RU2225369C1 - Способ очистки природных вод - Google Patents

Способ очистки природных вод Download PDF

Info

Publication number
RU2225369C1
RU2225369C1 RU2003106796/15A RU2003106796A RU2225369C1 RU 2225369 C1 RU2225369 C1 RU 2225369C1 RU 2003106796/15 A RU2003106796/15 A RU 2003106796/15A RU 2003106796 A RU2003106796 A RU 2003106796A RU 2225369 C1 RU2225369 C1 RU 2225369C1
Authority
RU
Russia
Prior art keywords
water
permeate
desalination
treatment
reverse osmosis
Prior art date
Application number
RU2003106796/15A
Other languages
English (en)
Inventor
тов А.В. Дес
А.В. Десятов
А.Е. Баранов
Original Assignee
Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В.Келдыша"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В.Келдыша" filed Critical Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В.Келдыша"
Priority to RU2003106796/15A priority Critical patent/RU2225369C1/ru
Application granted granted Critical
Publication of RU2225369C1 publication Critical patent/RU2225369C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

Изобретение относится к технологии водоподготовки и может быть использовано для очистки природных вод, в том числе морских вод до питьевых стандартов. Способ очистки природных вод включает две стадии механической обработки, опреснение обратным осмосом и бактерицидную обработку, причем бактерицидную обработку проводят хлорированием перед механической обработкой воды, затем после двух стадий механической обработки проводят дехлорирование сульфитом натрия, далее воду очищают микрофильтрацией и добавляют ингибитор, опреснение обратным осмосом проводят в две стадии, после первой стадии концентрат сбрасывают, а в пермеат добавляют ингибитор и едкий натр, повышая рН до 10,4, затем проводят вторую стадию опреснения обратным осмосом, причем концентрат после второй стадии обратного осмоса подмешивают в поток на вход первой стадии опреснения, а в пермеат добавляют кислоту и пропускают его через фильтры-кондиционеры с кальциево-магниевой загрузкой. Кроме этого часть пермеата после первой стадии опреснения обратным осмосом может быть направлена на вход фильтров-кондиционеров, часть пермеата после второй стадии опреснения обратным осмосом может быть подмешана к выходному потоку из фильтров-кондиционеров. Способ обеспечивает снижение капитальных затрат и затрат на обслуживание опреснительных станций, повышение качества очищенной воды - пермеата до уровня соответствующего рекомендациям ВОЗ, в том числе по бору и солям жесткости. 2 з.п.ф-лы, 2 ил.

