RU2553156C2 - Способ объединенной газификации остатков жидкого и твердого топлива - Google Patents

Способ объединенной газификации остатков жидкого и твердого топлива Download PDF

Info

Publication number
RU2553156C2
RU2553156C2 RU2012113135/02A RU2012113135A RU2553156C2 RU 2553156 C2 RU2553156 C2 RU 2553156C2 RU 2012113135/02 A RU2012113135/02 A RU 2012113135/02A RU 2012113135 A RU2012113135 A RU 2012113135A RU 2553156 C2 RU2553156 C2 RU 2553156C2
Authority
RU
Russia
Prior art keywords
gasification
ash
coal
fuel
fixed bed
Prior art date
Application number
RU2012113135/02A
Other languages
English (en)
Other versions
RU2012113135A (ru
Inventor
Кристоф ХАНРОТТ
Макс ХАЙНРИЦ-АДРИАН
Адриан БРАНДЛЬ
Original Assignee
ТюссенКрупп Уде ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ТюссенКрупп Уде ГмбХ filed Critical ТюссенКрупп Уде ГмбХ
Publication of RU2012113135A publication Critical patent/RU2012113135A/ru
Application granted granted Critical
Publication of RU2553156C2 publication Critical patent/RU2553156C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0933Coal fines for producing water gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0936Coal fines for producing producer gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0989Hydrocarbons as additives to gasifying agents to improve caloric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения синтез-газа путем совместной газификации в потоке твердого и жидкого топлива, содержащих золу. Причем указанное топливо подают отдельно в реактор газификации угля через несколько горелок, при этом горелки имеют концентрический угол горения более 0°, что снижает образование сажи и повышает степень конверсии. Твердую фракцию подают совместно с инертным газом в реактор газификации. Золосодержащее твердое топливо содержит, по меньшей мере, частично мелкие частицы угля, полученные при добыче угля, которые не подходят для газификации в неподвижном слое угля. Золосодержащее жидкое топливо содержит остаток от газификации в неподвижном слое угля. Техническим результатом является совместное использование при газификации во взвешенном потоке золосодержащих жидких остатков от газификации в неподвижном слое и мелких частиц угля, которые не могут быть использованы при газификации в неподвижном слое, а также сведение к минимуму образования сажи. 9 з.п. ф-лы, 3 ил. 1 пр.

