеси 36 стремится закручиваться в указанной камере по часовой стрелке (как показано на фиг.4). Конструктивные элементы 56 предназначены для способствования такому закручивающемуся в камере 50 потоку текучей среды, в результате чего больше энергии потока флюидной смеси 36 рассеивается. Таким образом, по сравнению с конфигурацией, приведенной на фиг.3, в конфигурации, показанной на фиг.4, сопротивление потоку текучей среды, протекающему через систему 25, увеличено.
В этом примере отклоняющая заслонка 58 смещается исполнительным механизмом 60. В качестве исполнительного механизма 60 может использоваться любой исполнительный механизм. Исполнительный механизма 60 может срабатывать от любого воздействия (например, электрического, магнитного, теплового и т.д.).
В других примерах отклоняющая заслонка 58 может перемещаться под воздействием на нее эрозии или коррозии (то есть при этом происходит перемещение поверхности отклоняющей заслонки). В другом примере, отклоняющая заслонка 58 может представлять собой растворимый анод в гальваническом элементе. В другом примере отклоняющая заслонка 58 может перемещаться при растворении (например, будучи выполненным из соли, полимера молочной кислоты и т.д.). Еще в одном примере отклоняющая заслонка 58 может перемещаться при образовании на его поверхности отложений (таких как окалины, асфальтенов, парафинов и т.д. или гальванического осаждения, если указанная отклоняющая заслонка является катодом с наращиваемым слоем).
Не смотря на то, что на фиг.4 показано, что в результате перемещения элемента 62 исполнительного механизма 60 сместилась отклоняющая заслонка 58, в других примерах указанная отклоняющая заслонка может быть смещена из одного положения в другое без перемещения элемента исполнительного механизма. Вместо этого элемент 62 может изменять конфигурацию (например, удлиняться, втягиваться, расширяться, разбухать и т.д.) без необходимости перемещения из одного положения в другое.
Не смотря на то, что на фиг.3 и 4 проточная камера 50 имеет входы 52, 54, в соответствии с изобретением может использоваться любое количество входов (в том числе один). Например, в американской патентной заявке под номером 12/792117, поданной 2 июня 2010 года, описана проточная камера с единственным входом, причем сопротивление потоку текучей среды, протекающему через данную камеру, изменяется в зависимости от того, через какой проток большая часть флюидной смеси поступает в указанную камеру.
На фиг.5 и 6 показана другая конфигурация системы регулирования сопротивления потоку текучей среды. В такой конфигурации сопротивление потоку текучей среды, протекающему через систему 25, может регулироваться за счет изменения характеристики флюидной смеси 36 или при появлении определенного условия или воздействия при помощи исполнительного механизма 60.
Поток флюидной смеси 36, показанный на фиг.5, имеет относительно высокую скорость. Флюидная смесь 36, перемещающаяся по каналу 44, обтекает камеры 64, образованные в боковой части указанного канала. Каждая из камер 64 гидравлически сообщается с переключателем 66 потока флюида, управляемым давлением.
При повышенных скоростях потока флюидной смеси 36, протекающего по каналу 44, в результате обтекания указанной флюидной смесью камер 64 к переключателю 66 потока флюида будет прикладываться пониженное давление, при этом, как показано на фиг.5, поток указанной флюидной смеси будет отклонен по направлению к ответвляющемуся протоку 48. Большая часть флюидной смеси 36 поступает в камеру 50 через вход 54, и сопротивление потоку текучей среды, протекающему через систему 25, увеличивается. При пониженных скоростях потока и увеличенных значениях вязкости большая часть флюидной смеси 36 будет поступать в камеру 50 через вход 52, при этом сопротивление потоку текучей среды, протекающему через систему 25, уменьшается вследствие меньшего закручивания потока в указанной камере.
На фиг.6 показано, что исполнительный механизм 60 переведен в положение, при котором поток флюидной смеси 36 отклоняется от канала 44 по направлению к ответвляющемуся протоку 46. Интенсивность закручивания потока флюидной смеси 36 в камере 50 уменьшена, и, таким образом, сопротивление потоку текучей среды, протекающему через систему 25, также уменьшено.
Следует отметить, что если скорость потока флюидной смеси 36 в канале 44 уменьшена или вязкость потока указанной флюидной смеси увеличена, часть указанной флюидной смеси может поступать в камеры 64 и в переключатель 66 потока флюида, что также способствует отклонению потока флюидной смеси по направлению к ответвляющемуся протоку 46. При этом предпочтительно, что перемещение отклоняющей заслонки 58 предназначено для направления потока флюидной смеси 36 по протоку 46 независимо от того, протекает указанная флюидная смесь к переключателю 66 потока флюида из камер 64 или нет.
На фиг.7-11 показаны примеры различных конфигураций исполнительного механизма 60. Исполнительные механизмы 60, показанные на фиг.7-11, могут использоваться в системе 25 регулирования сопротивления потоку текучей среды или могут использоваться в других системах в соответствии с принципами настоящего изобретения.
На фиг.7 показано, что исполнительный механизм 60 содержит элемент 62, имеющий отклоняющую заслонку 58, расположенную на указанном элементе 62 или прикрепленную к указанному элементу 62. Элемент 62 содержит материал 68, который может изменять форму или перемещаться в результате действия электрического сигнала или воздействия, выдаваемого контроллером 70. Электрическое питание к контроллеру 70 может подводиться от батареи 72 или от другого источника (такого как электрический генератор и т.п.).
Для обнаружения сигнала, передаваемого на исполнительный механизм 60 из удаленной точки (такой как поверхность земли, подводное устьевое оборудование, буровая установка, эксплуатационное оборудование и т.д.) может использоваться датчик или детектор 74. Указанный сигнал может представлять собой телеметрический сигнал, передаваемый, например, при помощи звуковых волн, импульсов давления, электромагнитных волн, вибраций, механических воздействий на трубы и др. Согласно принципам настоящего изобретения детектор 74 может улавливать сигнал любого типа.
Материал 68 может представлять собой материал любого типа, способный изменять форму или перемещаться при прикладывании или снятии электрических воздействий. К примерам таких материалов относятся пьезокерамические материалы, пьезоэлектрические материалы, электрострикционные материалы и т.д. Также может использоваться пироэлектрический материал для вырабатывания электричества при определенном изменении температуры.
Электрическое воздействие может прикладываться для отклонения потока флюидной смеси 36 в направлении ответвляющегося протока 46 или для отклонения потока указанной флюидной смеси в направлении ответвляющегося протока 48. В ином случае указанное электрическое воздействие может прикладываться в случаях, когда отклонение потока флюидной смеси 36 отклоняющей заслонкой 58 не требуется.
На фиг.8 показано, что элемент 62 содержит материал 68, который, в данной конфигурации, изменяет форму или перемещается в результате действия магнитного сигнала или воздействия, выдаваемого контроллером 70. В указанном примере, электрический ток, подаваемый контроллером 70, преобразовывается в магнитное поле при помощи катушки 76, однако при необходимости могут применяться другие способы приложения магнитного поля к материалу 68 (например, постоянными магнитами и др.).
В этом примере, материал 68 может представлять собой материал любого типа, способный изменять форму или перемещаться, попав в магнитное поле или будучи выведенным из магнитного поля. К примерам таких материалов относятся магнитные материалы с памятью формы, магнитострикционные материалы, постоянные магниты, ферримагнитные материалы и т.д.
В одном примере элемент 62 и катушка 76 содержат звуковую катушку или соленоид. Соленоид может представлять собой фиксирующийся соленоид. В любом из раскрытых в данной заявке примеров исполнительный механизм 60 может быть двухпозиционным и может фиксироваться в выдвинутой и/или втянутой конфигурациях.
Магнитное поле может применяться для отклонения потока флюидной смеси 36 по направлению к ответвляющемуся протоку 46 или отклонять поток указанной флюидной смеси по направлению к ответвляющемуся протоку 48. В ином случае указанное магнитное поле может использоваться, когда отклонение потока флюидной смеси 36 отклоняющей заслонкой 58 не требуется.
На фиг.9 отклоняющая заслонка 58 отклоняет поток флюидной смеси 36, протекающий по каналу 44. В одном примере отклоняющая заслонка 58 может смещаться относительно канала 44 при эрозии или коррозии элемента 62. Указанная эрозия или коррозия может происходить в результате вмешательства человека (например, при контакте элемента 62 с коррозионным флюидом) или с течением времени (например, вследствие длительного воздействия флюидной смеси 36 на элемент 62).
