RU2556669C2 - Опреснение воды с применением экстракции селективным растворителем - Google Patents

Опреснение воды с применением экстракции селективным растворителем Download PDF

Info

Publication number
RU2556669C2
RU2556669C2 RU2012123619/05A RU2012123619A RU2556669C2 RU 2556669 C2 RU2556669 C2 RU 2556669C2 RU 2012123619/05 A RU2012123619/05 A RU 2012123619/05A RU 2012123619 A RU2012123619 A RU 2012123619A RU 2556669 C2 RU2556669 C2 RU 2556669C2
Authority
RU
Russia
Prior art keywords
water
selective solvent
phase
saline
saline solution
Prior art date
Application number
RU2012123619/05A
Other languages
English (en)
Other versions
RU2012123619A (ru
Inventor
Анураг БАДЖПАЙИ
Дэниел КРЭЙМЕР
Эндрю МУТО
Гэн ЧЭНЬ
Джон ЛАИНХЭРД
Боривоже МИКИЧ
Original Assignee
Массачусетс Инститьют Оф Текнолоджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Массачусетс Инститьют Оф Текнолоджи filed Critical Массачусетс Инститьют Оф Текнолоджи
Publication of RU2012123619A publication Critical patent/RU2012123619A/ru
Application granted granted Critical
Publication of RU2556669C2 publication Critical patent/RU2556669C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • C02F1/265Desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)

Landscapes

  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Water Treatments (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Colloid Chemistry (AREA)

Abstract

Изобретения относятся к производству опресненной воды и могут быть использованы для получения питьевой воды из морских и соленых вод. Выделение воды из солевого раствора проводят с использованием селективного растворителя, содержащего карбоновую кислоту, имеющую углеродную цепь длиной от 6 до 13 атомов углерода. Для осуществления способа готовят эмульсию солевого раствора в селективном растворителе, нагревают селективный растворитель до или после контакта с солевым раствором для получения первой фазы, включающей селективный растворитель и воду из солевого раствора, растворенную в селективном растворителе, и второй фазы, включающей высококонцентрированную оставшуюся часть солевого раствора. Затем отделяют первую фазу от второй фазы, извлекают первую фазу, включающую селективный растворитель и растворенную воду, из высококонцентрированной оставшейся части солевого раствора или извлекают высококонцентрированную оставшуюся часть солевого раствора из первой фазы. Охлаждают первую фазу после извлечения для осаждения воды из селективного растворителя и удаляют осажденную воду из селективного растворителя. Изобретения обеспечивают получение практически чистой пресной воды. 2 н. и 17 з.п. ф-лы, 15 ил., 2 пр.