Description

Изобретение относится к технологии водоподготовки и может быть использовано для очистки природных вод, в том числе морских вод до питьевых стандартов.
Известный способ опреснения морских вод включает в себя водоподготовку, опреснение с помощью морских мембран, кондиционирование - насыщение воды солями жесткости до требуемых стандартов ("Maltese experience in the application of desalination technology" A. Riolo, Desalination 136 (2001) 115-124).
Недостатком этого способа является неполная очистка воды от соединений бора, что влияет на качество воды. Кроме того такой способ требует высоких удельных энергетических затрат, связанных с повышенным давлением на морских мембранных элементах, а также дополнительных капитальных вложений на специальное оборудование для рекуперации давления концентрата.
Наиболее близким по технической сущности является способ очистки природных вод (патент РФ 2033976, кл. C 02 F 9/00, опубл. 30.04.95 г. Бюл. 12), согласно которому вода из природного источника последовательно очищается в блоках первой и второй механической очистки, затем подвергается бактерицидной обработке с помощью УФ-облучения. После бактерицидной обработки воду опресняют обратным осмосом. Пермеат после обратного осмоса подвергают сорбционной очистке с помощью угольно-волокнистого сорбента.
Этот способ обеспечивает высокую степень очистки от естественных и бактериальных загрязнений, в том числе ядохимикатов и нефтепродуктов, но он не обеспечивает очистку воды от соединений бора до требований предельно допустимых концентраций (ПДК). Использование бактерицидной обработки после механической очистки не защищает от бактериального загрязнения оборудование и загрузки предыдущих стадий очистки. Фотохимический метод требует дополнительных агрегатов и устройств для проведения периодической санации оборудования механической обработки воды. Пермеат после опреснения посредством обратного осмоса обеднен солями жесткости и не соответствует рекомендациям Всемирной организации здравоохранения (ВОЗ) по этому параметру. Сорбционная очистка не способствует обогащению воды солями кальция и магния. Воду после очистки по предлагаемому этим патентом способу необходимо подвергать стадии кондиционирования (обогащения солями кальция и магния).
Целью изобретения является снижение капитальных затрат и затрат на обслуживание опреснительных станций, повышение качества очищенной воды - пермеата до уровня соответствующего рекомендациям ВОЗ, в том числе по бору и солям жесткости.
Поставленная цель достигается тем, что в способе очистки природных вод, включающем две стадии механической обработки, опреснение обратным осмосом и бактерицидную обработку, бактерицидную обработку проводят хлорированием перед механической обработкой воды, затем после двух стадий механической обработки проводят дехлорирование сульфитом натрия, далее воду очищают микрофильтрацией и добавляют ингибитор, а опреснение обратным осмосом проводят в две стадии, после первой стадии концентрат сбрасывают, а в пермеат добавляют ингибитор и едкий натр, повышая рН до 10,4, затем проводят вторую стадию опреснения обратным осмосом, причем концентрат после второй стадии обратного осмоса подмешивают в поток на вход первой стадии опреснения, а в пермеат добавляют кислоту и пропускают его через фильтры-кондиционеры с кальциево-магниевой загрузкой.
Кроме этого часть пермеата после первой стадии опреснения обратным осмосом может быть направлена на вход фильтров-кондиционеров, а часть пермеата после второй стадии опреснения обратным осмосом может быть подмешана к выходному потоку из фильтров-кондиционеров.
Применение опреснения обратным осмосом в две стадии позволяет использовать низконапорные мембранные элементы вместо морских мембранных элементов. При этом достигается высокая селективность по бору с помощью промежуточного подщелачивания, сокращаются капитальные затраты из-за понижения давления при опреснении и повышения степени концентрирования.
В предлагаемом способе очистки природных вод использовано свойство бора - с изменением водородного показателя входить в состав больших по размеру соединений, поэтому с увеличением рН воды селективность обратноосмотических мембран по бору растет. Эта зависимость имеет нелинейный характер. Наблюдаются три ярко выраженных участка, соответствующих определенным диапазонам значений рН - до 8,8; 8,8-10,4; более 10,4. Для этих интервалов характерно равновесие соответствующих соединений бора: на первом участке - неполная диссоциация борной кислоты Н3ВО3; на втором - равновесие образовавшегося тетрабората натрия и борной кислоты, на третьем - равновесие полностью образовавшегося тетрабората натрия и гидрооксида натрия.
Это соответствует прохождению следующей химической реакции:
3ВО3+2NaOH=Na2B4O7+7Н2O,
где Н3ВО3 - борная кислота; NaOH - гидрооксид натрия; Na2B4O7 - тетраборат; H2О - вода.
Борная кислота имеет ионную структуру, очень близкую к структуре молекул воды, и поэтому хорошо проходит через мембрану. Диссоциированный тетраборат-ион существенно отличается от воды по размеру и поэтому лучше задерживается мембраной. Таким образом, селективность выделения бора на обратноосмотической мембране зависит в основном от соотношения форм нахождения бора в растворе. Производная селективности по рН на первом и втором участках совпадают и составляют 2% роста селективности на единицу увеличения рН. На втором участке производная селективности по рН примерно на порядок больше и составляет 22% роста селективности на единицу роста рН. Применение низконапорных мембранных элементов позволяет вести процесс опреснения при низких давлениях. Повышение рН до 10,4 позволяет повысить селективность по соединениям бора до 95% и более, что позволяет достигать высокой степени концентрирования воды и, следовательно, понижает удельные затраты энергии на единицу очищенной воды. Эффект от повышения рН настолько весом, что для оптимизации процессов можно обрабатывать на второй стадии обратного осмоса не весть поток, а только его часть (80-85%). Другая часть (20-15%) потока, минуя вторую ступень обратного осмоса, поступает непосредственно на кондиционирование. Таким образом можно значительно экономить реагенты (щелочь, кислота и ингибитор).
На процесс растворения солей жесткости в воде влияет величина водородного показателя воды и продолжительность контакта воды с загрузкой. Пропускание всего потока через блок кондиционирования требует максимальной дозы кислоты и максимального количества фильтров - кондиционеров. Количество растворенных солей жесткости растет по экспоненте при понижении водородного показателя. Если обрабатывать часть потока при высоких дозах кислоты, можно добиться в воде заданного значения количества растворенных солей жесткости. При этом экономится кислота и уменьшается количество фильтров-кондиционеров, необходимых для обработки потока.
Использование двух стадий механической очистки позволяет увеличить продолжительность работы фильтров до регенерации и снизать количество фильтровального оборудования. На первой стадии механической очистки воды используют плавающую загрузку.
Плавающая загрузка обладает повышенной грязеемкостью, но ограниченной селективностью. Кварцевый песок, напротив, обладает очень высокой селективностью, но невысокой грязеемкостью. Использование только плавающей загрузки требует невысоких скоростей фильтрования (3-5 м/ч), при этом продолжительность до регенерации весьма высока (до недели). Поэтому плавающую загрузку используют на высокомутных водах. Кварцевый песок обладает повышенной селективностью и может эффективно очищать воду при скоростях до 20-25 м/ч, но продолжительность работы фильтра до регенерации ограничивается несколькими часами работы. Обычно песок используют для очистки маломутных вод. Использование плавающей загрузки и кварцевого песка позволяет оптимизировать регламент обслуживания и количество фильтровального оборудования.
Использования хлора для бактерицидной обработки воды давно известно. Хлорирование самый надежный и поэтому наиболее часто используемый метод обеззараживания. Применение хлорирования перед механической очисткой воды позволяет предотвратить бактериальное заражение загрузок. Повышая дозу хлора, можно производить санацию оборудования, например, после длительного простоя системы очистки. Дехлорирование сульфитом натрия позволяет избежать появления в воде вредных для организма человека радикалов.
На фиг.1 представлена функциональная схема предложенного способа очистки природных вод, где 1 и 2 - узлы первой и второй стадий механической обработки природных вод, 3 - узел микрофильтрации, 4 и 5 - узлы двух стадий опреснения воды обратным осмосом, 6 - фильтры-кондиционеры, Вх.1 - Вх.5 - входы необходимых химических реагентов.
На фиг. 2 представлена схема способа очистки природных вод с дополнительными каналами 7 и 8 отвода пермеата после первой и второй стадий опреснения обратным осмосом соответственно.
Исходную морскую воду (фиг.1), предварительно обработанную хлором (Вх. 1), подают на первую стадию механической обработки 1, где очищают ее от крупных частиц и взвеси на плавающей загрузке. На второй стадии механической обработки 2 из воды удаляется мелкая взвесь на слое кварцевого песка. После второй стадии механической обработки 2 в воду добавляют сульфит натрия (Вх. 2) для нейтрализации остаточного хлора. Затем воду подвергают микрофильтрации 3. На стадии микрофильтрации из воды удаляют коллоидные частицы. После микрофильтрации качество воды отвечает требованиям предприятий-изготовителей обратноосмотических мембранных элементов. Для предотвращения выпадения солей жесткости в воду добавляют ингибитор (Вх.3). Воду подвергают первой стадии опреснения обратным осмосом 4. Концентрат после первой стадии опреснения сбрасывают. В пермеат добавляют щелочь и ингибитор (Вх.4) и подвергают второй стадии опреснения обратным осмосом 5. Концентрат после второй стадии опреснения возвращают на повторную очистку. Пермеат после второй стадии опреснения по концентрации соединений бора соответствует требованиям ВОЗ. Пермеат насыщают солями жесткости до требований ВОЗ, пропуская его через фильтры-кондиционеры 5. Для достижения заданных значений концентрации солей жесткости в пермеат перед фильтрами-кондиционерами добавляют кислоту (Вх.5).
В зависимости от качества воды природного источника некоторые стадии очистки могут быть опущены.
В случае невысоких концентраций бора (2-4 мг/л) (см. фиг.2) возможна опреснение не всего потока после первой стадии опреснения обратным осмосом, а только его части (80-85%), для этого используют канал 7 отвода пермеата. После второй стадии опреснения обратным осмосом возможно кондиционирование только части потока пермеата (15-30%), и насыщение солями жесткости воды происходит после смешения потоков, при этом используют канал 8 отвода пермеата.