В другом примере элемент 62 может быть выполнен из относительно быстро ржавеющего материала в виде растворимого анода в гальваническом элементе. В канал 80 может быть выборочно введен флюид электролита 78 (например, по протоку, проходящему до удаленной точки, и т.п.), контактирующий с материалом 68, который может быть менее устойчивым к коррозии, чем другой материал 82, также контактирующий с указанным флюидом.
Элемент 62 может увеличиваться в размерах вследствие гальванического осаждения на его поверхности, если, например, данный элемент является катодом с наращиваемым слоем в гальваническом элементе. В других примерах, элемент 62 может увеличиваться в размерах вследствие отложения на его поверхности окалины, асфальтенов, парафинов и т.д.
Еще в одном примере, материал 68 может разбухать, а флюид 78 может представлять собой флюид, вызывающий разбухание (то есть увеличение в объеме) этого материала. Известны различные материалы, разбухающие при контакте с водой, жидкими углеводородами и/или газообразными или находящимися в сверхкритической фазе углеводородами (например, указанные в патентах US 3385367 и US 7059415 и в публикациях US 2004-020662 и US 2007-0257405). В ином случае материал 68 может разбухать, если флюидная смесь 36 характеризуется повышенным соотношением желательного флюида к нежелательному флюиду или повышенным соотношением нежелательного флюида к желательному флюиду.
Еще в одном примере материал 68 может разбухать при изменении ионной концентрации (например, pH флюида 78 или флюидной смеси 36). Например, материал 68 может содержать полимерный гидрогель.
Еще в одном примере материал 68 может разбухать или изменять форму при повышении температуры. Например, материал 68 может содержать термочувствительный воск или термочувствительный материал с памятью формы и т.д.
На фиг.10 показано, что элемент 62 имеет поршень, смещающийся при перепаде давления между каналом 80 и каналом 44. Когда необходимо переместить отклоняющую заслонку 58, давление в канале 80 увеличивается или уменьшается (например, передаваясь по протоку, проходящему к источнику давления в удаленной точке и т.п.) относительно давления в канале 44.
На фиг.10 отклоняющая заслонка 58 изображена в виде поворотной лопатки, однако следует четко понимать, что согласно принципам настоящего изобретения может использоваться отклоняющая заслонка любой формы. Например, отклоняющая заслонка 58 может иметь форму крыла с аэродинамическим профилем и т.д.
На фиг.10 показана конфигурация, в которой положение отклоняющей заслонки 58 может зависеть от характеристики (давления) флюидной смеси 36.
Как показано на фиг.11, исполнительный механизм 60 срабатывает, попав в магнитное поле или будучи выведенным из магнитного поля. Например, к исполнительному механизму 60 может быть приложено магнитное поле путем ввода магнитного устройства 82 в канал 80, который может проходить через трубчатую колонну 22 в удаленную точку.
В этой конфигурации исполнительный механизм 60 может содержать любой материал 68, описанный выше со ссылкой на конфигурацию с фиг.8 (например, материалы, которые могут менять форму или перемещаться, попав в магнитное поле или будучи выведенным из магнитного поля, магнитные материалы с памятью формы, магнитострикционные материалы, постоянные магниты, ферримагнитные материалы и т.п.).
Магнитное устройство 82 может представлять собой устройство любого типа, которое может создавать магнитное поле. К примерам данных устройств относятся постоянные магниты, электромагниты и др. Устройство 82 может вводиться на проволоке, тросовом канате и т.п., а также может сбрасываться или прокачиваться по каналу 80 и т.д.
Одним из полезных применений конфигурации, приведенной на фиг.11, является возможность выборочной активации одного или нескольких исполнительных механизмов 60. Например, в скважинной системе 10, приведенной на фиг.1, может требоваться увеличение или уменьшение сопротивления потоку текучей среды, протекающему через некоторые или через все системы 25 регулирования сопротивления потоку текучей среды. Во все системы 25 регулирования сопротивления потоку текучей среды может быть сброшен или через все системы 25 регулирования сопротивления потоку текучей среды может быть прокачан магнитный снаряд, активирующий все исполнительные механизмы 60; или вблизи некоторых систем может быть выборочно расположен вводимый на проволоке электромагнит, предназначенный для активации соответствующих исполнительных механизмов.
На фиг.12 показан пример графика зависимости давления или расхода потока флюидной смеси 36 от времени. Следует отметить, что давление и/или расход потока текучей среды могут выборочно изменены путем активации исполнительного механизма 60 системы 25 регулирования сопротивления потоку текучей среды, и это изменение давления и/или расхода потока текучей среды может использоваться для передачи сигнала в удаленную точку.
На фиг.13 приведен пример скважинной системы 10, в котором необсаженная часть 14 ствола 12 скважины показана в процессе бурения. Флюидная смесь 36 (в данном случае буровой раствор) циркулирует через трубчатую колонну 84 (в данном случае через бурильную колонну), выходит из бурового долота 86 и возвращается на поверхность по кольцевому пространству 28.
Как описано выше, исполнительный механизм 60 может активироваться контроллером 70 для изменения давления и/или расхода потока флюидной смеси 36. Эти изменения давления и/или расхода потока текучей среды могут характеризоваться данными, командами или другой модулируемой информацией. Таким образом, система 25 регулирования сопротивления потоку текучей среды может передавать сигналы в удаленную точку.
Как показано на фиг.13, в удаленной точке находится телеметрический приемник 88, регистрирующий изменения давления и/или расхода потока текучей среды при помощи одного или более датчиков 90, измеряющих эти характеристики выше или ниже по потоку системы 25. В одном примере система 25 может передавать в удаленную точку сигналы давления и/или расхода потока текучей среды, указывающие на результаты измерения, полученные при помощи средств измерения в процессе бурения (MWD, от англ. measurement while drilling), средств каротажа в процессе бурения (LWD, от англ. logging while drilling), средств измерения давления в процессе бурения (PWD, от англ. pressure while drilling) или при помощи других датчиков 92, подсоединенных в трубчатой колонне 84.
В других примерах возможности передачи сигналов системы 25 могут использоваться в операциях по добыче флюидов, нагнетанию флюидов, интенсификации притока флюидов, заканчиванию скважины или при других операциях. В процессе добычи флюидов (см. пример на фиг.1) система 25 может передавать в удаленную точку сигналы, указывающие на расход потока, давление, состав, температуру текучей среды и т.п. для каждой зоны добычи в отдельности.
Понятно, что настоящее изобретение, раскрытое выше, обеспечивает существенные улучшения в уровне техники по регулируемому сопротивлению потока флюида в скважине. Некоторые или все вышеописанные примеры системы 25 регулирования сопротивления потоку текучей среды могут управляться дистанционно с целью надежного контроля потока флюидов между толщей 20 пород и внутренним пространством трубчатой колонны 22. Некоторые или все вышеописанные примеры системы 25 могут передавать сигналы в удаленную точку и/или могут принимать дистанционно передаваемые сигналы для управления исполнительным механизмом 60.
Один аспект настоящего изобретения состоит в том, что предложена система 25 регулирования сопротивления потоку текучей среды для использования с подземной скважиной. Система 25 может содержать проточную камеру 50, через которую протекает флюидная смесь 36, причем камера 50 имеет входные протоки 46, 48, при этом сопротивление потоку текучей среды изменяется в зависимости от пропорций, в которых флюидная смесь 36 поступает в камеру 50 по соответствующим входным протокам 46, 48. Исполнительный механизм 60 может изменять пропорции, в которых флюидная смесь протекает в указанную камеру 50 по соответствующим входным протокам 46, 48.
Исполнительный механизм 60 может отклонять поток флюидной смеси 36 по направлению к входному протоку 46. Исполнительный механизм 60 может смещать отклоняющую заслонку 58 относительно канала 44, через который протекает флюидная смесь 36.
Исполнительный механизм 60 может содержать разбухающий материал, материал, изменяющий форму или перемещающийся при контакте с выбранным типом флюида, и/или материал, изменяющий форму при изменении температуры.