Description

Предпосылки
Ожидается, что в этом столетии дефицит пресной воды превысит дефицит энергии, как глобальная проблема человечества; и эти две проблемы связаны неразрывно. Пресная вода является одной из наиболее основных потребностей человека и других организмов. Каждому человеку необходимо потреблять минимум два литра воды в день в дополнение к огромным потребностям в пресной воде фермерства, а также промышленных процессов. Между тем, техника для транспортировки пресной воды или для получения пресной воды опреснением стремится быть очень требовательной к все более скудным запасам доступной энергии.
Опасности, связанные с недостаточными запасами воды, особенно остры. Дефицит пресной воды может привести к голоду, болезням, смерти, вынужденной массовой миграции, межрегиональному конфликту/войне (от Дарфура до юго-запада Америки) и разрушению экосистем. Несмотря на критичность потребности в пресной воде и глубокие последствия дефицита в ней, запасы пресной воды особенно ограничены. 97,5% воды на Земле составляет соленая, и около 70% от оставшегося заключено во льдах (в основном в ледяных шапках и ледниках), оставляя лишь 0,75% всей воды на Земле, как доступную пресную воду.
Более того, эти 0,75% доступной пресной воды распределены неравномерно. Например, в густонаселенных развивающихся странах, таких как Индия и Китай, находится много регионов, которые зависят от скудных запасов воды. К тому же, запасы пресной воды часто сезонно непостоянны. Обычно, будучи ограниченной региональными водосборными площадями, вода является тяжелой, а ее транспортировка - дорогой и энергоемкой.
Между тем, потребность в пресной воде ужесточается по всему миру. Резервуары высыхают; водоносные горизонты падают, реки умирают, а ледники и ледяные шапки сокращаются. Рост населения увеличивает потребность, как это делают сдвиги в сельском хозяйстве и возросшая индустриализация. Изменение климата представляет угрозу еще во многих регионах. Следовательно, число людей, сталкивающихся с нехваткой воды, увеличивается.
Огромное количество энергии, как правило, требуется для производства пресной воды из морской воды (или в меньшей степени из слабоминерализованной воды), особенно в отдаленных районах. Обратный осмос (ОО) в настоящее время является ведущей технологией опреснения воды, но это энергоемкий и все еще относительно неэффективный способ из-за высокого давления, необходимого для продавливания воды через полупроницаемые мембраны и их склонности к загрязнению. На крупных предприятиях необходимая энергия/объем может быть 4 кВтч/м3 при 30% рекуперации по сравнению с теоретическим минимумом около 1 кВтч/м3, хотя меньшего масштаба системы ОО (например, на борту судов) имеют гораздо худшую эффективность по порядку величины. Другой популярный способ -многостадийная однократная равновесная перегонка (МОРП) - также энергетически и капиталоемкий процесс.
Вместо экстракции чистой воды существуют электрохимические способы, такие как электродиализ (ЭД) и емкостное опреснение (ЕО), достаточно экстрагировать соли для получения питьевой воды (<10 мМ). Настоящие крупномасштабные системы электрохимического опреснения менее эффективны, чем заводы ОО опреснения морской воды (например, 7 кВтч/м3 - это состояние дел в ЭД), но становятся более эффективными для слабоминерализованной воды (например, ЕО может достичь 0,6 кВтч/м3). В целом, существующие способы для удаления соли из воды, некоторые из которых существовали на протяжении веков, как правило, являются дорогими или сложными, или и теми, и другими.
Краткое описание
Способы и устройства для опреснения воды с применением экстракции селективным растворителем описаны в настоящем документе. Различные варианты осуществления устройства и способы могут включать некоторые или все элементы, признаки и этапы, описанные ниже.
Определенные растворители, такие как пищевые масла (например, соевое масло) и некоторые жирные кислоты обладают необычным свойством селективно растворять воду и не растворять водорастворимые соли, такие как хлорид натрия или примеси, и в то же время быть нерастворимыми или практически нерастворимыми в воде (например, вода растворяется в избытке фазы селективного растворителя, но селективный растворитель не растворяется в избытке водной фазы более, чем в ничтожных количествах). Это явление селективной растворимости применяют в новом способе температурно-контролируемого опреснения солевого раствора в настоящем документе.
В качестве примера этого способа солевой раствор (например, морскую воду) приводят в контакт с селективным растворителем. Селективный растворитель может содержать карбоновую кислоту (например, соединение, которое содержит карбоксильную группу R-COOH), такую как декановая кислота СН3(СН2)8СООН. Солевой раствор и растворитель нагревают до или после контакта для повышения селективного растворения воды в растворителе и, тем самым, получают раздельные фазы: первую фазу, которая содержит растворитель и воду из солевого раствора, и вторую фазу, которая содержит высококонцентрированную оставшуюся часть солевого раствора. Первую фазу отделяют от второй и экстрагируют. Альтернативно, вторая фаза может быть экстрагирована из первой. После экстрагирования первую фазу охлаждают для осаждения воды из растворителя и осажденную воду после этого удаляют из растворителя. Экстрагированная вода может представлять собой практически чистую воду (например, пригодную для промышленного или сельскохозяйственного применения или даже для удовлетворения требований стандартов чистоты питьевой воды, например 99,95% чистоты).
В способах этого раскрытия могут применять низкокачественное тепло, которое может исходить от наземных источников тепла, от океана, от солнца или как отработанное тепло от других процессов. Эти способы опреснения воды также могут быть простыми в использовании и могут предложить значительные энергетические и экономические сбережения по сравнению с современными способами опреснения.
Краткое описание графических материалов
Фиг.1 - схематическое изображение процесса опреснения экстракцией селективным растворителем в лабораторном масштабе.
Фиг.2 - изображение начальной стадии процесса, в которой соленую воду смешивают с селективным растворителем.
Фиг.3 - изображение, изображающее применение мешалки, чтобы размешать смесь соленой воды и растворителя для создания эмульсии.
Фиг.4 - изображение, изображающее погружение эмульсии в ванну с горячей водой для повышения температуры эмульсии.
Фиг.5 - изображение, изображающее разделение нагретой эмульсии на верхний слой растворителя с растворенной водой и нижний слой высококонцентрированной соленой воды.
Фиг.6 - изображение, изображающее декантацию верхнего слоя растворителя и растворенной воды в трубе.
Фиг.7 - изображение, изображающее охлаждение декантированного растворителя и растворенной воды для осаждения мелких капель воды из растворителя.
Фиг.8 - изображение, изображающее применение диэлектрофореза для выделения капелек воды из растворителя с отдельным сбором воды в нижней части трубы.
Фиг.9 - изображение, изображающее рекуперацию практически чистой воды из нижней части трубы.
Фиг.10 - изображение, изображающее применение мешалки для перемешивания смеси соленой воды и растворителя декановой кислоты для создания подогретой эмульсии.
Фиг.11 - изображение, изображающее разделение подогретой эмульсии на верхний слой декановой кислоты с растворенной водой и нижний слой высококонцентрированной соленой воды.
Фиг.12 - изображение, изображающее декантацию верхнего слоя растворителя и растворенной воды в трубе, подогреваемой в ванне с горячей водой.
Фиг.13 - изображение, изображающее применение диэлектрофореза в подогреваемой трубе для выделения капелек воды из растворителя с отдельным сбором воды в нижней части трубы.
Фиг.14 - диаграмма зависимости выхода пресной воды из растворителя декановой кислоты, как функция температуры.
Фиг.15 - диаграмма зависимости потребления энергии для процесса опреснения с применением декановой кислоты в качестве растворителя, как функция температуры.
В сопровождающих графических материалах ссылочные позиции указывают на одни и те же или аналогичные части в различных видах. Графические материалы не обязательно масштабировать, особое внимание уделяется иллюстрирующим конкретным принципам, обсуждаемым ниже.
