RU2553769C2 - Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов - Google Patents

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов Download PDF

Info

Publication number
RU2553769C2
RU2553769C2 RU2013142390/02A RU2013142390A RU2553769C2 RU 2553769 C2 RU2553769 C2 RU 2553769C2 RU 2013142390/02 A RU2013142390/02 A RU 2013142390/02A RU 2013142390 A RU2013142390 A RU 2013142390A RU 2553769 C2 RU2553769 C2 RU 2553769C2
Authority
RU
Russia
Prior art keywords
welding
welded
edges
thickness
seam
Prior art date
Application number
RU2013142390/02A
Other languages
English (en)
Other versions
RU2013142390A (ru
Inventor
Сергей Алексеевич Зыков
Вера Ивановна Павлова
Леонид Михайлович Якерсберг
Денис Валерьевич Зайцев
Ирина Николаевна Полякова
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2013142390/02A priority Critical patent/RU2553769C2/ru
Publication of RU2013142390A publication Critical patent/RU2013142390A/ru
Application granted granted Critical
Publication of RU2553769C2 publication Critical patent/RU2553769C2/ru

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную сварку с утолщением шва. Каждая из кромок содержит центральный линейный участок, соединенный дугообразными участками с наклоненными линейными наружными участками. Дугообразный участок выполняют радиусом R=(0,30÷0,50)β, толщину центрального линейного участка выполняют в пределах c=(0,05÷0,10)β, где β - толщина свариваемых кромок. Изобретение позволяет повысить статическую прочность и увеличить усталостную долговечность сварных соединений. 4 ил., 3 табл.