Description

Изобретение относится к способу одновременной газификации твердого топлива и золосодержащего жидкого топлива под давлением, в котором твердое и жидкое топливо подают по отдельности в реактор газификации угля и зольный остаток выпускают из реактора при температуре более 1500°С в виде расплавленного шлака.
Уровень техники
Для газификации твердого углеродсодержащего топлива многие годы используют различные типы газификаторов. Самые известные способы газификации представляют собой газификацию в неподвижном слое, газификацию в кипящем слое и газификацию во взвешенном потоке. До 80-х годов газификацию осуществляли почти исключительно на базе способа газификации в неподвижном слое, в то время как на современных установках осуществляют в основном газификацию во взвешенном потоке. Большинство построенных газификаторов неподвижного слоя и сейчас находятся в эксплуатации.
Газификация в неподвижном слое имеет недостатки по сравнению с современным способом газификации во взвешенном потоке. К ним относится высокое потребление воды и потребность в больших площадях, а также дорогостоящая обработка газа и очистка воды. Также при газификации в неподвижном слое образуются смолистые масла с мелкозернистыми зольными компонентами в качестве жидких остатков. Эти остатки могут также содержать фенолы, жирные кислоты, тяжелые металлы, аммиак и другие примеси. Поэтому остатки должны быть тщательно обработаны. К тому же, при добыче угля возникает большое количество мелких частиц угля (примерно 20-30% от общего количества угля). Эта мелкая угольная пыль не может быть использована для газификации в неподвижном слоя, или ее можно использовать только после дорогостоящей предварительной обработки. По большей части эти остатки не способствуют производству синтез-газа и их утилизируют простым сжиганием.
Из DE 4226034 и DE 4317319 С1 известно, что жидкий остаток газификации в неподвижном слое добавляют в виде суспензии при газификации во взвешенном потоке. Техническое решение для газификации остатка при газификации во взвешенном потоке не приведено. Возможное использование возникающих при добыче угля мелких частиц угля не упоминается.
В реферате DE 4226015 С1 описано объединение способов газификации в неподвижном слое и газификации жидкого топлива. Газификация жидкого топлива рассчитана только для жидких углеводородов с очень небольшим количеством твердых веществ, т.е. золы, определенно менее одного массового процента. Однако жидкие остатки газификации в неподвижном слое содержат до 10% твердых компонентов. Температура газификации жидкого топлива явно ниже температуры газификации во взвешенном углеродсодержащем потоке. Это означает, что возможные частицы золы в топливе в дальнейшем осаждаются и их следует удалять с большими затратами. Для отделения в расплаве зольных частиц остатков газификации в неподвижном слое необходима температура выше 1400°С, предпочтительно более 1500°С. На такую температуру не рассчитаны облицовка установки для газификации жидкого топлива и подключенные последовательно устройства для охлаждения синтез-газа.
Для газификации остатков с отведением шлака в расплавленном состоянии подходит только способ газификации угля. Как указано в DE 3820013 А1, существует способ газификации угля с облицованным или охлаждаемым реактором. Как объяснено в DE 3820013 А1, газификатор с облицованным реактором также не подходит для газификации содержащих пыль смолистых остатков, поскольку образующийся в процессе жидкий шлак проникает в жаропрочную стену реактора и разрушает ее, особенно при высоком содержании в остатках тяжелых металлов или щелочных металлов.
Поэтому в DE 3820013 А1 предложено газифицировать содержащие пыль смолистые остатки в газификаторе с охлаждаемым сосудом реактора, при этом смолистые остатки следует подавать в реактор с паром отдельно от горелки, то есть не из горелки с собственной подачей кислорода. Однако в этом способе количество загружаемых жидких остатков очень ограничено. Также в этом способе следует ожидать значительно меньшей степени превращения реакции обменного разложения, поскольку не происходит интенсивного смешивания смолистых остатков с кислородом.
Следующий недостаток способа, описанного в DE 4226034 С1 и DE 4317319 В4, заключается в ограничении количества золы, содержащейся в топливе. Твердое топливо подают в газификатор в виде смеси топлива и воды. Посредством энергии, выделяемой при газификации, топливо, подаваемая вода и зольная составляющая должны быть доведены до необходимой температуры. При высокой доле золы, выделяемой при газификации энергии, не достаточно для поддержания температуры в газификаторе. Однако поскольку, в особенности при газификации в неподвижном слое, все-таки используют высокозольный уголь, объединение газификации во взвешенном потоке с подачей угля и воды имеет большие ограничения.