Подробное описание
Предыдущие и другие признаки и преимущества различных аспектов изобретения (изобретений) будут видны из последующего, более конкретного описания различных концепций и конкретных вариантов осуществления в более широких рамках изобретения (изобретений). Различные аспекты объекта изобретения, представленные выше и более подробно рассмотренные ниже, могут быть реализованы любым из многочисленных способов, так как объект изобретения не ограничен каким-либо конкретным способом реализации. Примеры конкретных реализаций и применений предоставлены в первую очередь для наглядности.
Если иное не определено, термины (в том числе технические и научные термины), используемые в настоящем документе, имеют то же значение, в котором их обычно понимает специалист в данной области техники, к которой принадлежит изобретение. Далее станет понятно, что термины, как те, которые определены в широко используемых словарях, должны быть интерпретированы как имеющие значение, которое соответствует их значению в контексте релевантного уровня техники, и не должны интерпретироваться в идеализированном или чрезмерно формальном смысле, если это прямо не определено в настоящем документе. Например, если конкретная композиция указана, практическая и несовершенная действительность может быть приемлемой, например, потенциальное наличие, по меньшей мере, следов примесей (например, менее чем 0,1% по массе или объему) могут понимать как в рамках описания.
Несмотря на то, что термины первый, второй, третий и т.д. могут быть применены в настоящем документе, чтобы описать различные элементы, эти элементы не должны быть ограничены этими терминами. Эти термины применяют всего лишь для того, чтобы отличить один элемент от другого. Таким образом, первый элемент, описанный ниже, можно назвать вторым элементом, не отклоняясь от сути иллюстративных вариантов осуществления.
Термины пространственного отношения, такие как «выше», «верхний», «под», «ниже», «нижний» и им подобные, могут применять в настоящем документе для удобства описания, чтобы описать отношение одного элемента к другому элементу, как изображено на фигурах. Следует иметь в виду, что термины пространственного отношения предназначены для охвата различных направлений устройства при применении или приведения в действие в дополнение к направлению, изображенному на фигурах. Например, если устройство на фигурах перевернули, элементы, описываемые как «ниже» или «под» другими элементами или деталями, направлены «выше» других элементов или деталей. Таким образом, приводимый в качестве примера термин «выше» может подразумевать направление как сверху, так и снизу. Устройство может быть направлено иначе (например, повернуто на 90 градусов или в других направлениях) и идентификаторы пространственного отношения, которые применяют в настоящем документе, интерпретируют соответствующим образом.
Далее в этом описании, когда элемент упоминают как «на», «подключен к» или «связан с» другим элементом, он может быть непосредственно на, подключен к или связан с другим элементом или могут присутствовать промежуточные элементы, если не указано иное.
Терминология, которую применяют в настоящем документе, служит для описания конкретных вариантов осуществления и не предназначена для ограничения иллюстративных вариантов осуществления. Как применяют в настоящем документе, единственное число предназначено для того, чтобы включить также и множественное число, если из контекста ясно не следует обратное. Кроме того, термины «содержит», «включающий в себя», «содержащий» и «состоящий из» определяют наличие указанных элементов или этапов, но не исключают наличия или дополнения одного или более других элементов или этапов.
Загрузка сырья в масштабах лаборатории служит иллюстрацией способа опреснения в целом, и ее схематически изображает фиг.1 с различными стадиями, которые изображают более подробно фиг.2-9. Этот процесс могут также проводить в более крупных, промышленных масштабах с применением более крупных, автоматизированных устройств. Более того, процесс могут вести в непрерывном, поэтапном режиме, в котором солевой раствор непрерывно вводят, а практически чистую воду непрерывно выводят.
Способ на фиг.1 начинают на стадии А, где добавляют солевой раствор 12 и тепло Q к селективному растворителю 14 в контейнере 16. Селективный растворитель 14 и солевой раствор 12 смешивают 11 для получения эмульсии 22, как показано на стадии В. С подводом большего количества тепла Q вода из солевого раствора далее растворяется 13 в селективном растворителе на стадии С, а сконцентрированная оставшаяся часть 30 солевого раствора оседает 15 в нижней части контейнера 16 на стадии D.
Затем контейнер 16 удаляют от источника тепла, а раствор воды в селективном растворителе сливают 17 из контейнера во вспомогательный сосуд на стадии Е и дают остыть для осаждения 19 воды из раствора, как изображено на стадии F. Осажденная вода оседает 21 в нижней части сосуда на стадии G, затем ее рекуперируют 23 как практически чистую воду из нижней части сосуда на стадии Н. Как показано, селективный растворитель могут затем применить повторно 25, так как весь процесс повторяется с дополнительным солевым раствором.
При пересмотре этапов этого способа с самого начала на более конкретном примере, начиная с фиг.2 (стадия А на фиг.1),: солевой раствор 12 добавляют в контейнер (например, в лабораторный лабораторный стакан) 16, который заполняют селективным растворителем 14 при температуре около комнатной (например, 25-35°С). Солевой раствор 12 могут встретить в природе, например, в виде соленой воды, взятой из моря. Селективный растворитель 14 может быть, например, пищевым маслом, например соевым маслом, пальмовым маслом, рапсовым маслом, кокосовым маслом или льняным маслом, которое содержит жирные кислоты. Альтернативно, селективный растворитель может включать в себя, по существу, одну или несколько выбранных жирных кислот. Подходящие жирные кислоты могут включать в себя углеродные цепочки длиной, например, от 6 до 13 атомов углерода, такие как декановая кислота, которая имеет длину углеродной цепи из 10 атомов. Жирная кислота также может быть твердой при комнатной температуре (например, при температуре около 30°С и/или ниже). Декановую кислоту считают практически нерастворимой в воде (например, растворимость в воде составляет всего около 40-50 частей на один миллион); также декановая кислота относительно безвредна для человека, так как она естественным образом содержится в молоке. В способах отделения воды от солевого раствора гидрофильная гидроксогруппа жирной кислоты может образовывать связи с водой из солевого раствора.
Контейнер 16 с комбинированным солевым раствором 12 и селективным растворителем 14 смешивают для образования эмульсии. Как изображено на фиг.3 (стадия В на фиг.1), в масштабах лабораторной установки смешивание могут осуществить на магнитной мешалке 20 с магнитным якорем 18, который помещают в контейнер 16. Магнитная мешалка 20 магнитом перемещает магнитный якорь 18 в контейнере 16 для энергичного перемешивания растворителя 14 и солевого раствора 12 для получения эмульсии 22 двух жидкостей. Перемешивание проводят до той степени, когда эмульсия 22 становится мутной на вид (например, в этом варианте осуществления в течение около 30 секунд).
Эмульсию 22 в контейнере 16 подвергают воздействию источника тепла 24 (например, в виде ванны с горячей водой), как изображено на фиг.4 (стадия С на фиг.1), и предварительно подогревают до температуры, например, около 75°С или в других вариантах осуществления только до температуры несколько выше 40°С; при этом с повышением температуры повышается столбик ртути в изображенном ртутном термометре 26. Альтернативно, растворитель 14 и/или солевой раствор 12 нагревают перед контактом или перемешиванием. Тепло могут получить, например, от тепловых потерь другого процесса или от наземных источников тепла, от океана или от простого нагрева солнечными лучами. Эмульсию 22 оставляют на подогреве от источника тепла для поддержания температуры предварительного нагрева (например, в течение дня), чтобы растворить воду из солевого раствора в капли эмульсии 22 в селективном растворителе.