Исполнительный механизм 60 может содержать пьезокерамический материал и/или материал, выбранный из следующей группы: пьезоэлектрический материал, пироэлектрический материал, электрострикционный материал, магнитострикционный материал, магнитный материал с памятью формы, постоянный магнит, ферримагнитный материал, разбухающий материал, полимерный гидрогель и термочувствительный материал с памятью формы. Исполнительный механизм 60 может представлять собой электромагнитный исполнительный механизм.
Система 25 может содержать контроллер 70, управляющий работой исполнительного механизма 60. Контроллер 70 может реагировать на сигнал, передаваемый из удаленной точки. Указанный сигнал может представлять собой электрический сигнал, магнитный сигнал и/или сигнал, выбранный из следующей группы: тепловой сигнал, ионная концентрация и тип флюида.
Флюидная смесь 36 может протекать через проточную камеру 50 в скважину.
Система 25 также может также содержать переключатель 66 потока флюида, при изменении характеристики флюидной смеси 36 изменяющий пропорции, в которых флюидная смесь 36 протекает в камеру 50 по соответствующим входным протокам 46, 48. Указанная характеристика может представлять собой по меньшей мере одну характеристику из следующей группы: скорость, вязкость, плотность и соотношение желательного флюида к нежелательному флюиду.
Передача сигнала в удаленную точку может осуществляться путем отклонения потока флюидной смеси 36 исполнительным механизмом 60. Указанный сигнал может представлять собой изменения давления и/или расхода потока текучей среды.
Кроме того, настоящим изобретением, раскрытым выше, предложен способ регулирования сопротивления потоку текучей среды в скважине. Указанный способ содержит изменение ориентации отклоняющей заслонки 58 относительно канала 44, по которому протекает флюидная смесь 36, в результате чего поток флюидной смеси 36 отклоняется по направлению к одному из входных протоков 46, 48 проточной камеры 50, причем проточная камера 50 обеспечивает сопротивление потоку текучей среды, изменяющееся в зависимости от пропорций, в которых флюидная смесь 36 протекает в камеру 50 по соответствующим входным протокам 46, 48.
Изменение ориентации отклоняющей заслонки 58 может содержать передачу сигнала в удаленную точку. Передача данного сигнала может содержать управление исполнительным механизмом 60 при помощи контроллера 70, в результате чего исполнительный механизм 60 смещает отклоняющую заслонку 58 относительно канала 44.
Следует понимать, что различные вышеописанные примеры могут характеризоваться разного рода пространственной ориентацией, в том числе наклонной, перевернутой, горизонтальной, вертикальной и др., а также применяться в разных конфигурациях без отступления от принципов настоящего изобретения. Варианты осуществления изобретения, приведенные на чертежах, изображены и описаны только в качестве примеров практического применения принципов настоящего изобретения, которые не ограничиваются какими-либо конкретными особенностями данных вариантов осуществления изобретения.
Безусловно, на основе тщательного ознакомления с вышеприведенным описанием представленных вариантов осуществления изобретения специалисту в данной области техники будет понятно, что многие модификации, дополнения, замены, исключения и другие изменения могут быть сделаны для указанных конкретных вариантов осуществления изобретения, и такие изменения находятся в соответствии с принципами настоящего изобретения. Соответственно, вышеприведенное подробное описание используется в качестве примера и предназначено для более ясного понимания сути изобретения, причем суть и объем настоящего изобретения ограниваются исключительно признаками, указанными в формуле изобретения, и эквивалентными им признаками.
Claims (43)
1. Система регулирования сопротивления потоку для использования с подземной скважиной, содержащая:
проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет входные протоки, при этом в указанной камере сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам, причем, по меньшей мере, большая часть флюидной смеси протекает по входному каналу;
исполнительный механизм, выполненный с возможностью смещения отклоняющей заслонки относительно входного канала и тем самым изменяющий, как следствие смещения отклоняющей заслонки, указанные пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам;
переключатель потока флюида, который при изменении характеристики флюидной смеси изменяет пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам.
проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет входные протоки, при этом в указанной камере сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам, причем, по меньшей мере, большая часть флюидной смеси протекает по входному каналу;
исполнительный механизм, выполненный с возможностью смещения отклоняющей заслонки относительно входного канала и тем самым изменяющий, как следствие смещения отклоняющей заслонки, указанные пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам;
переключатель потока флюида, который при изменении характеристики флюидной смеси изменяет пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам.
2. Система по п.1, отличающаяся тем, что указанный исполнительный механизм содержит разбухающий материал.
3. Система по п.1, отличающаяся тем, что указанный исполнительный механизм содержит материал, изменяющий форму при контакте с выбранным типом флюида.
4. Система по п.1, отличающаяся тем, что указанный исполнительный механизм содержит материал, изменяющий форму при изменении температуры.
5. Система по п.1, отличающаяся тем, что указанный исполнительный механизм содержит пьезокерамический материал.
6. Система по п.1, отличающаяся тем, что указанный исполнительный механизм содержит материал, выбранный из следующей группы: пьезоэлектрический материал, пироэлектрический материал, электрострикционный материал, магнитострикционный материал, магнитный материал с памятью формы, постоянный магнит, ферримагнитный материал, полимерный гидрогель и термочувствительный материал с памятью формы.
7. Система по п.1, отличающаяся тем, что указанный исполнительный механизм представляет собой электромагнитный исполнительный механизм.
8. Система по п.1, отличающаяся тем, что дополнительно содержит контроллер, управляющий работой исполнительного механизма, причем данный контроллер реагирует на сигнал, переданный из удаленной точки.
9. Система по п.8, отличающаяся тем, что указанный сигнал представляет собой электрический сигнал.
10. Система по п.8, отличающаяся тем, что указанный сигнал представляет собой магнитный сигнал.
11. Система по п.8, отличающаяся тем, что указанный сигнал представляет собой сигнал, выбранный из следующей группы: тепловой сигнал, ионная концентрация и тип флюида.
12. Система по п.1, отличающаяся тем, что указанная флюидная смесь протекает через указанную проточную камеру в скважину.
13. Система по п.1, отличающаяся тем, что указанная характеристика представляет собой, по меньшей мере, одну характеристику из следующей группы: скорость, вязкость, плотность и соотношение желательного флюида к нежелательному флюиду.
14. Система по п.1, отличающаяся тем, что при отклонении потока указанной флюидной смеси указанным исполнительным механизмом происходит передача сигнала в удаленную точку.
15. Система по п.14, отличающаяся тем, что указанный сигнал представляет собой изменение давления.
16. Система по п.14, отличающаяся тем, что указанный сигнал представляет собой изменение расхода потока.
17. Способ регулирования сопротивления потоку в скважине, содержащий шаги:
изменяют ориентацию отклоняющей заслонки во входном канале, по которому протекает, по меньшей мере, большая часть флюидной смеси, в результате чего поток указанной флюидной смеси отклоняется по направлению к одному из входных протоков проточной камеры, причем указанная камера обеспечивает сопротивление потоку, изменяющееся в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам, причем указанная флюидная смесь протекает через указанную проточную камеру в скважину.
изменяют ориентацию отклоняющей заслонки во входном канале, по которому протекает, по меньшей мере, большая часть флюидной смеси, в результате чего поток указанной флюидной смеси отклоняется по направлению к одному из входных протоков проточной камеры, причем указанная камера обеспечивает сопротивление потоку, изменяющееся в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам, причем указанная флюидная смесь протекает через указанную проточную камеру в скважину.
18. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно содержит передачу сигнала в удаленную точку.
19. Способ по п.18, отличающийся тем, что передача указанного сигнала дополнительно включает выборочное управление с помощью контроллера исполнительным механизмом, смещающим указанную отклоняющую заслонку в указанном входном канале.
20. Способ по п.18, отличающийся тем, что указанный сигнал представляет собой изменение давления.
21. Способ по п.18, отличающийся тем, что указанный сигнал представляет собой изменение расхода потока.
22. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание исполнительного механизма, содержащего разбухающий материал.
23. Способ по п.17, отличающийся тем, что изменение ориентации указанной отражающей заслонки дополнительно включает срабатывание исполнительного механизма, содержащего материал, изменяющий форму при контакте с выбранным типом флюида.
24. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание исполнительного механизма, содержащего материал, изменяющий форму при изменении температуры.
25. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание исполнительного механизма, содержащего пьезокерамический материал.
26. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание исполнительного механизма, содержащего материал, выбранный из следующей группы: пьезоэлектрический материал, пироэлектрический материал, электрострикционный материал, магнитострикционный материал, магнитный материал с памятью формы, постоянный магнит, ферримагнитный материал, полимерный гидрогель и термочувствительный материал с памятью формы.
27. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание электромагнитного исполнительного механизма.
28. Способ по п.17, отличающийся тем, что изменение ориентации указанной отклоняющей заслонки дополнительно включает срабатывание исполнительного механизма в ответ на сигнал, переданный из удаленной точки.
29. Способ по п.28, отличающийся тем, что указанный сигнал представляет собой электрический сигнал.
30. Способ по п.28, отличающийся тем, что указанный сигнал представляет собой магнитный сигнал.
31. Способ по п.28, отличающийся тем, что указанный сигнал представляет собой сигнал, выбранный из следующей группы: тепловой сигнал, ионная концентрация и тип флюида.
32. Способ по п.17, отличающийся тем, что переключатель потока флюида при изменении характеристики флюидной смеси изменяет пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам.
33. Способ по п.32, отличающийся тем, что указанная характеристика представляет собой, по меньшей мере, одну характеристику из следующей группы: скорость, вязкость, плотность и соотношение желательного флюида к нежелательному флюиду.
34. Система регулирования сопротивления потоку для использования с подземной скважиной, содержащая:
проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет, по меньшей мере, первый и второй входные протоки, при этом сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим первому и второму входным протокам;
исполнительный механизм, отклоняющий поток указанной флюидной смеси по направлению к указанному первому входному протоку, причем указанный исполнительный механизм выполнен с возможностью смещения отклоняющей заслонки во входном канале, по которому протекает, по меньшей мере, большая часть указанной флюидной смеси;
и контроллер, управляющий работой указанного исполнительного механизма, причем данный контроллер реагирует на сигнал, переданный из удаленной точки.
проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет, по меньшей мере, первый и второй входные протоки, при этом сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим первому и второму входным протокам;
исполнительный механизм, отклоняющий поток указанной флюидной смеси по направлению к указанному первому входному протоку, причем указанный исполнительный механизм выполнен с возможностью смещения отклоняющей заслонки во входном канале, по которому протекает, по меньшей мере, большая часть указанной флюидной смеси;
и контроллер, управляющий работой указанного исполнительного механизма, причем данный контроллер реагирует на сигнал, переданный из удаленной точки.
35. Система по п.34, отличающаяся тем, что указанный исполнительный механизм содержит пьезокерамический материал.
36. Система по п.34, отличающаяся тем, что указанный исполнительный механизм содержит материал, выбранный из следующей группы: пьезоэлектрический материал, пироэлектрический материал, электрострикционный материал, магнитострикционный материал, магнитный материал с памятью формы, постоянный магнит, ферримагнитный материал, полимерный гидрогель и термочувствительный материал с памятью формы.
37. Система по п.34, отличающаяся тем, что указанный исполнительный механизм представляет собой электромагнитный исполнительный механизм.
38. Система по п.34, отличающаяся тем, что указанный сигнал представляет собой электрический сигнал.
39. Система по п.34, отличающаяся тем, что указанный сигнал представляет собой магнитный сигнал.
40. Система по п.34, отличающаяся тем, что указанный сигнал представляет собой сигнал, выбранный из следующей группы: тепловой сигнал, ионная концентрация и тип флюида.
41. Система по п.34, отличающаяся тем, что указанная флюидная смесь протекает через указанную проточную камеру в скважину.
42. Система по п.34, отличающаяся тем, что дополнительно содержит переключатель потока флюида, который при изменении характеристики флюидной смеси изменяет пропорции, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим первому и второму входным протокам.
43. Система по п.42, отличающаяся тем, что указанная характеристика представляет собой, по меньшей мере, одну характеристику из следующей группы: скорость, вязкость, плотность и соотношение желательного флюида к нежелательному флюиду.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/084,025 US8678035B2 (en) | 2011-04-11 | 2011-04-11 | Selectively variable flow restrictor for use in a subterranean well |
US13/084,025 | 2011-04-11 | ||
PCT/US2012/030641 WO2012141880A2 (en) | 2011-04-11 | 2012-03-27 | Selectively variable flow restrictor for use in a subterranean well |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013148468A RU2013148468A (ru) | 2015-05-20 |
RU2558566C2 true RU2558566C2 (ru) | 2015-08-10 |
Family
ID=46965209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013148468/03A RU2558566C2 (ru) | 2011-04-11 | 2012-03-27 | Регулируемый ограничитель потока для использования в подземной скважине |
Country Status (13)
Country | Link |
---|---|
US (1) | US8678035B2 (ru) |
EP (1) | EP2697473B1 (ru) |
CN (1) | CN103477021B (ru) |
AU (1) | AU2012243214B2 (ru) |
BR (1) | BR112013026041B1 (ru) |
CA (1) | CA2831093C (ru) |
CO (1) | CO6811824A2 (ru) |
MX (1) | MX2013011876A (ru) |
MY (1) | MY159811A (ru) |
NO (1) | NO2634362T3 (ru) |
RU (1) | RU2558566C2 (ru) |
SG (1) | SG193607A1 (ru) |
WO (1) | WO2012141880A2 (ru) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8235128B2 (en) | 2009-08-18 | 2012-08-07 | Halliburton Energy Services, Inc. | Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well |
US8276669B2 (en) * | 2010-06-02 | 2012-10-02 | Halliburton Energy Services, Inc. | Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well |
US8893804B2 (en) | 2009-08-18 | 2014-11-25 | Halliburton Energy Services, Inc. | Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well |
US9109423B2 (en) | 2009-08-18 | 2015-08-18 | Halliburton Energy Services, Inc. | Apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8839871B2 (en) | 2010-01-15 | 2014-09-23 | Halliburton Energy Services, Inc. | Well tools operable via thermal expansion resulting from reactive materials |
US8708050B2 (en) | 2010-04-29 | 2014-04-29 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow using movable flow diverter assembly |
US8356668B2 (en) | 2010-08-27 | 2013-01-22 | Halliburton Energy Services, Inc. | Variable flow restrictor for use in a subterranean well |
US8851180B2 (en) | 2010-09-14 | 2014-10-07 | Halliburton Energy Services, Inc. | Self-releasing plug for use in a subterranean well |
US8474533B2 (en) | 2010-12-07 | 2013-07-02 | Halliburton Energy Services, Inc. | Gas generator for pressurizing downhole samples |
EP2694776B1 (en) | 2011-04-08 | 2018-06-13 | Halliburton Energy Services, Inc. | Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch |
BR112014010371B1 (pt) | 2011-10-31 | 2020-12-15 | Halliburton Energy Services, Inc. | Aparelho para controlar o fluxo de fluido de forma autônoma em um poço subterrâneo e método para controlar o fluxo do fluido em um poço subterrâneo |