Кроме того, ни в одном из патентов не затрагивается проблема возможного образования сажи при газификации жидких углеводородов. Поскольку элементы установки, используемой в способе газификации угля, не рассчитаны на значительное загрязнение сажей, существенное образование сажи привело бы к значительным проблемам в данных элементах установки.
Постановка задачи
Цель и задача изобретения заключается в универсальном совместном использовании при газификации во взвешенном потоке золосодержащих жидких остатков от газификации в неподвижном слое и мелких частиц угля, которые не могут быть использованы при газификации в неподвижном слое, при сведении к минимуму образования сажи.
Изобретение решает эту задачу в соответствии со способом, изложенным в п. 1 формулы изобретения.
В зависимых пунктах формулы изобретения определены предпочтительные воплощения изобретения.
Решение по настоящему изобретению предусматривает способ получения синтез-газа, включающий газификацию образующихся при газификации в неподвижном слое золосодержащих жидких остатков во взвешенном потоке при давлении от 0,3 до 0,8 МПа и температуре выше 1400°C с помощью кислородосодержащих газообразных газифицирующих агентов в охлаждаемом реакторе, при этом золосодержащие жидкие остатки в виде жидкого топлива и золосодержащее твердое топливо подают в реактор раздельно через несколько горелок, по секущей к окружности реактора с обеспечением горения при угле горения более 0°, при этом золосодержащее твердое топливо диспергируют в транспортном газе, и по меньшей мере, оно частично состоит из мелких частиц угля, полученных при добыче угля, которые непригодны для газификации в неподвижном слое.
Как правило, при газификации в неподвижном слое газифицируют кусковой уголь из угольного месторождения. Мелкие частицы угля меньше 5 мм не могут быть преобразованы при газификации в неподвижном слое, и их следует преобразовывать иным способом или помещать в хранилище. Кроме того, при газификации в неподвижном слое в качестве остатка образуется смесь из конденсатов, которая содержит фенолы, жирные кислоты, аммиак, смолистые и средние масла, а также золосодержащие и углеродсодержащие твердые частицы. Остаток следует подвергать обработке с большими затратами, чтобы его можно было использовать в дальнейшем, или удалять в отходы.
Рентабельная эксплуатация газификации в неподвижном слое подразумевает гибкое использование образующихся жидких и твердых остатков газификации в неподвижном слое. Газификация во взвешенном потоке с охлаждаемым реактором и раздельной подачей золосодержащего жидкого и твердого топлива, при которой твердое топливо подают в транспортном газе, является для этого идеальным решением. Транспортный газ предпочтительно состоит на 100% или менее из азота или диоксида углерода, или из сочетания этих газов.
Охлаждаемый реактор можно эксплуатировать при температуре более 1400°C, предпочтительно, более 1500°C, чтобы золосодержащие частицы топлива можно было отводить в виде гранулированного шлака. Шлак не требует никакой дополнительной очистки, поскольку в отличие от золы при газификации в неподвижном слое возможные загрязняющие примеси не вымываются. Кроме того, охлаждаемый реактор устойчив к возможным загрязняющим примесям в топливе, таким как, например, тяжелые металлы.
Раздельная подача твердого и жидкого топлива обеспечивает возможность оптимального использования топлива. Золосодержащее твердое топливо обычно представляет собой мелкие частицы угля, предпочтительно менее 5 мм, которые непригодны для газификации в неподвижном слое. Следовательно, мелкие, непригодные для газификации в неподвижном слое частицы угля можно преимущественно использовать для транспортировки с помощью транспортного газа, поскольку для транспортировки угля в транспортном газе требуется диаметр менее 0,1 мм. Обычные затраты на измельчение угля таким образом сокращаются. Также отдельная подача твердого топлива позволяет сбалансировать колебания качества или количества жидкого топлива. Также в твердое топливо для повышения суммарной производительности можно дополнительно добавлять уголь.
С другой стороны, для золосодержащего жидкого топлива можно использовать горелку, которая способствует снижению образования сажи. Такая горелка описана в ЕР 00 95 103 А1. Она состоит из трех концентрично расположенных труб, при этом по внешней трубе подают кислород или кислородосодержащий газ, по внутренней трубе - топливо, а золосодержащее жидкое топливо подают по центральной трубе. Горелки в типичном воплощении включают три концентричные трубы и сужающийся на конус наконечник. Выходящее топливо оказывается мелкодиспергированным после выхода. Это повышает степень превращения и сводит к минимуму образование сажи. Система горелок может содержать охлаждающую камеру в области выхода горелок.
Золосодержащее твердое топливо предпочтительно подают по двум расположенным напротив друг друга горелкам, а по смещенным относительно них на угол 90° в горизонтальной плоскости двум расположенным напротив друг друга горелкам подают золосодержащее жидкое топливо. Конечно, горелки могут быть предусмотрены в любом другом количестве и могут быть смещены на угол более или менее 90°. Также для согласования мощности возможны параллельные уровни горения.