Раствор 28 растворителя с растворенной водой поднимается к верхней части контейнера 16 и становится прозрачным на вид, в то время как концентрированная оставшаяся часть 30 солевого раствора 30 выделяется в нижней части контейнера 16, как изображено на фиг.5 (стадия D на фиг.1).
Затем, контейнер 16 удаляют от источника тепла 24, а раствор 28, включающий в себя растворитель и растворенную воду, декантируют из контейнера 16 во вспомогательные сосуды 32 (например, в виде конической трубки), как изображено на фиг.6 (стадия Е на фиг.1), и оставляют для охлаждения (например, в атмосферном воздухе) до комнатной температуры, как изображено на фиг.7 (стадия F на фиг.1). Как только раствор 28 охладится, раствор 28 становится мутным с осаждением мелких капель воды, образуя эмульсию 34.
Факультативно, для ускорения отделения осажденной воды и отделения воды от растворителя эмульсия 34 осажденной воды и растворитель, находясь в трубе 32 в позиции 33, могут подвергнуться диэлектрофорезу, как показано на фиг.8 (этап G на фиг.1). Как видно, блок питания 40 соединяют с помощью монтажных проводов 38 с парой электродов 35 и 36, расположенных в нижней и верхней частях сосуда 32. Источник питания 40 производит разность потенциалов между электродами 35 и 36, где неравномерность формы электродов (например, плоская пластина на одном конце и иглы на другом конце) дает неоднородное электрическое поле, которое действует на капли воды, чтобы отделить их от растворителя. Следовательно, практически чистую воду 42, которая имеет большую плотность, чем растворитель, собирают в нижней части сосуда 32 и удаляют через отверстие в нижней части сосуда и собирают в водный резервуар 44 (в этом варианте осуществления, в форме лабораторного стакана), как показано на фиг.9 (стадия Н на фиг.1).
Практически чистая вода 42 может иметь в массовом соотношении содержание соли, например, менее 1,5%, менее 0,14% или менее 0,05%. Факультативно, дополнительное опреснение могут применять после того, как вышеописанные способы отделения воды выводят чистоту воды на более высокую степень. Например, вторую стадию опреснения могут проводить в виде обратного осмоса или однократной равновесной перегонки.
В больших системах рекуперацию тепла могут применять для улучшения эффективности системы. Например, тепло, выделяющееся при охлаждении для выделения чистой воды, могут применять для нагрева эмульсии соль-вода в масле.
Одно применение для этих устройств и способов используют в получении нефти или природного газа, где селективный растворитель может быть использован для отделения солей и других компонентов, которые не растворяются в селективном растворителе от, например, «промысловой воды» (то есть, воды, полученной наряду с нефтью и газом) или «воды от гидроразрыва» (то есть, воды от гидравлического разрыва пласта), которую получают, в частности, при добыче нефти из нефтеносных песков или при извлечении газа из сланцев. Вода от гидроразрыва может иметь концентрацию соли в три раза большую, чем типичная морская вода и может включать, например, бензол и тяжелые металлы. Как правило, промысловая вода или вода от гидроразрыва транспортируются в удаленное для переработки и/или сдерживания в наземных бассейнах.
Как обратный осмос, так и многостадийная однократная равновесная перегонка показывают низкую производительность в переработке промысловой воды или воды от гидроразрыва, где значительно выше соленость промысловой воды или воды от гидроразрыва увеличивает потребление энергии и приводит к увеличению загрязнения мембран. Вместо смешивания промысловой воды с селективным растворителем большая часть воды может быть экстрагирована в практически чистом виде при использовании сравнительно небольшой энергии и тепла и по разумной цене, оставляя намного более концентрированный и меньший объем отходов и позволяя повторное использование экстрагированной воды в процессе экстрагирования нефти, тем самым предлагая значительные экологические преимущества с точки зрения сдерживания отходов, снижения потребности в воде, меньшего загрязнения окружающей среды и повышения эффективности.
Иллюстративный пример 1
Материалы, способы и наблюдения
В первом эксперименте соевое масло применяют в качестве селективного растворителя. Соевое масло имеет предел насыщения водой 0,3% по объему при 25°С, и этот предел насыщения, как ожидается, почти удваивается при 60°С. Соевое масло является недорогим и легко доступным.
Водный раствор хлорида натрия готовят для имитации морской воды. Содержание соли в этом растворе измеряли с помощью солемера Horiba и получили 3,367%±0,115%.
Около 6 мл этого раствора соли добавили к около 300 мл соевого масла и энергично перемешивали в контейнере на мешалке для получения эмульсии солевого раствора в масле. Смесь перемешивали в течение около 30 секунд, пока содержимое контейнера не стало мутным на вид.
Контейнер с эмульсией затем поместили в ванну с горячей водой, предварительно нагретую до 75°С. Эмульсию оставили в ванне с горячей водой на 24 часов (этот инкубационный период может быть легко сокращен или увеличен для оптимизации скорости обработки или выхода), чтобы растворить воду из капель эмульсии в масле. Селективное растворение воды в масле, как ожидают, выдает оставшиеся капли с высокой концентрацией соли, и эти капли, как ожидают, отделяются под действием силы тяжести в нижней части контейнера.
После 24 часов инкубации контейнер с эмульсией вынули из ванны с горячей водой. Как ожидалось, значительное количество раствора соли выделилось в нижней части контейнера, а масло оказалось вверху прозрачным на вид. Это изменение от мутного к прозрачному указывает, что капельки эмульсии или растворены, или выделились в нижней части контейнера.
Масло выше выделившегося солевого раствора декантировали в шесть различных 50 мл конических трубок и оставили охлаждаться на воздухе при комнатной температуре. Как ожидалось, после нескольких часов охлаждения масло стало снова мутным, показывая осаждение мелких капель воды.
Чтобы ускорить процесс выделения этой осажденной воды и ее выделение из масла, эмульсии были подвергнуты диэлектрофорезу. В процессе диэлектрофореза неоднородное электрическое поле использовали для выделения частиц (в данном случае, капель воды) из вмещающей жидкости (в данном случае масла). В частности, смесь подвергали воздействию электрического поля около 2 кВ/см в течение 5 минут. Наблюдается значительное выделение воды из масла. Эту выделенную и, по всей видимости, опресненную воду удалили через отверстие в нижней части конической трубы. Рекуперировали около 1,5 мл воды.
Рекуперированную воду проверили с помощью солемера Horiba, и окончательное содержание соли оказалось 0,5833%±0,0681%.
Обсуждение
Как ожидалось, содержание соли в исходном растворе соли значительно уменьшилось после применения продемонстрированного процесса.
Хотя конечная концентрация соли была значительно меньше, чем исходная концентрация, это не соответствует стандартам питьевой воды 0,05%. Остаток соли в рекуперированной воде связан с возможностью того, что не вся нерастворенная вода, содержащая соли, была отделена перед декантацией и в конечном итоге смешалась с чистой водой. Содержание соли может быть уменьшено за счет подвергания смеси диэлектрофорезу перед охлаждением для повышения выделения микрокапель эмульгированной очень соленой воды и, следовательно, для дальнейшего снижения конечной концентрации соли в рекуперированной воде. Альтернативно, даже с таким содержанием соли этот процесс может быть использован в качестве первой стадии (предварительной обработки) опреснения в сочетании, например, с применением технологии выделения воды на основе мембран в последующей второй стадии. В этом контексте этот процесс первой стадии опреснения уменьшает затраты энергии и издержки, необходимые для получения воды высокой чистоты в процессе второй стадии.
Другая область для улучшения - небольшой объем чистой воды, который был рекуперирован; рекуперированная чистая вода составляла только около 0,5% от объема применяемого масла. Эта ограниченная рекуперация может сделать процесс энергетически неэффективным, а также неэффективным по объему. Для решения этой проблемы могут применять другие селективные растворители, такие как декановая кислота, способная растворять большие количества воды.