Description

Изобретение относится к области сварочного производства и предназначено для изготовления сварных конструкций ответственного назначения из алюминиевых сплавов большой толщины, и может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения.
Способы дуговой сварки плавящимся электродом алюминиевых сплавов большой толщины направлены на достижение условий формирования качественного сварного соединения путем обеспечения стабильности процесса сварки (выбора рода и полярности тока), оптимизации формы и конструктивных элементов подготовки свариваемых кромок, выбора технологических вариантов заполнения разделки и технических приемов сварки.
Известен способ дуговой сварки плавящимся электродом в защитном газе стыковых соединений алюминиевых сплавов большой толщины, при котором выполняют Х-образную разделку свариваемых кромок с двусторонним симметричным криволинейным скосом - тип С26 (Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные. - Основные типы, конструктивные элементы и размеры. ГОСТ 14806-80. М.: Издательство стандартов. 1980. С.18). Разделка кромок под сварку предусматривает притупление размером не менее 8 мм и радиус закругления, равный 10 мм, при угле раскрытия кромок 15°.
Недостатком способа является то, что при сварке больших толщин отсутствует свободный доступ сварочной горелки к свариваемым кромкам вследствие чего сварщик не может полноценно контролировать процесс сварки; увеличивается вылет электродной проволоки, что приводит к блужданию дуги по кромкам и неполному их проплавлению. Последующее удаление корня шва и заполнение образовавшейся разделки присадочным металлом не гарантирует исключение непроваров в центральной части сварного соединения, что является недопустимым, так как приводит к снижению механических свойств сварных соединений.
Наиболее близким по технической сущности к изобретению является способ полуавтоматической сварки плавящимся электродом в среде защитных газов алюминиевых сплавов толщиной от 6 до 40 мм двусторонним швом, включающий X-образную разделку с двумя симметричными скосами кромок под углом 30°, с подрубкой корня первого прохода [Хаванов В.А., Киселев С.Н., Скорняков Л.М. Особенности сварки в защитных газах алюминиевых сплавов больших толщин // Сварка в атомной промышленности и энергетике, т.2, ч.4, 5. - М.: Изд. AT. - 2002. - С.241-260, табл.1, с.244] - Прототип.
Вне зависимости от толщины свариваемых деталей разделка кромок под сварку имеет прямолинейную форму с углом раскрытия кромок 30°, притуплением кромок, размером 3-4 мм и радиусом закругления свариваемых кромок равным 8 мм.
Недостатком прототипа является низкая статическая и усталостная прочность сварных соединений из-за наличия в центральной части шва конструктивно-технологического непровара и несплошностей, что является недопустимым для изделий ответственного назначения, в том числе корпусных алюминиевых конструкций, подвергающихся воздействию циклических нагрузок.
Экспериментальные результаты по сварке плавящимся электродом показали, что на стабильность процесса сварки и качество швов стыковых соединений алюминиевых сплавов, в первую очередь, оказывают влияние толщина, геометрическая форма и размеры свариваемых кромок, причем размеры разделок свариваемых кромок для металла разной толщины отличны друг от друга, хотя их геометрическая форма остается той же.
Техническим результатом предлагаемого изобретения является разработка способа импульсной дуговой сварки стыковых соединений плавящимся электродом алюминиевых сплавов большой толщины двусторонним швом полуавтоматическим способом в среде защитных газов, обеспечивающим повышение статической прочности и увеличение усталостной долговечности сварных соединений.
Технический результат достигается тем, что в способе импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов большой толщины двусторонним швом, включающем формирование X-образного профиля свариваемых кромок, причем каждая из кромок содержит центральный линейный участок, соединенный дугообразными участками с наклоненными линейными наружными участками, выполнение многопроходной сварки с утолщением шва, в соответствии с изобретением дугообразный участок выполняют радиусом R=(0,30÷0,50)β, толщину центрального линейного участка выполняют в пределах c=(0,05÷0,10)β, а расстояние от границы утолщения шва до свариваемых кромок составляет b=(0,1÷0,4)β, где β - толщина свариваемых кромок.
Уменьшение толщины центрального линейного участка (c) менее 0,05β приводит к прожогам и проваливанию свариваемых кромок. При величине (c) более 0,10β для его полного проплавления необходимо увеличить погонную энергию сварки, что приводит к увеличению сварочных напряжений и деформаций. При неполном проплавлении необходимо производить трудоемкую операцию - выборку корня шва механическим способом специализированным инструментом до чистого металла с образованием канавки симметрично оси шва.
При выборе радиуса закругления дугообразного участка (R) свариваемых кромок, меньше рекомендуемого 0,3β, при сварке больших толщин ухудшается доступ сварочной горелки к свариваемым кромкам, что приводит к увеличению вылета электродной проволоки и блужданию сварочной дуги по кромкам и, как следствие, недостаточное их проплавление. Ухудшается визуальный контроль за процессом сварки вследствие чего невозможно стабильно вести процесс сварки. При выборе большего радиуса закругления (R) 0,5β увеличивается сечение шва, что влечет повышение расхода присадочного металла, тепловложения и рост сварочных напряжений и остаточной деформации.
Сущность заявляемого способа поясняется чертежами:
фигура 1 - X-образный профиль свариваемых кромок, где каждая кромка содержит центральный линейный участок (притупление кромки), соединенный дугообразными участками (закругление) с наружными линейными участками.
фигура 2 - схема расположения утолщения шва (расстояние b=(0,1÷0,4)β от границы утолщения (крайнего валика) до свариваемой кромки);
фигура 3 - макроструктура стыкового соединения алюминиевого сплава марки 1550М толщиной 40 мм, выполненного с полным проваром двусторонним швом по заявляемому варианту, и характер разрушения при растяжении;