Дальнейшего снижения образования сажи достигают благодаря тому, что все горелки имеют угол горения больше 0° или, предпочтительно, от 3° до 6°. Таким образом внутри реактора образуется вихрь. Во-первых, это повышает время пребывания и также степень конверсии. При этом угол горения представляет собой угол между направлением вытекания топлива и горизонтальной соединительной линией между соплом горелки и осью симметрии реактора. В случае необходимости, направление вытекания топлива может быть изменено с получением горизонтального направления. Во-вторых, ускоряется отделение расплавленного шлака и непреобразованных частиц угля к стенке реактора. Непреобразованные частицы угля там далее преобразуются или попадают в шлак.
Также для горелок может быть предусмотрено несколько горизонтальных уровней. Горелки могут быть разделены на один или несколько горизонтальных уровней. Как правило, угол горения относительно горизонтальной поверхности составляет 0°. Однако также возможно, чтобы угол горения относительно горизонтальной поверхности составлял более 0°.
Примеры реализации
Изобретение поясняют на следующем примере. Пример реализации представлен на Фиг. 1-3 и затем описан более подробно. На Фиг. 1 показан рассматриваемый способ газификации в неподвижном слое и во взвешенном потоке. На Фиг. 2 показан газификатор с горелками для жидкого и твердого топлива, вид сбоку и сверху. На Фиг. 3 показана горелка, которая предназначена для реализации предложенного способа. На чертежах представлены только примеры реализации изобретения, при этом изобретение не ограничивается данными примерами реализации.
В предпочтительном воплощении остатки газификации в неподвижном слое подают в газификатор во взвешенном потоке. Остатки представляют собой остаток газификации в неподвижном слое, а именно жидкую смесь смолы и угольной пыли, и непригодные для использования мелкие частицы угля из добычи угля.
При добыче угля (1), Фиг. 1, добывают 400 тонн/час угля. От этого количества примерно 280 тонн/час представляет собой крупнокусковой уголь (1а), подходящий для газификации в неподвижном слое (2). При газификации в неподвижном слое (2) получают синтез-газ (2а). Оставшийся мелкий уголь (1b) имеет диаметр частиц менее 5 мм и поэтому не может быть использован для газификации в неподвижном слое (2). Оставшиеся 120 тонн/час мелкого угля (1b) направляют на газификацию во взвешенном потоке (3), где его перерабатывают в синтез-газ (3а). Кроме того, при газификации в неподвижном слое (2) образуется около 95 тонн/час смолистых масел с мелкими частицами угля, которые в дальнейшем используют (2b) в газификации во взвешенном потоке (3). Содержание твердого угля в смолистых маслах составляет примерно 5%. Количество энергии 95 тонн/час отходов соответствует примерно 25% количества энергии подаваемого при газификации в неподвижном слое 280 тонн/час крупнокускового угля.
Общее количество получаемого синтез-газа посредством описанного сочетания газификации в неподвижном слое и во взвешенном потоке может быть увеличено от 270000 нм3/ч до 490000 нм3/ч.
Остатки газификации в неподвижном слое и мелкий уголь в предпочтительном воплощении, фиг.2, подают через четыре горелки раздельно в реактор газификации (4) газификатора во взвешенном потоке. Две горелки (5а, 5с) предусмотрены для твердого топлива и две горелки (5b, 5d) предусмотрены для жидкого топлива. Все горелки (5a-5d) расположены в горизонтальной плоскости, при этом горелки попарно расположены напротив друг друга. Горелки выполнены таким образом, что топливо вытекает (10) из горелки по секущей, при этом угол горения (9) между направлением вытекания топлива (11) и соединительной линией между соплом горелки и осью симметрии реактора больше 0°, предпочтительно составляет от 3 до 6°.
На Фиг.3 изображен предпочтительный тип горелки для газификации смолистых масел с мелкими частицами угля. Она состоит из трех концентрично расположенных труб (6, 7, 8), включающих центральную питающую трубу (6) и два окружающих кольцевых зазора (7, 8). При этом жидкое топливо подают по центральной трубе (6). По кольцевому зазору (7) подают топливо. По внешней трубе (8) подают кислородосодержащий газ. Три трубы имеют сужающийся на конус наконечник. Выходящее топливо оказывается мелкодиспергированным после выхода. Это повышает степень конверсии и сводит к минимуму образование сажи.
Перечень обозначений
1. Добыча угля
1а. Крупнокусковой уголь
1b. Мелкий уголь
2. Газификация в неподвижном слое
2а. Синтез-газ
3. Газификация во взвешенном потоке
3а. Синтез-газ
4. Реактор газификации
5a-d. Горелки
6. Центральная питающая труба
7. Кольцевой зазор
8. Внешняя питающая труба
9. Угол горения
10. Вытекание по секущей
11. Радиальное вытекание