Несмотря на эти области, которые могут быть предметом улучшения, результаты этого эксперимента рассматривают как чрезвычайно перспективные и считают, что этот способ с предполагаемыми изменениями может давать чистую воду, сохраняя энергию и эффективность по объему.
Иллюстративный пример 2
В попытке открыть более эффективный способ был проведен второй эксперимент, в котором описанные выше эксперименты повторили с применением декановой кислоты в качестве растворителя. Декановая кислота растворяет около 3,4% воды (т.е. раствор содержит около 3,4% растворенной воды) при 33°С и около 5,1% воды при 62°С. Чистая декановая кислота является твердым веществом ниже 30°С.
Декановую кислоту изначально нагревают незначительно (примерно до 30°С), чтобы расплавить ее прежде, чем добавить солевой раствор, а мешалку 20 нагревают, чтобы нагреть смесь (как показано, с применением термометра 26, отражающим повышение температуры) при образования эмульсии 22, как изображено на фиг.10. После перемешивания эмульсию оставляют на нагревательной/мешалке 20 для выделения растворителя и раствора 28 растворенной воды из высококонцентрированной оставшейся части солевого раствора 30, как изображено на фиг.11.
Затем фазу, содержащую декановую кислоту и раствор 28 растворенной воды перенесли в конические трубки 32, помещенные в ванну 48 с водой, как показано на фиг.12, где содержимому позволили охлаждаться и выдерживали в течение нескольких часов перед окончательным выделением практически чистой воды. Далее, как показано на фиг.13, нагрев осуществляют посредством резистивного нагревательного элемента 46 в течение диэлектрофореза для сохранения декановой кислоты выше 30°С, чтобы предотвратить затвердевание. Наконец, практически чистая вода 42, которая имеет плотность больше, чем декановая кислота, собирается в нижней части сосуда 32 и ее удаляют через отверстие в нижней части сосуда 32, и собирают в водном резервуаре 44, как изображено на фиг.9. Этот второй эксперимент включает пробные этапы, на которых эмульсию нагревают до температур 40, 45, 50, 55, 60, 65, 70, 75 и 80°С. Начиная с исходного содержания соли 3,5% в соотношении масса к массе (масс/масс), опресненная вода содержала от 0,06% до 0,11% соли с выходом от 0,4% масс/масс, до 2% масс/масс, опресненной воды из эмульсии (где выход - это масса рекуперированной воды, деленная на единицу массы применяемого растворителя), в зависимости от верхней границы рабочей температуры. Таким образом, не только этот растворитель значительно более эффективен (чем соевое масло, используемое в первом эксперименте), но и удаление солей является также намного более эффективным с декановой кислотой. Соленость рекуперированной воды находится в диапазоне стандартов воды для сельского хозяйства и питьевой воды. На фиг.14 подытожены результаты, где построены выходы (кружочки) 49 и соленость рекуперированной воды (треугольники) 50 для различных экспериментов. Также приведены экспериментальные выходы (квадраты) 52, когда чистую воду растворяли в декановой кислоте. Пунктирные линии 54 отражают рассчитанный выход из данных по растворимости из С.Hoerr, et al., "The Effect of Water on Solidification Points of Fatty Acids," Journal of the American Oil Chemists' Society, Vol.19, 126-128 (1942). Наконец, показаны пределы солености ЕРА штрихпунктирной линией 56 в нижней части диаграммы с солености по ВОЗ, показанной в виде второй штрихпунктирной линии 58 непосредственно над ним.
Кроме того, еще одно преимущество применения декановой кислоты в качестве растворителя в том, что декановая кислота является твердым веществом ниже 30°С, и, следовательно, если растворитель остается в рекуперированной воде в качестве примеси, он может быть легко удален путем охлаждения смеси ниже 30°С и выделением воды из твердых примесей.
Потребление энергии рассчитано на способ промышленного опреснения воды с применением декановой кислоты в качестве селективного растворителя и подытожено на фиг.15, где потребление энергии от результатов эксперимента (кружочки) 60 при температуре предварительного подогрева 40, 45, 50, 55, 60, 65, 70, 75 и 80°С в сравнении с указанными в литературе значениями потребления энергии обратным осмосом (пустые треугольники) 62 и многостадийной однократной равновесной перегонкой (ромбики) 64. Эти диаграммы потребления энергии представляют максимальное количество эквивалента электрической работы, которую применяют для удаления соли из морской воды. Кроме того, изображено фактическое потребление тепловой энергии источника при обратном осмосе (заполненные треугольники) 66 при условии, что электричество происходит от электростанции при высоких температурах. Чтобы экстраполировать результаты экспериментов к значениям для непрерывного промышленного процесса, эффективность теплообменника предполагалась 80%. Энергия для преобразования работы для предлагаемого процесса выполнена при эффективности Карно, которая является теоретическим максимумом достижимым с помощью теплового двигателя. На самом деле, нет теплового двигателя, эффективного при низких рабочих температурах, которые здесь применяются, и фактические эквиваленты электрической работы будут намного ниже, чем рассчитанные. Пунктирная линия 68 также основана на потреблении энергии, рассчитанной по данным растворимости из С.Hoerr, et al., "The Effect of Water on Solidification Points of Fatty Acids," Journal of the American Oil Chemists' Society, Vol.19, 126-128 (1942).
В описываемых вариантах осуществления изобретения, специфическая терминология используется для ясности. Для целей описания особые термины предназначены, по меньшей мере, для того, чтобы охватить технические и функциональные эквиваленты, которые используют таким же образом для достижения подобного результата. Кроме того, в некоторых случаях, когда конкретный вариант осуществления изобретения содержит множество элементов системы или этапов способа, эти элементы или этапы могут быть заменены одним элементом или этапом; подобным образом один элемент или этап может быть заменен множеством элементов или этапов, которые служат той же цели. Кроме того, если параметры различных свойств указанны в настоящем документе для вариантов осуществления изобретения, эти параметры могут быть скорректированы вверх или вниз, как 1/100, 1/50, 1/20, 1/10, 1/5, 1/3, 1/2, 3/4 и т.д. (или вверх на коэффициент 2, 5, 10 и т.д.), или округлением их приближения, если не указано иное. Более того, так как это изобретение было показано и описано со ссылками на его конкретные варианты осуществления, специалистам в данной области станет понятно, что различные замены и изменения в форме и деталях могут быть выполнены, не отходя от объема изобретения. Кроме того, другие аспекты, функции и преимущества также находятся в рамках изобретения, и все варианты осуществления изобретения не обязательно должны достичь всех преимуществ и обладать всеми характеристиками, описанными выше. Кроме того, этапы, элементы и функции, рассмотренные в настоящем документе, в связи с одним из вариантов осуществления могут быть также применены в сочетании с другими вариантами осуществления. Содержание ссылок, включая ссылки на тексты, журнальные статьи, патенты, заявки на патенты и т.д., приводимые в тексте настоящего документа, включены в качестве ссылок во всей их полноте; и соответствующие компоненты, этапы и характеристики из этих ссылок факультативно могут быть или не быть включенными в варианты осуществления изобретения. Кроме того, компоненты и этапы, определенные в разделе «Предпосылки», являются неотъемлемой частью этого раскрытия информации и могут быть применены в сочетании или заменены компонентами и этапами, описанными в раскрытии в пределах объема изобретения. В формуле для способа, где стадии приведены в определенном порядке, с или без последовательного указания цифр, добавленных для удобства пользования, стадии не должны интерпретироваться как временно ограниченные порядком, в котором они приведены, если иное не указано или не вытекает из терминов и фраз.