Claims (3)

1. Способ очистки природных вод, включающий две стадии механической обработки, опреснение обратным осмосом, бактерицидную обработку, отличающийся тем, что бактерицидную обработку проводят хлорированием перед механической обработкой воды, затем после двух стадий механической обработки проводят дехлорирование сульфитом натрия, далее воду очищают микрофильтрацией и добавляют ингибитор, опреснение обратным осмосом проводят в две стадии, после первой стадии концентрат сбрасывают, а в пермеат добавляют ингибитор и едкий натр, повышая рН до 10,4, затем проводят вторую стадию опреснения обратным осмосом, причем концентрат после второй стадии обратного осмоса подмешивают в поток на вход первой стадии опреснения, а в пермеат добавляют кислоту и пропускают его через фильтры-кондиционеры с кальциево-магниевой загрузкой.
2. Способ по п.1, отличающийся тем, что часть пермеата после первой стадии опреснения обратным осмосом направляют на вход фильтров-кондиционеров.
3. Способ по любому из пп.1 и 2, отличающийся тем, что часть пермеата после второй стадии опреснения обратным осмосом подмешивают к выходному потоку из фильтров-кондиционеров.
RU2003106796/15A 2003-03-13 2003-03-13 Способ очистки природных вод RU2225369C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003106796/15A RU2225369C1 (ru) 2003-03-13 2003-03-13 Способ очистки природных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003106796/15A RU2225369C1 (ru) 2003-03-13 2003-03-13 Способ очистки природных вод