Claims (10)

1. Способ получения синтез-газа, включающий газификацию образующихся при газификации в неподвижном слое золосодержащих жидких остатков во взвешенном потоке при давлении от 0,3 до 0,8 МПа и температуре выше 1400°С с помощью кислородосодержащих газообразных газифицирующих агентов в охлаждаемом реакторе, при этом золосодержащие жидкие остатки в виде жидкого топлива и золосодержащее твердое топливо подают в реактор раздельно через несколько горелок по секущей к окружности реактора с обеспечением горения при угле горения более 0°, при этом золосодержащее твердое топливо диспергируют в транспортном газе, и по меньшей мере оно частично состоит из мелких частиц угля, полученных при добыче угля, которые непригодны для газификации в неподвижном слое.
2. Способ по п.1, отличающийся тем, что жидкий остаток газификации, образующийся в неподвижном слое, содержит углеводороды, в частности смолы, но также фенолы, жирные кислоты и аммиак.
3. Способ по п.1, отличающийся тем, что золосодержащее твердое топливо представляет собой мелкие частицы угля, предпочтительно менее 5 мм.
4. Способ по п.1, отличающийся тем, что горелка для подачи золосодержащего жидкого топлива состоит из трех концентрично расположенных труб, при этом по внешней трубе подают кислород или кислородосодержащий газ, по внутренней трубе - топливо, а золосодержащее жидкое топливо подают по центральной трубе.
5. Способ по п.4, отличающийся тем, что три концентрично расположенные трубы имеют сужающийся на конус наконечник и охлаждающую камеру в области выхода горелок.
6. Способ по п.1, отличающийся тем, что золосодержащее твердое топливо подают по двум или более расположенным напротив друг друга горелкам, а по смещенным относительно них на угол 90° в горизонтальной плоскости двум или более расположенным напротив друг друга горелкам подают золосодержащее жидкое топливо.
7. Способ по п.1, отличающийся тем, что горелки размещены в одной или нескольких горизонтальных плоскостях.
8. Способ по п.1, отличающийся тем, что угол горения между направлением вытекания топлива и соединительной линией между соплом горелки и осью симметрии реактора составляет 3-6°.
9. Способ по любому из пп.1-8, отличающийся тем, что угол горения по отношению к горизонтальной поверхности составляет более 0°.
10. Способ по п.9, отличающийся тем, что транспортный газ на 100% или менее состоит из азота или диоксида углерода или сочетания этих газов.
RU2012113135/02A 2009-09-18 2010-09-09 Способ объединенной газификации остатков жидкого и твердого топлива RU2553156C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009041854A DE102009041854A1 (de) 2009-09-18 2009-09-18 Verfahren zur kombinierten Rückstandsvergasung von flüssigen und festen Brennstoffen
DE102009041854.7 2009-09-18
PCT/EP2010/005542 WO2011032663A2 (de) 2009-09-18 2010-09-09 Verfahren zur kombinierten rückstandsvergasung von flüssigen und festen brennstoffen