Claims (19)

1. Способ выделения воды из солевого раствора с использованием селективного растворителя, причем способ включает:
обеспечение селективного растворителя и солевого раствора, включающего воду и по меньшей мере одну соль, где селективный растворитель содержит карбоновую кислоту, имеющую углеродную цепь длиной от 6 до 13 атомов углерода;
приготовление эмульсии солевого раствора в селективном растворителе;
нагревание селективного растворителя до или после контакта с солевым раствором для получения первой фазы, включающей селективный растворитель и воду из солевого раствора, растворенную в селективном растворителе, и второй фазы, включающей высококонцентрированную оставшуюся часть солевого раствора;
предоставление возможности отделения первой фазы от второй фазы;
извлечение первой фазы, включающей селективный растворитель и растворенную воду, из высококонцентрированной оставшейся части солевого раствора или извлечение высококонцентрированной оставшейся части солевого раствора из первой фазы;
охлаждение первой фазы после извлечения для осаждения воды из селективного растворителя; и
удаление осажденной воды из селективного растворителя.
2. Способ по п. 1, где селективный растворитель содержит соединение, растворяющее воду, но не растворяющее водорастворимые соли и примеси, и являющееся полностью или по существу полностью нерастворимым в воде.
3. Способ по п. 1, где карбоновая кислота содержит гидрофильную гидроксогруппу, которая связывается с водой из солевого раствора.
4. Способ по п. 1, где карбоновая кислота содержит декановую кислоту.
5. Способ по п. 1, где селективный растворитель является твердым при температурах 30°C и ниже.
6. Способ по п. 1, дополнительно включающий смешивание селективного растворителя и солевого раствора для получения эмульсии перед нагреванием селективного растворителя и солевого раствора.
7. Способ по п. 1, дополнительно включающий смешивание селективного растворителя и солевого раствора для получения эмульсии после нагревания селективного растворителя.
8. Способ по п. 1, дополнительно включающий применение диэлектрофореза для отделения осажденной воды от селективного растворителя.
9. Способ по п. 1, где селективный растворитель нагревают с использованием энергии от среднетемпературного источника тепла не выше 75°C.
10. Способ по п. 1, где селективный растворитель нагревают с использованием энергии от низкотемпературного источника тепла не выше 40°C.
11. Способ по п. 1, где селективный растворитель и солевой раствор нагревают с использованием энергии от другого процесса.
12. Способ по п. 1, где селективный растворитель и солевой раствор нагревают с использованием тепла Земли или солнечного тепла.
13. Способ по п. 1, где экстрагированная осажденная вода обладает содержанием соли в массовом соотношении менее 1,5%.
14. Способ по п. 1, где экстрагированная осажденная вода обладает содержанием соли в массовом соотношении менее 0,14%.
15. Способ по п. 1, где экстрагированная осажденная вода обладает содержанием соли в массовом соотношении менее 0,05%.
16. Способ по п. 1, где выделение воды из соляного раствора с использованием селективного растворителя является первой стадией в многостадийном процессе опреснения, причем способ дополнительно включает подвергание осажденной воды, после извлечения, второй стадии опреснения с тем, чтобы достичь более высокого уровня чистоты.
17. Способ по п. 16, где вторая стадия опреснения включает обратный осмос или однократную равновесную перегонку.
18. Способ по п. 1, дополнительно включающий повторное применение селективного растворителя для повтора способа выделения воды из солевого раствора.
19. Способ выделения воды из солевого раствора с использованием селективного растворителя, причем способ включает:
обеспечение селективного растворителя и солевого раствора, включающего воду и по меньшей мере одну соль;
приготовление эмульсии солевого раствора в селективном растворителе;
нагревание селективного растворителя до или после контакта с солевым раствором до температуры не более 80°C для получения первой фазы, включающей селективный растворитель и воду из солевого раствора, растворенную в селективном растворителе, и второй фазы, включающей высококонцентрированную оставшуюся часть солевого раствора;
предоставление возможности отделения первой фазы от второй фазы;
извлечение первой фазы, включающей селективный растворитель и растворенную воду, из высококонцентрированной оставшейся части солевого раствора или извлечение высококонцентрированной оставшейся части солевого раствора из первой фазы;
охлаждение первой фазы после извлечения для осаждения воды из селективного растворителя; и
удаление осажденной воды из селективного растворителя.
RU2012123619/05A 2009-11-25 2010-11-19 Опреснение воды с применением экстракции селективным растворителем RU2556669C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26427009P 2009-11-25 2009-11-25
US61/264,270 2009-11-25
PCT/US2010/057448 WO2011066193A1 (en) 2009-11-25 2010-11-19 Water desalination using directional solvent extraction