Publications (1)

Publication Number Publication Date
RU2225369C1 true RU2225369C1 (ru) 2004-03-10

Family

ID=32390833

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003106796/15A RU2225369C1 (ru) 2003-03-13 2003-03-13 Способ очистки природных вод

Country Status (1)

Country Link
RU (1) RU2225369C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2506233C2 (ru) * 2012-06-28 2014-02-10 Открытое акционерное общество "НОВАТЭК" Установка для подготовки обессоленной воды для производства синтез-газа
RU2556669C2 (ru) * 2009-11-25 2015-07-10 Массачусетс Инститьют Оф Текнолоджи Опреснение воды с применением экстракции селективным растворителем
EA029264B1 (ru) * 2013-03-13 2018-02-28 Сергей Петрович Щегренев Способ опреснения и очистки от бора высокоминерализованной воды до нормативов питьевого качества
RU2686146C1 (ru) * 2018-11-05 2019-04-24 Иван Андреевич Тихонов Способ дегазации воды
RU2811306C1 (ru) * 2023-05-05 2024-01-11 Акционерное Общество "Полиметалл Инжиниринг" Способ комплексной очистки карьерных и подотвальных сточных вод

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2556669C2 (ru) * 2009-11-25 2015-07-10 Массачусетс Инститьют Оф Текнолоджи Опреснение воды с применением экстракции селективным растворителем
RU2506233C2 (ru) * 2012-06-28 2014-02-10 Открытое акционерное общество "НОВАТЭК" Установка для подготовки обессоленной воды для производства синтез-газа
EA029264B1 (ru) * 2013-03-13 2018-02-28 Сергей Петрович Щегренев Способ опреснения и очистки от бора высокоминерализованной воды до нормативов питьевого качества
RU2686146C1 (ru) * 2018-11-05 2019-04-24 Иван Андреевич Тихонов Способ дегазации воды
RU2811306C1 (ru) * 2023-05-05 2024-01-11 Акционерное Общество "Полиметалл Инжиниринг" Способ комплексной очистки карьерных и подотвальных сточных вод

Similar Documents

Publication Publication Date Title
CN105800886B (zh) 高浓度难降解含盐有机废水的资源化回收利用处理工艺
US6071413A (en) Process for removing organic and inorganic contaminants from phenolic stripped sour water employing reverse omosis
CA2833012C (en) Method of recovering oil or gas and treating the resulting produced water
US8101083B2 (en) Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
US7186344B2 (en) Membrane based fluid treatment systems
US6054050A (en) Process for removing organic and inorganic contaminants from refinery wastewater streams employing ultrafiltration and reverse osmosis
EA011830B1 (ru) Способ (варианты) для обработки жидких сред обратным осмосом в кислых условиях
US20120145634A1 (en) High Efficiency Water Purification System
WO2014089796A1 (en) Method for treating high concentration wastewater such as ro brine
JP2006320847A (ja) 有機ヒ素含有水の処理方法とその装置
JPH1085743A (ja) 硼素含有水の処理装置及び方法
JPS62204892A (ja) 脱塩方法
RU2242435C2 (ru) Система очистки воды
Wittmann et al. Water treatment
RU2225369C1 (ru) Способ очистки природных вод
JPS6336890A (ja) 高純度水の製造装置
KR100473532B1 (ko) 중공사막을 이용한 고도정수처리 방법 및 그 운전방법
KR101002203B1 (ko) 막여과 수처리 장치 및 그 제어 방법
JP2002355683A (ja) 超純水製造方法及び超純水製造装置
US20140076808A1 (en) Sanitary cold water treatment systems and methods
Singh Brine recovery at industrial RO plants: Conceptual process design studies
KR100583407B1 (ko) 이온수 정수기의 필터 시스템
GB2197860A (en) Apparatus for and the method of water purification
NL2021733B1 (en) Method for the production of drinking water
CN216472645U (zh) 浸泡式全自动再生软水制备系统