BR112014008537A2 (pt) | 2011-10-31 | 2017-04-18 | Halliburton Energy Services Inc | aparelho para controlar de maneira autônoma o escoamento de fluido em um poço subterrâneo, e, método para controlar escoamento de fluido em um poço subterrâneo |
CA2966002C (en) * | 2011-11-07 | 2018-09-11 | Halliburton Energy Services, Inc. | Variable flow resistance for use with a subterranean well |
US9506320B2 (en) | 2011-11-07 | 2016-11-29 | Halliburton Energy Services, Inc. | Variable flow resistance for use with a subterranean well |
US8739880B2 (en) | 2011-11-07 | 2014-06-03 | Halliburton Energy Services, P.C. | Fluid discrimination for use with a subterranean well |
BR112013025789B1 (pt) | 2011-11-11 | 2020-11-03 | Halliburton Energy Services, Inc | aparelho e método para controlar autonomamente fluxo de fluido em um poço subterrâneo |
US8684094B2 (en) | 2011-11-14 | 2014-04-01 | Halliburton Energy Services, Inc. | Preventing flow of undesired fluid through a variable flow resistance system in a well |
US9404349B2 (en) | 2012-10-22 | 2016-08-02 | Halliburton Energy Services, Inc. | Autonomous fluid control system having a fluid diode |
US9169705B2 (en) | 2012-10-25 | 2015-10-27 | Halliburton Energy Services, Inc. | Pressure relief-assisted packer |
US9695654B2 (en) | 2012-12-03 | 2017-07-04 | Halliburton Energy Services, Inc. | Wellhead flowback control system and method |
US9127526B2 (en) | 2012-12-03 | 2015-09-08 | Halliburton Energy Services, Inc. | Fast pressure protection system and method |
WO2014112970A1 (en) * | 2013-01-15 | 2014-07-24 | Halliburton Energy Services, Inc. | Remote-open inflow control device with swellable actuator |
EP2951384A4 (en) * | 2013-01-29 | 2016-11-30 | Halliburton Energy Services Inc | MAGNETIC VALVE ASSEMBLY |
US9587486B2 (en) | 2013-02-28 | 2017-03-07 | Halliburton Energy Services, Inc. | Method and apparatus for magnetic pulse signature actuation |
US9726009B2 (en) | 2013-03-12 | 2017-08-08 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing near-field communication |
US9284817B2 (en) | 2013-03-14 | 2016-03-15 | Halliburton Energy Services, Inc. | Dual magnetic sensor actuation assembly |
US9752414B2 (en) | 2013-05-31 | 2017-09-05 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing downhole wireless switches |
US20150075770A1 (en) | 2013-05-31 | 2015-03-19 | Michael Linley Fripp | Wireless activation of wellbore tools |
WO2015065419A1 (en) | 2013-10-31 | 2015-05-07 | Halliburton Energy Services, Inc. | Downhole telemetry systems with voice coil actuator |
CN103806881A (zh) * | 2014-02-19 | 2014-05-21 | 东北石油大学 | 一种分叉流道式自适应流入控制装置 |
WO2015137961A1 (en) | 2014-03-14 | 2015-09-17 | Halliburton Energy Services, Inc. | Fluidic pulser for downhole telemetry |
WO2015167467A1 (en) | 2014-04-29 | 2015-11-05 | Halliburton Energy Services, Inc. | Valves for autonomous actuation of downhole tools |
WO2016085465A1 (en) | 2014-11-25 | 2016-06-02 | Halliburton Energy Services, Inc. | Wireless activation of wellbore tools |
ITUB20154701A1 (it) | 2015-10-15 | 2017-04-15 | Dolphin Fluidics S R L | Valvola deviatrice a separazione totale. |
WO2018093377A1 (en) * | 2016-11-18 | 2018-05-24 | Halliburton Energy Services, Inc. | Variable flow resistance system for use with a subterranean well |
BR112019007722B1 (pt) | 2016-11-18 | 2022-08-09 | Halliburton Energy Services, Inc | Sistema de resistência ao fluxo variável para uso com um poço subterrâneo, e, método para controlar variavelmente a resistência do fluxo em um poço |
WO2019027467A1 (en) * | 2017-08-03 | 2019-02-07 | Halliburton Energy Services, Inc. | AUTONOMOUS INPUT FLOW CONTROL DEVICE WITH FLUID SELECTOR FOR USE IN MOLDING |
US11408250B2 (en) | 2017-11-14 | 2022-08-09 | Halliburton Energy Services, Inc. | Adjusting the zonal allocation of an injection well with no moving parts and no intervention |
AU2018405194B2 (en) | 2018-01-26 | 2023-08-03 | Halliburton Energy Services, Inc. | Retrievable well assemblies and devices |
AU2018413159B2 (en) | 2018-03-12 | 2024-04-11 | Halliburton Energy Services, Inc. | Self-regulating turbine flow |
CN110397423B (zh) * | 2018-04-18 | 2021-04-30 | 中国石油天然气股份有限公司 | 一种三层试油管柱及试油方法 |
US10669810B2 (en) * | 2018-06-11 | 2020-06-02 | Saudi Arabian Oil Company | Controlling water inflow in a wellbore |
GB2598476B (en) | 2019-03-29 | 2023-01-25 | Halliburton Energy Services Inc | Accessible wellbore devices |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418721A (en) * | 1981-06-12 | 1983-12-06 | The United States Of America As Represented By The Secretary Of The Army | Fluidic valve and pulsing device |
EA005253B1 (ru) * | 2001-05-08 | 2004-12-30 | Руне Фрейер | Способ и устройство для ограничения притока пластовой воды в скважину |
EA200870248A1 (ru) * | 2006-02-10 | 2009-02-27 | Эксонмобил Апстрим Рисерч Компани | Выравнивание профиля приемистости посредством материалов, реагирующих на управляющее воздействие |
RU2358103C2 (ru) * | 2004-02-20 | 2009-06-10 | Норск Хюдро Аса | Исполнительный механизм и способ его применения |
EA200900161A1 (ru) * | 2006-07-07 | 2009-06-30 | Статоилхюдро Аса | Способ для регулирования расхода и автономные клапан или устройство для регулирования расхода |
Family Cites Families (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2140735A (en) | 1935-04-13 | 1938-12-20 | Henry R Gross | Viscosity regulator |
US2324819A (en) | 1941-06-06 | 1943-07-20 | Studebaker Corp | Circuit controller |
US3078862A (en) | 1960-01-19 | 1963-02-26 | Union Oil Co | Valve and well tool utilizing the same |
US3091393A (en) | 1961-07-05 | 1963-05-28 | Honeywell Regulator Co | Fluid amplifier mixing control system |
US3256899A (en) | 1962-11-26 | 1966-06-21 | Bowles Eng Corp | Rotational-to-linear flow converter |
US3216439A (en) | 1962-12-18 | 1965-11-09 | Bowles Eng Corp | External vortex transformer |
US3233621A (en) | 1963-01-31 | 1966-02-08 | Bowles Eng Corp | Vortex controlled fluid amplifier |
US3282279A (en) | 1963-12-10 | 1966-11-01 | Bowles Eng Corp | Input and control systems for staged fluid amplifiers |
US3474670A (en) | 1965-06-28 | 1969-10-28 | Honeywell Inc | Pure fluid control apparatus |
US3461897A (en) | 1965-12-17 | 1969-08-19 | Aviat Electric Ltd | Vortex vent fluid diode |
GB1180557A (en) | 1966-06-20 | 1970-02-04 | Dowty Fuel Syst Ltd | Fluid Switch and Proportional Amplifier |
GB1208280A (en) | 1967-05-26 | 1970-10-14 | Dowty Fuel Syst Ltd | Pressure ratio sensing device |
US3515160A (en) | 1967-10-19 | 1970-06-02 | Bailey Meter Co | Multiple input fluid element |
US3537466A (en) | 1967-11-30 | 1970-11-03 | Garrett Corp | Fluidic multiplier |
US3529614A (en) | 1968-01-03 | 1970-09-22 | Us Air Force | Fluid logic components |
GB1236278A (en) | 1968-11-12 | 1971-06-23 | Hobson Ltd H M | Fluidic amplifier |
JPS4815551B1 (ru) | 1969-01-28 | 1973-05-15 | ||
US3566900A (en) | 1969-03-03 | 1971-03-02 | Avco Corp | Fuel control system and viscosity sensor used therewith |
US3586104A (en) | 1969-12-01 | 1971-06-22 | Halliburton Co | Fluidic vortex choke |
SE346143B (ru) | 1970-12-03 | 1972-06-26 | Volvo Flygmotor Ab | |
US4029127A (en) | 1970-01-07 | 1977-06-14 | Chandler Evans Inc. | Fluidic proportional amplifier |
US3670753A (en) | 1970-07-06 | 1972-06-20 | Bell Telephone Labor Inc | Multiple output fluidic gate |