Publications (2)

Publication Number Publication Date
RU2012123619A RU2012123619A (ru) 2013-12-27
RU2556669C2 true RU2556669C2 (ru) 2015-07-10

Family

ID=43618036

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012123619/05A RU2556669C2 (ru) 2009-11-25 2010-11-19 Опреснение воды с применением экстракции селективным растворителем

Country Status (15)

Country Link
US (2) US8119007B2 (ru)
EP (1) EP2504283B1 (ru)
JP (1) JP5823407B2 (ru)
CN (1) CN102712502B (ru)
AU (1) AU2010324910B2 (ru)
BR (1) BR112012012220B1 (ru)
CA (1) CA2781419A1 (ru)
CL (1) CL2012001351A1 (ru)
ES (1) ES2564319T3 (ru)
IL (1) IL219799A (ru)
MX (1) MX2012005949A (ru)
PE (1) PE20130171A1 (ru)
RU (1) RU2556669C2 (ru)
WO (1) WO2011066193A1 (ru)
ZA (1) ZA201204346B (ru)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9521858B2 (en) 2005-10-21 2016-12-20 Allen Szydlowski Method and system for recovering and preparing glacial water
US9010261B2 (en) 2010-02-11 2015-04-21 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US8007845B2 (en) 2005-10-21 2011-08-30 Waters of Patagonia Method and system for recovering and preparing glacial water
US8403718B2 (en) 2010-02-11 2013-03-26 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US9017123B2 (en) 2009-10-15 2015-04-28 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
US9371114B2 (en) 2009-10-15 2016-06-21 Allen Szydlowski Method and system for a towed vessel suitable for transporting liquids
WO2011047275A1 (en) 2009-10-15 2011-04-21 World's Fresh Waters Pte. Ltd Method and system for processing glacial water
WO2011066193A1 (en) 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Water desalination using directional solvent extraction
US11584483B2 (en) 2010-02-11 2023-02-21 Allen Szydlowski System for a very large bag (VLB) for transporting liquids powered by solar arrays
CN102190380B (zh) 2010-03-16 2015-03-25 通用电气公司 溶液的处理系统和方法
US9448221B2 (en) * 2011-05-18 2016-09-20 Saudi Arabian Oil Company Method, solvent formulation and apparatus for the measurement of the salt content in petroleum fluids
US9428404B2 (en) 2011-10-04 2016-08-30 Massachusetts Institute Of Technology Water extraction using a directional solvent
RU2014151820A (ru) * 2012-05-21 2016-07-10 Солекс Уотер Лтд. Способы и системы для регенерации воды
CN105073217A (zh) * 2013-01-28 2015-11-18 索利克斯水有限公司 用于水回收的方法和系统
US9545583B2 (en) 2013-03-14 2017-01-17 Seton Hall University Polyol-induced extraction of water from organic liquids
US9617179B2 (en) 2013-03-14 2017-04-11 Massachusetts Institute Of Technology Ion sequestration for scale prevention in high-recovery desalination systems
US9120033B2 (en) 2013-06-12 2015-09-01 Massachusetts Institute Of Technology Multi-stage bubble column humidifier
US9969638B2 (en) 2013-08-05 2018-05-15 Gradiant Corporation Water treatment systems and associated methods
WO2015042584A1 (en) 2013-09-23 2015-03-26 Gradiant Corporation Desalination systems and associated methods
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
US10179296B2 (en) 2015-05-21 2019-01-15 Gradiant Corporation Transiently-operated desalination systems and associated methods
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US10981082B2 (en) 2015-05-21 2021-04-20 Gradiant Corporation Humidification-dehumidification desalination systems and methods
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
CA2993007C (en) 2015-07-29 2023-04-04 Gradiant Corporation Osmotic desalination methods and associated systems
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
CA3010098A1 (en) 2016-01-22 2017-07-27 Gradiant Corporation Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers
US10689264B2 (en) 2016-02-22 2020-06-23 Gradiant Corporation Hybrid desalination systems and associated methods
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US10938329B2 (en) 2018-03-22 2021-03-02 University Of Notre Dame Du Lac Electricity generation from low grade waste heat
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
KR102064089B1 (ko) * 2018-10-11 2020-01-08 고려대학교 산학협력단 담수화 장치 및 그 방법
WO2020232438A1 (en) * 2019-05-16 2020-11-19 The Trustees Of Columbia University In The City Of New York Temperature swing solvent extraction for descaling of feedstreams
KR102505907B1 (ko) * 2019-10-23 2023-03-03 고려대학교 산학협력단 용매 추출법을 통한 담수화 장치 및 그를 이용한 담수화 방법
WO2021080370A2 (ko) * 2019-10-23 2021-04-29 고려대학교 산학협력단 용매 추출법을 통한 담수화 장치 및 그를 이용한 담수화 방법
CN111186950B (zh) * 2020-01-13 2020-12-08 西安交通大学 一种高产水率海水淡化系统及运行方法
CN111908547A (zh) * 2020-09-03 2020-11-10 国电科学技术研究院有限公司 一种基于癸酸萃取的脱硫废水浓缩方法和系统
EP4247522A4 (en) 2020-11-17 2024-10-09 Gradiant Corp OSMOTIC PROCESSES AND SYSTEMS WITH ENERGY RECOVERY
US12006233B2 (en) * 2021-01-04 2024-06-11 Saudi Arabian Oil Company Methods for water extraction
US11840462B2 (en) * 2021-01-04 2023-12-12 Massachusetts Institute Of Technology Switchable system for high-salinity brine desalination and fractional precipitation
CN113562915A (zh) * 2021-07-26 2021-10-29 西安交通大学 一种利用太阳能的低污染水电联产系统及其运行方法
CN114894935B (zh) * 2022-05-23 2023-11-21 湖南省长康实业有限责任公司 一种芝麻油防掺假快速检测方法及装置
CN117553456B (zh) * 2024-01-12 2024-04-09 瑞纳智能设备股份有限公司 应用热泵的废水处理和余热回收系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177139A (en) * 1963-12-02 1965-04-06 Exxon Research Engineering Co Desalination by solvent extraction
US3350300A (en) * 1963-12-16 1967-10-31 Texaco Inc Recovery of salt-free water from brine
US3983032A (en) * 1975-01-30 1976-09-28 Texaco Inc. Brine desalination process with phase-breaking by cold hydrocarbon injection
RU2089511C1 (ru) * 1995-02-22 1997-09-10 Институт геохимии и аналитической химии им.В.И.Вернадского РАН Способ комплексной переработки морской воды
RU2174857C2 (ru) * 1999-06-18 2001-10-20 Научно-исследовательский институт высоких напряжений при Томском политехническом университете Способ обезвоживания углеводородных жидкостей
RU2225369C1 (ru) * 2003-03-13 2004-03-10 Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В.Келдыша" Способ очистки природных вод