Publications (2)

Publication Number Publication Date
RU2012113135A RU2012113135A (ru) 2013-11-10
RU2553156C2 true RU2553156C2 (ru) 2015-06-10

Family

ID=43603419

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113135/02A RU2553156C2 (ru) 2009-09-18 2010-09-09 Способ объединенной газификации остатков жидкого и твердого топлива

Country Status (13)

Country Link
US (1) US20120266539A1 (ru)
EP (1) EP2478072A2 (ru)
KR (1) KR20120093881A (ru)
CN (1) CN102549117A (ru)
AU (1) AU2010294844B2 (ru)
BR (1) BR112012005838A2 (ru)
CA (1) CA2774445A1 (ru)
DE (1) DE102009041854A1 (ru)
RU (1) RU2553156C2 (ru)
TW (1) TWI500755B (ru)
UA (1) UA107470C2 (ru)
WO (1) WO2011032663A2 (ru)
ZA (1) ZA201202798B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695180C1 (ru) * 2016-03-04 2019-07-22 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Двухступенчатый газогенератор и способ газификации с универсальностью относительно перерабатываемого сырья

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057133A1 (en) * 2011-10-21 2013-04-25 Shell Internationale Research Maatschappij B.V. Gasification reactor
KR101353783B1 (ko) 2011-12-27 2014-01-22 주식회사 포스코 이산화탄소 발생이 저감된 석탄 가스화 방법 및 장치
CN104694170B (zh) * 2015-03-25 2017-02-22 西北化工研究院 一种以炭质粉体和天然气/甲烷为原料生产合成气的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226034C1 (de) * 1992-08-06 1994-02-17 Schwarze Pumpe Energiewerke Ag Kombiniertes Verfahren zur Vergasung von festen, pastösen und flüssigen Rest- und/oder Abfallstoffen
RU2193591C2 (ru) * 1998-07-01 2002-11-27 Ноэлл - Крк Энерги - Унд Умвельттехник Гмбх Устройство для газификации углеродсодержащих топлив, остатков обработки и отходов (варианты)
EP1749872A2 (de) * 2005-07-28 2007-02-07 CHOREN Industries GmbH Verfahren zur endothermen Vergasung von Kohlenstoff
WO2008110592A1 (en) * 2007-03-15 2008-09-18 Shell Internationale Research Maatschappij B.V. Gasification reactor vessel with inner multi-pipe wall and several burners
RU2333929C1 (ru) * 2007-02-26 2008-09-20 Институт химии и химической технологии СО РАН (ИХХТ СО РАН) Способ и установка для газификации твердого топлива