US3704832A (en) | 1970-10-30 | 1972-12-05 | Philco Ford Corp | Fluid flow control apparatus |
US3885627A (en) | 1971-03-26 | 1975-05-27 | Sun Oil Co | Wellbore safety valve |
US3717164A (en) | 1971-03-29 | 1973-02-20 | Northrop Corp | Vent pressure control for multi-stage fluid jet amplifier |
US3712321A (en) | 1971-05-03 | 1973-01-23 | Philco Ford Corp | Low loss vortex fluid amplifier valve |
US3776460A (en) * | 1972-06-05 | 1973-12-04 | American Standard Inc | Spray nozzle |
JPS5244990B2 (ru) | 1973-06-06 | 1977-11-11 | ||
US4082169A (en) | 1975-12-12 | 1978-04-04 | Bowles Romald E | Acceleration controlled fluidic shock absorber |
US4286627A (en) | 1976-12-21 | 1981-09-01 | Graf Ronald E | Vortex chamber controlling combined entrance exit |
US4127173A (en) | 1977-07-28 | 1978-11-28 | Exxon Production Research Company | Method of gravel packing a well |
SE408094B (sv) | 1977-09-26 | 1979-05-14 | Fluid Inventor Ab | Ett strommande medium metande anordning |
US4187909A (en) | 1977-11-16 | 1980-02-12 | Exxon Production Research Company | Method and apparatus for placing buoyant ball sealers |
US4385875A (en) | 1979-07-28 | 1983-05-31 | Tokyo Shibaura Denki Kabushiki Kaisha | Rotary compressor with fluid diode check value for lubricating pump |
US4291395A (en) | 1979-08-07 | 1981-09-22 | The United States Of America As Represented By The Secretary Of The Army | Fluid oscillator |
US4323991A (en) | 1979-09-12 | 1982-04-06 | The United States Of America As Represented By The Secretary Of The Army | Fluidic mud pulser |
US4307653A (en) | 1979-09-14 | 1981-12-29 | Goes Michael J | Fluidic recoil buffer for small arms |
US4276943A (en) * | 1979-09-25 | 1981-07-07 | The United States Of America As Represented By The Secretary Of The Army | Fluidic pulser |
US4557295A (en) | 1979-11-09 | 1985-12-10 | The United States Of America As Represented By The Secretary Of The Army | Fluidic mud pulse telemetry transmitter |
US4390062A (en) | 1981-01-07 | 1983-06-28 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator using low pressure fuel and air supply |
DE3615747A1 (de) | 1986-05-09 | 1987-11-12 | Bielefeldt Ernst August | Verfahren zum trennen und/oder abscheiden von festen und/oder fluessigen partikeln mit einem wirbelkammerabscheider mit tauchrohr und wirbelkammerabscheider zur durchfuehrung des verfahrens |
US4919204A (en) | 1989-01-19 | 1990-04-24 | Otis Engineering Corporation | Apparatus and methods for cleaning a well |
US5184678A (en) | 1990-02-14 | 1993-02-09 | Halliburton Logging Services, Inc. | Acoustic flow stimulation method and apparatus |
DK7291D0 (da) | 1990-09-11 | 1991-01-15 | Joergen Mosbaek Johannesen | Stroemningsregulator |
US5165450A (en) | 1991-12-23 | 1992-11-24 | Texaco Inc. | Means for separating a fluid stream into two separate streams |
US5228508A (en) | 1992-05-26 | 1993-07-20 | Facteau David M | Perforation cleaning tools |
US5484016A (en) | 1994-05-27 | 1996-01-16 | Halliburton Company | Slow rotating mole apparatus |
US5533571A (en) | 1994-05-27 | 1996-07-09 | Halliburton Company | Surface switchable down-jet/side-jet apparatus |
US5455804A (en) | 1994-06-07 | 1995-10-03 | Defense Research Technologies, Inc. | Vortex chamber mud pulser |
US5570744A (en) | 1994-11-28 | 1996-11-05 | Atlantic Richfield Company | Separator systems for well production fluids |
US5482117A (en) | 1994-12-13 | 1996-01-09 | Atlantic Richfield Company | Gas-liquid separator for well pumps |
US5505262A (en) | 1994-12-16 | 1996-04-09 | Cobb; Timothy A. | Fluid flow acceleration and pulsation generation apparatus |
US5693225A (en) | 1996-10-02 | 1997-12-02 | Camco International Inc. | Downhole fluid separation system |
US6851473B2 (en) | 1997-03-24 | 2005-02-08 | Pe-Tech Inc. | Enhancement of flow rates through porous media |
GB9706044D0 (en) | 1997-03-24 | 1997-05-14 | Davidson Brett C | Dynamic enhancement of fluid flow rate using pressure and strain pulsing |
US6078468A (en) * | 1997-05-01 | 2000-06-20 | Fiske; Orlo James | Data storage and/or retrieval methods and apparatuses and components thereof |
AU713643B2 (en) | 1997-05-06 | 1999-12-09 | Baker Hughes Incorporated | Flow control apparatus and methods |
US6015011A (en) | 1997-06-30 | 2000-01-18 | Hunter; Clifford Wayne | Downhole hydrocarbon separator and method |
GB9713960D0 (en) | 1997-07-03 | 1997-09-10 | Schlumberger Ltd | Separation of oil-well fluid mixtures |
US5893383A (en) | 1997-11-25 | 1999-04-13 | Perfclean International | Fluidic Oscillator |
FR2772436B1 (fr) | 1997-12-16 | 2000-01-21 | Centre Nat Etd Spatiales | Pompe a deplacement positif |
GB9816725D0 (en) | 1998-08-01 | 1998-09-30 | Kvaerner Process Systems As | Cyclone separator |
DE19847952C2 (de) | 1998-09-01 | 2000-10-05 | Inst Physikalische Hochtech Ev | Fluidstromschalter |
US6109372A (en) * | 1999-03-15 | 2000-08-29 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing hydraulic servo-loop |
US6367547B1 (en) | 1999-04-16 | 2002-04-09 | Halliburton Energy Services, Inc. | Downhole separator for use in a subterranean well and method |
US6336502B1 (en) | 1999-08-09 | 2002-01-08 | Halliburton Energy Services, Inc. | Slow rotating tool with gear reducer |
WO2002057805A2 (en) | 2000-06-29 | 2002-07-25 | Tubel Paulo S | Method and system for monitoring smart structures utilizing distributed optical sensors |
WO2002014647A1 (en) | 2000-08-17 | 2002-02-21 | Chevron U.S.A. Inc. | Method and apparatus for wellbore separation of hydrocarbons from contaminants with reusable membrane units containing retrievable membrane elements |
GB0022411D0 (en) | 2000-09-13 | 2000-11-01 | Weir Pumps Ltd | Downhole gas/water separtion and re-injection |
US6371210B1 (en) | 2000-10-10 | 2002-04-16 | Weatherford/Lamb, Inc. | Flow control apparatus for use in a wellbore |
US6619394B2 (en) | 2000-12-07 | 2003-09-16 | Halliburton Energy Services, Inc. | Method and apparatus for treating a wellbore with vibratory waves to remove particles therefrom |
US6622794B2 (en) | 2001-01-26 | 2003-09-23 | Baker Hughes Incorporated | Sand screen with active flow control and associated method of use |
US6644412B2 (en) | 2001-04-25 | 2003-11-11 | Weatherford/Lamb, Inc. | Flow control apparatus for use in a wellbore |
NO316108B1 (no) | 2002-01-22 | 2003-12-15 | Kvaerner Oilfield Prod As | Anordninger og fremgangsmåter for nedihulls separasjon |
US6793814B2 (en) | 2002-10-08 | 2004-09-21 | M-I L.L.C. | Clarifying tank |
GB0312331D0 (en) | 2003-05-30 | 2003-07-02 | Imi Vision Ltd | Improvements in fluid control |
US7413010B2 (en) | 2003-06-23 | 2008-08-19 | Halliburton Energy Services, Inc. | Remediation of subterranean formations using vibrational waves and consolidating agents |
US7025134B2 (en) | 2003-06-23 | 2006-04-11 | Halliburton Energy Services, Inc. | Surface pulse system for injection wells |
US7114560B2 (en) | 2003-06-23 | 2006-10-03 | Halliburton Energy Services, Inc. | Methods for enhancing treatment fluid placement in a subterranean formation |
US7213650B2 (en) | 2003-11-06 | 2007-05-08 | Halliburton Energy Services, Inc. | System and method for scale removal in oil and gas recovery operations |
US7404416B2 (en) | 2004-03-25 | 2008-07-29 | Halliburton Energy Services, Inc. | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