фигура 4 - внешний вид сварного соединения со стороны корня шва после первого прохода.
Пример осуществления предлагаемого изобретения
В качестве основного свариваемого материала использовали плиты толщиной 20 и 40 мм из сплава марки 1550М по ГОСТ 17232-99.
Стыковые соединения выполняли по заявляемому варианту и по прототипу на сварочной установке T&R Multi 500KW.
В качестве присадочного материала использовали сварочную проволоку марки СвАМг5 диаметром 1,6 мм по ГОСТ 7871-75.
На свариваемых деталях механическим способом выполняли двустороннюю симметричную разделку с криволинейным скосом и притуплением свариваемых кромок в соответствии с таблицей 1.
Таблица 1
Конструктивные элементы разделки свариваемых кромок
Тип стыкового соединения Толщина свариваемого материала (β), мм Радиус закругления свариваемых кромок (R), мм Величина притупления свариваемых кромок (c), мм Угол скоса свариваемых кромок, град Разделка свариваемых кромок
По прототипу 20 8 3÷4 30
Figure 00000001
40 8 3÷4 30
По заявляемому варианту 20 0,5β=10 0,10β=2 15
Figure 00000002
40 0,3β=12 0,05β=2 15
Свариваемые детали собирали и фиксировали в сборочно-сварочном приспособлении.
Многослойные швы выполняли отдельными валиками последовательно один за другим, заполняющими каждый слой шва. Все слои, кроме первого, выполняли на одном режиме.
Параметры сварки при выполнении первого слоя наплавленного металла: сила сварочного тока 90÷150 A, напряжение на дуге 17÷18 В, скорость подачи проволоки 3-5 м/мин, расход защитного газа 10-42 л/мин.
Параметры сварки при выполнении последующих слоев наплавленного металла: сила сварочного тока 230÷270 А, напряжение на дуге 22÷24 В, скорость подачи проволоки 8-10 м/мин, расход защитного газа 20÷25 л/мин.
После сварки каждого валика производили удаление пылеобразного конденсата и возможных брызг металла зачисткой поверхности металлической щеткой.
Результаты экспериментальных исследований показали, что сварка по прототипу не позволяет получить полного провара свариваемых кромок при первом проходе на весу из-за большой величины притупления и малого радиуса закругления свариваемых кромок.
При сварке по заявляемому варианту, благодаря выбору оптимальной величины притупления и радиуса закругления в области притупления, получено полное проплавление свариваемых кромок при первом проходе на весу с хорошим формированием шва. Перед выполнением шва с обратной стороны (подварочный шов) необходимо производить удаление только проплава первого прохода, где наиболее вероятно скопление дефектов, до чистого бездефектного металла, что существенно упрощает механическую обработку, так как отсутствует необходимость в формировании канавки симметрично оси шва.
Контроль радиографическим методом с чувствительностью 0,50÷0,75 мм сварных соединений, выполненных по заявляемому варианту, не выявил дефектов в сварном шве в виде трещин, несплошностей и непроваров.
Макроструктура стыкового соединения алюминиевого сплава марки 1550М, выполненного с полным проваром двусторонним швом по заявляемому варианту, и характер разрушения при растяжении приведены на фиг.4.
Результаты испытаний сварных стыковых соединений алюминиевого сплава марки 1550М, выполненных по заявляемому варианту и прототипу, приведены в таблицах 2 и 3.
Таблица 2
Результаты испытаний сварных стыковых соединений сплава 1550М на статическое растяжение
Варианты стыкового соединения Толщина материала, мм Существенные признаки Временное сопротивление σв, МПа Коэффициент прочности кпрвсввом гарант. Область разрушения
c, мм R, мм α, град b, мм
Предлагаемые 20 0,1β=2 0,5β=10 45 0,4β=8 270 1,0 Граница сплавления шва с основным металлом
решения 0,05β=1 15 0,1β=2 250 0,95
40 0,1β=4 0,3β-12 45 0,4β=16 260 1,0 Основной металл
0,05β=2 15 0,1β=4 265 1,0
Запредельные 20 0,2β=4 0,6β=12 50 0,5β=10 200 0,80 Металл шва
варианты 0,02β=0,5 0,2β=4 10 0,05β=1 211 0,82 Металл шва
40 0,2β=8 0,6β=24 50 0,5β=20 217 0,85 Металл шва
0,02β=0,8 0,2β=8 10 0,05β=2 204 0,80 Металл шва
Прототип 20 4 8 - - 200 0,78 Металл шва
4 8 - - 190 0,73 Металл шва
40 4 8 - - 193 0,75 Металл шва
4 8 - - 183 0,71 Металл шва
Таблица 3
Результаты испытаний сварных стыковых соединений сплава 1550М на циклическое растяжение
Варианты стыкового соединения Толщина материала, мм Существенные признаки Усталостная долговечность, циклы ρ=0,1; ν=10 Гц Область разрушения
c, мм R, мм α, град b, мм Pmax, кН циклы
Предлагаемые 40 0,05β=2 0,3β=12 45 0,2β=8 165 7700 Граница сплавления
решения 110 30000 шва с основным
77 343900 металлом
Запредельные 40 0,2β=8 0,6β=24 50 0,5β=20 77 25700
варианты 0,02β=0,8 0,2β=8 10 0,05β=2 77 15700
Прототип 40 4 8 - - 165 1010 Металл шва
4 8 - - 110 3480
4 8 - - 77 33900
Анализ приведенных в таблицах данных показывает, что статическая прочность на 25-30%, а усталостная долговечность в 7-11 раз выше для сварных соединений, выполненных по заявляемому варианту, чем для соединений, выполненных по прототипу, что подтверждает преимущества предлагаемого способа сварки стыковых соединений алюминиевых сплавов.
Наличие непроваров в центральной части шва, выполняющих роль концентраторов напряжений, приводит к недопустимому снижению значений статической и усталостной прочности.
Способ полуавтоматической импульсно-дуговой сварки плавящимся электродом позволяет произвести сварку на меньшей погонной энергии по сравнению с прототипом, при этом обеспечивается полный провар притупления свариваемых кромок по всему сечению на весу за один проход и обеспечивается равномерное формирование корня шва, без применения специальных устройств предупреждающих вытекание металла ванны. При сварке алюминиевых сплавов большой толщины обеспечивается свободный доступ сварочной горелки к свариваемым кромкам и хороший визуальный контроль над процессом сварки.
Результаты испытаний на статическое растяжение и переменное нагружение, анализ макроструктуры и результаты радиографического контроля подтверждают достижение технического эффекта предлагаемого способа полуавтоматической импульсно-дуговой сварки стыковых соединений алюминиевых сплавов плавящимся электродом в инертном газе в сравнении с прототипом и запредельными вариантами.