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE543003C (de) * 1927-10-02 1932-02-02 Carl Salat Brenner fuer staubfoermige, fluessige und gasfoermige Brennstoffe
DE3219316A1 (de) 1982-05-22 1983-11-24 Ruhrchemie Ag, 4200 Oberhausen Verfahren und vorrichtung zur herstellung von synthesegas durch partielle oxidation von kohle-wasser-suspensionen
DD267880A3 (de) 1987-08-17 1989-05-17 Freiberg Brennstoffinst Verfahren zur gemeinsamen vergasung von fluessigen und festen, staubfoermigen brennstoffen
DE4125521C1 (ru) * 1991-08-01 1992-10-29 Energiewerke Schwarze Pumpe Ag, O-7610 Schwarze Pumpe, De
DE4226015C1 (de) 1992-08-06 1994-01-13 Schwarze Pumpe Energiewerke Ag Verfahren zur Entsorgung von festen und flüssigen Abfallstoffen im Vergasungsprozeß bei der Festbettdruckvergasung
DE4317319B4 (de) 1993-05-25 2005-10-20 Schwarze Pumpe Energiewerke Ag Verfahren der flexiblen und integrierten Reststoffvergasung
CN1054080C (zh) * 1995-09-07 2000-07-05 华东理工大学 带有旋流器的三通道组合式水煤浆气化喷嘴
DE19608093C2 (de) * 1996-03-02 2000-08-10 Krc Umwelttechnik Gmbh Verfahren zur Verwertung von Rest- und Abfallstoffen sowie heizwertarmen Brennstoffen in einem Zementofen
CN101003755B (zh) * 2006-01-19 2010-09-29 神华集团有限责任公司 一种多喷嘴气化炉及其气化方法
DE102006059149B4 (de) * 2006-12-14 2009-06-25 Siemens Ag Flugstromreaktor zur Vergasung fester und flüssiger Energieträger
DE102007006981B4 (de) * 2007-02-07 2009-01-29 Technische Universität Bergakademie Freiberg Verfahren, Vergasungsreaktor und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226034C1 (de) * 1992-08-06 1994-02-17 Schwarze Pumpe Energiewerke Ag Kombiniertes Verfahren zur Vergasung von festen, pastösen und flüssigen Rest- und/oder Abfallstoffen
RU2193591C2 (ru) * 1998-07-01 2002-11-27 Ноэлл - Крк Энерги - Унд Умвельттехник Гмбх Устройство для газификации углеродсодержащих топлив, остатков обработки и отходов (варианты)
EP1749872A2 (de) * 2005-07-28 2007-02-07 CHOREN Industries GmbH Verfahren zur endothermen Vergasung von Kohlenstoff
RU2333929C1 (ru) * 2007-02-26 2008-09-20 Институт химии и химической технологии СО РАН (ИХХТ СО РАН) Способ и установка для газификации твердого топлива
WO2008110592A1 (en) * 2007-03-15 2008-09-18 Shell Internationale Research Maatschappij B.V. Gasification reactor vessel with inner multi-pipe wall and several burners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2695180C1 (ru) * 2016-03-04 2019-07-22 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Двухступенчатый газогенератор и способ газификации с универсальностью относительно перерабатываемого сырья

Also Published As

Publication number Publication date
AU2010294844A1 (en) 2012-04-05
DE102009041854A1 (de) 2011-03-24
CN102549117A (zh) 2012-07-04
CA2774445A1 (en) 2011-03-24
EP2478072A2 (de) 2012-07-25
KR20120093881A (ko) 2012-08-23
WO2011032663A2 (de) 2011-03-24
UA107470C2 (ru) 2015-01-12
TW201116616A (en) 2011-05-16
RU2012113135A (ru) 2013-11-10
ZA201202798B (en) 2012-12-27
AU2010294844B2 (en) 2015-05-07
TWI500755B (zh) 2015-09-21
BR112012005838A2 (pt) 2017-05-30
US20120266539A1 (en) 2012-10-25
WO2011032663A3 (de) 2011-12-08

Similar Documents

Publication Publication Date Title
CA2739498C (en) Gasification system and process with staged slurry addition
US9051522B2 (en) Gasification reactor
EP2321387B1 (en) Two stage entrained gasification system and process
US20070051043A1 (en) Method and device for producing synthesis by partial oxidation of slurries made from fuels containing ash with partial quenching and waste heat recovery
JP2000140800A (ja) 廃棄物のガス化処理装置
WO2013165122A1 (ko) 비 용융 및 부분 용융형 분류층 가스화기
RU2553156C2 (ru) Способ объединенной газификации остатков жидкого и твердого топлива
JP5450800B2 (ja) 石炭の熱分解ガス化方法および石炭の熱分解ガス化装置
JP6637614B2 (ja) 2段階ガス化装置及び原料自由度を有するガス化プロセス
US4778485A (en) POX process with high temperature desulfurization of syngas
US8252073B2 (en) Tar-free gasification system and process
CN214654699U (zh) 含碳物质的超细颗粒气化系统
AU2011301418A1 (en) Method for generating synthesis gas

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170910