US7318471B2 (en) | 2004-06-28 | 2008-01-15 | Halliburton Energy Services, Inc. | System and method for monitoring and removing blockage in a downhole oil and gas recovery operation |
US7409999B2 (en) | 2004-07-30 | 2008-08-12 | Baker Hughes Incorporated | Downhole inflow control device with shut-off feature |
US7290606B2 (en) | 2004-07-30 | 2007-11-06 | Baker Hughes Incorporated | Inflow control device with passive shut-off feature |
US7322412B2 (en) | 2004-08-30 | 2008-01-29 | Halliburton Energy Services, Inc. | Casing shoes and methods of reverse-circulation cementing of casing |
US20070256828A1 (en) | 2004-09-29 | 2007-11-08 | Birchak James R | Method and apparatus for reducing a skin effect in a downhole environment |
US7296633B2 (en) | 2004-12-16 | 2007-11-20 | Weatherford/Lamb, Inc. | Flow control apparatus for use in a wellbore |
CA2530995C (en) | 2004-12-21 | 2008-07-15 | Schlumberger Canada Limited | System and method for gas shut off in a subterranean well |
US6976507B1 (en) | 2005-02-08 | 2005-12-20 | Halliburton Energy Services, Inc. | Apparatus for creating pulsating fluid flow |
US7213681B2 (en) | 2005-02-16 | 2007-05-08 | Halliburton Energy Services, Inc. | Acoustic stimulation tool with axial driver actuating moment arms on tines |
US7216738B2 (en) | 2005-02-16 | 2007-05-15 | Halliburton Energy Services, Inc. | Acoustic stimulation method with axial driver actuating moment arms on tines |
KR100629207B1 (ko) | 2005-03-11 | 2006-09-27 | 주식회사 동진쎄미켐 | 전계 구동 차광형 표시 장치 |
US7405998B2 (en) | 2005-06-01 | 2008-07-29 | Halliburton Energy Services, Inc. | Method and apparatus for generating fluid pressure pulses |
US7591343B2 (en) | 2005-08-26 | 2009-09-22 | Halliburton Energy Services, Inc. | Apparatuses for generating acoustic waves |
US7802621B2 (en) | 2006-04-24 | 2010-09-28 | Halliburton Energy Services, Inc. | Inflow control devices for sand control screens |
US7857050B2 (en) | 2006-05-26 | 2010-12-28 | Schlumberger Technology Corporation | Flow control using a tortuous path |
US7446661B2 (en) | 2006-06-28 | 2008-11-04 | International Business Machines Corporation | System and method for measuring RFID signal strength within shielded locations |
US20080041580A1 (en) | 2006-08-21 | 2008-02-21 | Rune Freyer | Autonomous inflow restrictors for use in a subterranean well |
US20080041582A1 (en) | 2006-08-21 | 2008-02-21 | Geirmund Saetre | Apparatus for controlling the inflow of production fluids from a subterranean well |
US20080041588A1 (en) | 2006-08-21 | 2008-02-21 | Richards William M | Inflow Control Device with Fluid Loss and Gas Production Controls |
US20080041581A1 (en) | 2006-08-21 | 2008-02-21 | William Mark Richards | Apparatus for controlling the inflow of production fluids from a subterranean well |
US20090120647A1 (en) | 2006-12-06 | 2009-05-14 | Bj Services Company | Flow restriction apparatus and methods |
US7909088B2 (en) | 2006-12-20 | 2011-03-22 | Baker Huges Incorporated | Material sensitive downhole flow control device |
EP1939794A3 (en) | 2006-12-29 | 2009-04-01 | Vanguard Identification Systems, Inc. | Printed planar RFID element wristbands and like personal identification devices |
JP5045997B2 (ja) | 2007-01-10 | 2012-10-10 | Nltテクノロジー株式会社 | 半透過型液晶表示装置 |
US7832473B2 (en) | 2007-01-15 | 2010-11-16 | Schlumberger Technology Corporation | Method for controlling the flow of fluid between a downhole formation and a base pipe |
US8291979B2 (en) | 2007-03-27 | 2012-10-23 | Schlumberger Technology Corporation | Controlling flows in a well |
US7828067B2 (en) | 2007-03-30 | 2010-11-09 | Weatherford/Lamb, Inc. | Inflow control device |
US8691164B2 (en) | 2007-04-20 | 2014-04-08 | Celula, Inc. | Cell sorting system and methods |
US20080283238A1 (en) | 2007-05-16 | 2008-11-20 | William Mark Richards | Apparatus for autonomously controlling the inflow of production fluids from a subterranean well |
JP5051753B2 (ja) | 2007-05-21 | 2012-10-17 | 株式会社フジキン | バルブ動作情報記録システム |
US7789145B2 (en) | 2007-06-20 | 2010-09-07 | Schlumberger Technology Corporation | Inflow control device |
US20090000787A1 (en) | 2007-06-27 | 2009-01-01 | Schlumberger Technology Corporation | Inflow control device |
JP2009015443A (ja) | 2007-07-02 | 2009-01-22 | Toshiba Tec Corp | 無線タグリーダライタ |
KR20090003675A (ko) | 2007-07-03 | 2009-01-12 | 엘지전자 주식회사 | 플라즈마 디스플레이 패널 |
US8235118B2 (en) | 2007-07-06 | 2012-08-07 | Halliburton Energy Services, Inc. | Generating heated fluid |
US7909094B2 (en) | 2007-07-06 | 2011-03-22 | Halliburton Energy Services, Inc. | Oscillating fluid flow in a wellbore |
US7578343B2 (en) | 2007-08-23 | 2009-08-25 | Baker Hughes Incorporated | Viscous oil inflow control device for equalizing screen flow |
US8584747B2 (en) | 2007-09-10 | 2013-11-19 | Schlumberger Technology Corporation | Enhancing well fluid recovery |
US7849925B2 (en) | 2007-09-17 | 2010-12-14 | Schlumberger Technology Corporation | System for completing water injector wells |
AU2008305337B2 (en) | 2007-09-25 | 2014-11-13 | Schlumberger Technology B.V. | Flow control systems and methods |
US7918272B2 (en) | 2007-10-19 | 2011-04-05 | Baker Hughes Incorporated | Permeable medium flow control devices for use in hydrocarbon production |
US20090101354A1 (en) | 2007-10-19 | 2009-04-23 | Baker Hughes Incorporated | Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids |
US8544548B2 (en) | 2007-10-19 | 2013-10-01 | Baker Hughes Incorporated | Water dissolvable materials for activating inflow control devices that control flow of subsurface fluids |
US7913765B2 (en) | 2007-10-19 | 2011-03-29 | Baker Hughes Incorporated | Water absorbing or dissolving materials used as an in-flow control device and method of use |
US20090101344A1 (en) * | 2007-10-22 | 2009-04-23 | Baker Hughes Incorporated | Water Dissolvable Released Material Used as Inflow Control Device |
US7918275B2 (en) | 2007-11-27 | 2011-04-05 | Baker Hughes Incorporated | Water sensitive adaptive inflow control using couette flow to actuate a valve |
US8474535B2 (en) | 2007-12-18 | 2013-07-02 | Halliburton Energy Services, Inc. | Well screen inflow control device with check valve flow controls |
US20090159282A1 (en) | 2007-12-20 | 2009-06-25 | Earl Webb | Methods for Introducing Pulsing to Cementing Operations |
US7757761B2 (en) | 2008-01-03 | 2010-07-20 | Baker Hughes Incorporated | Apparatus for reducing water production in gas wells |
NO20080081L (no) | 2008-01-04 | 2009-07-06 | Statoilhydro Asa | Fremgangsmate for autonom justering av en fluidstrom gjennom en ventil eller stromningsreguleringsanordning i injektorer ved oljeproduksjon |
NO20080082L (no) | 2008-01-04 | 2009-07-06 | Statoilhydro Asa | Forbedret fremgangsmate for stromningsregulering samt autonom ventil eller stromningsreguleringsanordning |
US20090250224A1 (en) | 2008-04-04 | 2009-10-08 | Halliburton Energy Services, Inc. | Phase Change Fluid Spring and Method for Use of Same |
US8931570B2 (en) | 2008-05-08 | 2015-01-13 | Baker Hughes Incorporated | Reactive in-flow control device for subterranean wellbores |
US7806184B2 (en) | 2008-05-09 | 2010-10-05 | Wavefront Energy And Environmental Services Inc. | Fluid operated well tool |
US7900696B1 (en) | 2008-08-15 | 2011-03-08 | Itt Manufacturing Enterprises, Inc. | Downhole tool with exposable and openable flow-back vents |