Claims (1)

  1. Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов двусторонним швом, включающий формирование X-образного профиля свариваемых кромок, причем каждая из кромок содержит центральный линейный участок, соединенный дугообразными участками с наклоненными линейными наружными участками, выполнение многопроходной сварки с утолщением шва, отличающийся тем, что радиус дугообразного участка и толщину центрального линейного участка выбирают в зависимости от толщины свариваемых кромок, исходя из следующих соотношений: R=(0,30-0,50)β и c=(0,05-0,10)β, где R - радиус дугообразного участка, c - толщина центрального линейного участка, β - толщина свариваемых кромок.
RU2013142390/02A 2013-09-17 2013-09-17 Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов RU2553769C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013142390/02A RU2553769C2 (ru) 2013-09-17 2013-09-17 Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013142390/02A RU2553769C2 (ru) 2013-09-17 2013-09-17 Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Publications (2)

Publication Number Publication Date
RU2013142390A RU2013142390A (ru) 2015-04-10
RU2553769C2 true RU2553769C2 (ru) 2015-06-20

Family

ID=53282211

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142390/02A RU2553769C2 (ru) 2013-09-17 2013-09-17 Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Country Status (1)

Country Link
RU (1) RU2553769C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789951C1 (ru) * 2021-10-25 2023-02-14 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госорпорация "Росатом") Способ импульсно-дуговой сварки плавящимся электродом алюминиево-магниевого сплава

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089364C1 (ru) * 1996-10-22 1997-09-10 Шуляковский Олег Борисович Способ сварки корпусных конструкций из алюминиевых сплавов
JP2009061483A (ja) * 2007-09-07 2009-03-26 Hitachi-Ge Nuclear Energy Ltd 両側溶接方法及び両側溶接構造物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089364C1 (ru) * 1996-10-22 1997-09-10 Шуляковский Олег Борисович Способ сварки корпусных конструкций из алюминиевых сплавов
JP2009061483A (ja) * 2007-09-07 2009-03-26 Hitachi-Ge Nuclear Energy Ltd 両側溶接方法及び両側溶接構造物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ХАВАНОВ В.А. и др. "Особенности сварки в защитных газах алюминиевых сплавов больших толщин" Сварка в атомной промышленности и энергетике, т.2, часть 4, 5. -М.: Изд. АТ.- 2002. ГОСТ "Сварка, пайка и термическая резка металлов", часть 2, изд. Стандартов, М. 1976. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789951C1 (ru) * 2021-10-25 2023-02-14 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госорпорация "Росатом") Способ импульсно-дуговой сварки плавящимся электродом алюминиево-магниевого сплава

Also Published As

Publication number Publication date
RU2013142390A (ru) 2015-04-10

Similar Documents

Publication Publication Date Title
CN104191072A (zh) 不锈钢复合板的焊接方法
CN104384677B (zh) 一种特厚钢板焊接方法
CN108526662B (zh) 一种大口径镍基复合管x坡口免背面充氩焊接方法
Layus et al. Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates
US20090224530A1 (en) Welded butt joints on tubes having dissimilar end preparations
EP2883643B1 (en) Submerged arc welding method
CN111360366A (zh) 一种全熔透仰板的焊接方法
CN105618904A (zh) 一种大型厚壁油缸的窄间隙埋弧焊坡口结构及装焊方法
CN110640271A (zh) 低合金高强度钢t型全焊透接头横角焊位置的高效焊接工艺
Singh et al. Influence of tool pin profiles on friction stir welding with a gap for AA6082-T6 aluminium alloy
CN104002029A (zh) 一种改进的平板对接埋弧焊接方法
JP4912097B2 (ja) ステンレス鋼管の多層溶接方法及び多層溶接物
RU2553769C2 (ru) Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов
Baughurst et al. Welding defects, causes and correction
CN110405316B (zh) 提高时效强化铝合金熔化焊接头拉伸性能的方法
JP5672697B2 (ja) 鋼材のサブマージアーク溶接方法
CN108526661B (zh) 一种镍基实心焊丝气体保护焊接方法
Fiveyskiy et al. Research on technological capabilities of double-electrode welding of long fillet welds
JP6259666B2 (ja) ステンレスクラッド鋼材の製造方法
DE102020202082A1 (de) Laserbogen-hybridschweissverfahren
CN110834177A (zh) 降低大型压力容器焊接残余应力的方法
CN111843103B (zh) 对开三通组对焊接方法
WO2017130830A1 (ja) 溶接接合部およびその製造方法
RU2532577C2 (ru) Способ исправления дефектов металлоконструкций
RU159414U1 (ru) Устройство для осуществления ремонта металлоконструкций методом точечной сварки

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150918

NF4A Reinstatement of patent

Effective date: 20190325

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20210310