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088909A (en) 1961-02-09 1963-05-07 Richard R Davison Mixed solvents for saline water extraction
US3314882A (en) * 1964-12-28 1967-04-18 Seattle University Process and apparatus for the desalination of salt water
US3408290A (en) 1966-08-04 1968-10-29 Edward G. Scheibel Recovery of water from saline solution by solvent extraction
US3823000A (en) 1969-12-04 1974-07-09 Mobil Oil Corp Recovery of potable water from sea and brackish water by selective solvent extraction
US3966583A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Coal treatment process and apparatus
US4261818A (en) 1974-10-24 1981-04-14 Sweeney Maxwell P Method for making separations from aqueous solutions
US4141825A (en) * 1977-10-31 1979-02-27 Stone & Webster Engineering Corporation Desalination process system and by-product recovery
US4507208A (en) * 1983-06-30 1985-03-26 Drilling Waste, Incorporated Process for handling waste from oil well operations
US5679254A (en) * 1995-11-20 1997-10-21 Chakrabarti; Debtosh Desalination of seawater by nonionic surfactant aided phase separation
US20040195160A1 (en) * 1999-07-12 2004-10-07 Marine Desalination Systems, L.L.C. Hydrate-based reduction of fluid inventories and concentration of aqueous and other water-containing products
WO2006029452A1 (en) * 2004-09-14 2006-03-23 Ip Organisers Pty Ltd Acylated saccharides and uses thereof
WO2011066193A1 (en) 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Water desalination using directional solvent extraction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177139A (en) * 1963-12-02 1965-04-06 Exxon Research Engineering Co Desalination by solvent extraction
US3350300A (en) * 1963-12-16 1967-10-31 Texaco Inc Recovery of salt-free water from brine
US3983032A (en) * 1975-01-30 1976-09-28 Texaco Inc. Brine desalination process with phase-breaking by cold hydrocarbon injection
RU2089511C1 (ru) * 1995-02-22 1997-09-10 Институт геохимии и аналитической химии им.В.И.Вернадского РАН Способ комплексной переработки морской воды
RU2174857C2 (ru) * 1999-06-18 2001-10-20 Научно-исследовательский институт высоких напряжений при Томском политехническом университете Способ обезвоживания углеводородных жидкостей
RU2225369C1 (ru) * 2003-03-13 2004-03-10 Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В.Келдыша" Способ очистки природных вод

Also Published As

Publication number Publication date
ZA201204346B (en) 2013-08-28
US8119007B2 (en) 2012-02-21
PE20130171A1 (es) 2013-03-03
RU2012123619A (ru) 2013-12-27
AU2010324910A1 (en) 2012-06-21
AU2010324910B2 (en) 2016-05-12
IL219799A (en) 2016-03-31
WO2011066193A1 (en) 2011-06-03
BR112012012220A2 (pt) 2017-12-26
US20110108481A1 (en) 2011-05-12
BR112012012220B1 (pt) 2020-03-03
EP2504283A1 (en) 2012-10-03
IL219799A0 (en) 2012-07-31
JP5823407B2 (ja) 2015-11-25
CA2781419A1 (en) 2011-06-03
US8501007B2 (en) 2013-08-06
US20120138532A1 (en) 2012-06-07
CL2012001351A1 (es) 2012-10-12
MX2012005949A (es) 2012-09-21
JP2013512092A (ja) 2013-04-11
CN102712502B (zh) 2014-01-08
EP2504283B1 (en) 2016-01-27
CN102712502A (zh) 2012-10-03
ES2564319T3 (es) 2016-03-21

Similar Documents

Publication Publication Date Title
RU2556669C2 (ru) Опреснение воды с применением экстракции селективным растворителем
US9428404B2 (en) Water extraction using a directional solvent
Bajpayee et al. Very low temperature membrane-free desalination by directional solvent extraction
AU2009259824B2 (en) Forward osmosis separation processes
US8197693B2 (en) Apparatus and process for producing electricity using pressure retarded osmosis during desalination of sea water
WO2012102677A1 (en) Method and apparatus for recovering water from a source water
JP2009000656A (ja) 油濁水再利用システム
CN104619950A (zh) 使用加晶种蒸发器的产出水的处理
CN102276113A (zh) 一种正渗透膜生物反应器/反渗透组合式淡水增量方法
CN108298752B (zh) 一种高含盐有机废水处理系统及处理废水的方法
US20220017385A1 (en) Temperature swing solvent extraction for descaling of feedstreams
Zhang et al. Wastewater treatment by renewable energy driven membrane processes
Sayegh et al. Treatment of hydrothermal liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia recovery
US20230242418A1 (en) Temperature swing solvent extraction for descaling of feedstreams
CA2706978C (en) Method for treatment of water comprising non-polar compounds
CN109231399A (zh) 一种提取硫酸盐的工艺方法
CN110981047B (zh) 一种船舶含油污水的处理工艺
CN107954561A (zh) 超临界协同反渗透系统及其实现海水淡化零排放的方法
Lee et al. Forward osmosis-based hybrid processes for water and wastewater treatment
CN108128969A (zh) 一种用于煤化工废水零排放的五膜法组合处理集成方法
CN212833134U (zh) 一种废乳化液多级油水分离预处理装置
WO2022034353A1 (en) Solvent extraction water treatment process for wide range of salinity with no liquid waste discharge
Chekli et al. prospects, Journal of Membrane Science