NO338988B1 (no) | 2008-11-06 | 2016-11-07 | Statoil Petroleum As | Fremgangsmåte og anordning for reversibel temperatursensitiv styring av fluidstrømning ved olje- og/eller gassproduksjon, omfattende en autonom ventil som fungerer etter Bemoulli-prinsippet |
NO330585B1 (no) | 2009-01-30 | 2011-05-23 | Statoil Asa | Fremgangsmate og stromningsstyreinnretning for forbedring av stromningsstabilitet for flerfasefluid som strommer gjennom et rorformet element, og anvendelse av slik stromningsinnretning |
US9109423B2 (en) | 2009-08-18 | 2015-08-18 | Halliburton Energy Services, Inc. | Apparatus for autonomous downhole fluid selection with pathway dependent resistance system |
US8276669B2 (en) | 2010-06-02 | 2012-10-02 | Halliburton Energy Services, Inc. | Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well |
US8893804B2 (en) | 2009-08-18 | 2014-11-25 | Halliburton Energy Services, Inc. | Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well |
US8235128B2 (en) | 2009-08-18 | 2012-08-07 | Halliburton Energy Services, Inc. | Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well |
US8403061B2 (en) | 2009-10-02 | 2013-03-26 | Baker Hughes Incorporated | Method of making a flow control device that reduces flow of the fluid when a selected property of the fluid is in selected range |
EP2333235A1 (en) | 2009-12-03 | 2011-06-15 | Welltec A/S | Inflow control in a production casing |
NO336424B1 (no) | 2010-02-02 | 2015-08-17 | Statoil Petroleum As | Strømningsstyringsanordning, strømningsstyringsfremgangsmåte og anvendelse derav |
US8752629B2 (en) | 2010-02-12 | 2014-06-17 | Schlumberger Technology Corporation | Autonomous inflow control device and methods for using same |
US9353608B2 (en) | 2010-03-18 | 2016-05-31 | Statoil Petroleum As | Flow control device and flow control method |
US8302696B2 (en) * | 2010-04-06 | 2012-11-06 | Baker Hughes Incorporated | Actuator and tubular actuator |
US8261839B2 (en) | 2010-06-02 | 2012-09-11 | Halliburton Energy Services, Inc. | Variable flow resistance system for use in a subterranean well |
US8356668B2 (en) | 2010-08-27 | 2013-01-22 | Halliburton Energy Services, Inc. | Variable flow restrictor for use in a subterranean well |
US8430130B2 (en) | 2010-09-10 | 2013-04-30 | Halliburton Energy Services, Inc. | Series configured variable flow restrictors for use in a subterranean well |
US8851180B2 (en) | 2010-09-14 | 2014-10-07 | Halliburton Energy Services, Inc. | Self-releasing plug for use in a subterranean well |
US8453736B2 (en) | 2010-11-19 | 2013-06-04 | Baker Hughes Incorporated | Method and apparatus for stimulating production in a wellbore |
US8646483B2 (en) | 2010-12-31 | 2014-02-11 | Halliburton Energy Services, Inc. | Cross-flow fluidic oscillators for use with a subterranean well |
US9133683B2 (en) | 2011-07-19 | 2015-09-15 | Schlumberger Technology Corporation | Chemically targeted control of downhole flow control devices |
US8573066B2 (en) | 2011-08-19 | 2013-11-05 | Halliburton Energy Services, Inc. | Fluidic oscillator flowmeter for use with a subterranean well |
US8863835B2 (en) | 2011-08-23 | 2014-10-21 | Halliburton Energy Services, Inc. | Variable frequency fluid oscillators for use with a subterranean well |
-
2011
- 2011-04-11 US US13/084,025 patent/US8678035B2/en active Active
-
2012
- 2012-03-27 BR BR112013026041-6A patent/BR112013026041B1/pt active IP Right Grant
- 2012-03-27 CA CA2831093A patent/CA2831093C/en active Active
- 2012-03-27 CN CN201280018030.4A patent/CN103477021B/zh active Active
- 2012-03-27 SG SG2013071642A patent/SG193607A1/en unknown
- 2012-03-27 AU AU2012243214A patent/AU2012243214B2/en active Active
- 2012-03-27 WO PCT/US2012/030641 patent/WO2012141880A2/en active Application Filing
- 2012-03-27 RU RU2013148468/03A patent/RU2558566C2/ru active
- 2012-03-27 EP EP12771460.8A patent/EP2697473B1/en active Active
- 2012-03-27 MY MYPI2013003413A patent/MY159811A/en unknown
- 2012-03-27 MX MX2013011876A patent/MX2013011876A/es active IP Right Grant
-
2013
- 2013-02-19 NO NO13155841A patent/NO2634362T3/no unknown
- 2013-09-20 CO CO13224187A patent/CO6811824A2/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418721A (en) * | 1981-06-12 | 1983-12-06 | The United States Of America As Represented By The Secretary Of The Army | Fluidic valve and pulsing device |
EA005253B1 (ru) * | 2001-05-08 | 2004-12-30 | Руне Фрейер | Способ и устройство для ограничения притока пластовой воды в скважину |
RU2358103C2 (ru) * | 2004-02-20 | 2009-06-10 | Норск Хюдро Аса | Исполнительный механизм и способ его применения |
EA200870248A1 (ru) * | 2006-02-10 | 2009-02-27 | Эксонмобил Апстрим Рисерч Компани | Выравнивание профиля приемистости посредством материалов, реагирующих на управляющее воздействие |
EA200900161A1 (ru) * | 2006-07-07 | 2009-06-30 | Статоилхюдро Аса | Способ для регулирования расхода и автономные клапан или устройство для регулирования расхода |
Also Published As
Publication number | Publication date |
---|---|
CA2831093C (en) | 2015-09-15 |
CA2831093A1 (en) | 2012-10-18 |
RU2013148468A (ru) | 2015-05-20 |
EP2697473A2 (en) | 2014-02-19 |
AU2012243214B2 (en) | 2015-05-14 |
MX2013011876A (es) | 2013-11-01 |
EP2697473A4 (en) | 2015-12-16 |
WO2012141880A3 (en) | 2012-12-27 |
MY159811A (en) | 2017-02-15 |
BR112013026041A2 (pt) | 2016-12-20 |
US8678035B2 (en) | 2014-03-25 |
NO2634362T3 (ru) | 2018-08-25 |
CN103477021A (zh) | 2013-12-25 |
CN103477021B (zh) | 2015-11-25 |
US20120255739A1 (en) | 2012-10-11 |
WO2012141880A2 (en) | 2012-10-18 |
SG193607A1 (en) | 2013-10-30 |
EP2697473B1 (en) | 2018-02-07 |
AU2012243214A1 (en) | 2013-10-24 |
CO6811824A2 (es) | 2013-12-16 |
BR112013026041B1 (pt) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2558566C2 (ru) | Регулируемый ограничитель потока для использования в подземной скважине | |
US7845407B2 (en) | Profile control apparatus and method for production and injection wells | |
US6978840B2 (en) | Well screen assembly and system with controllable variable flow area and method of using same for oil well fluid production | |
US7597150B2 (en) | Water sensitive adaptive inflow control using cavitations to actuate a valve | |
AU2013247466B2 (en) | Apparatus and method to remotely control fluid flow in tubular strings and wellbore annulus | |
US9506320B2 (en) | Variable flow resistance for use with a subterranean well | |
US20130269951A1 (en) | Apparatus and Method to Remotely Control Fluid Flow in Tubular Strings and Wellbore Annulus | |
US20090218097A1 (en) | Wellbore intervention tool | |
NO344416B1 (no) | Fluidreguleringsapparatur og fremgangsmåter for produksjons- og injeksjonsbrønner | |
CN106715830B (zh) | 井结构实时遥测系统 | |
US11365586B2 (en) | Steering system for use with a drill string | |
US10119338B2 (en) | Controlled blade flex for fixed cutter drill bits | |
US10508511B2 (en) | Rotary actuator for actuating mechanically operated inflow control devices | |
US20200263520A1 (en) | Well apparatus with remotely activated flow control device | |
US7057524B2 (en) | Pressure pulse generator for MWD | |
US20190136660A1 (en) | Distintegrable wet connector cover | |
CN112639250B (zh) | 无定子剪切阀脉冲发生器 | |
US9896909B2 (en) | Downhole adjustable steam injection mandrel | |
Jacob et al. | Case study of intelligent completion with new generation Electro-hydraulic downhole control system | |
Al-Qahtani et al. | SS-Reservoir Management Practices In The Offshore Oil Fields Of Saudi Arabia |