RU2550343C1 - Способ извлечения радионуклидов и микроэлементов - Google Patents

Способ извлечения радионуклидов и микроэлементов Download PDF

Info

Publication number
RU2550343C1
RU2550343C1 RU2013151987/07A RU2013151987A RU2550343C1 RU 2550343 C1 RU2550343 C1 RU 2550343C1 RU 2013151987/07 A RU2013151987/07 A RU 2013151987/07A RU 2013151987 A RU2013151987 A RU 2013151987A RU 2550343 C1 RU2550343 C1 RU 2550343C1
Authority
RU
Russia
Prior art keywords
humic acid
solution
radionuclides
microelements
cyanoferrate
Prior art date
Application number
RU2013151987/07A
Other languages
English (en)
Other versions
RU2013151987A (ru
Inventor
Евгений Валентинович Поляков
Илья Владимирович Волков
Николай Александрович Хлебников
Виктор Павлович Ремез
Игорь Александрович Бердников
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2013151987/07A priority Critical patent/RU2550343C1/ru
Application granted granted Critical
Publication of RU2550343C1 publication Critical patent/RU2550343C1/ru
Publication of RU2013151987A publication Critical patent/RU2013151987A/ru

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л. Техническим результатом является возможность повышения степени очистки от радионуклидов и микроэлементов загрязненных объектов радиохимической промышленности. 1 табл.

Description

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств.
Известен способ извлечения радионуклидов из водных растворов в динамическом режиме с помощью композиционного неорганического сорбента, содержащего немагнитную фракцию продукта переработки металлургического шлака, имеющего следующий состав: силикат кальция Ca2SiO4; оксид железа-лития Li0,28Fe21/34O32; коэзит SiO2; железистый гроссуляр Ca3Al1,332Fe0,668Si3O12; рингвудит Fe2SiO4; алюмосиликат натрия Na14,88Al15,26Si32,74O96; при этом процесс осуществляют при начальном значении pH не менее 2 и конечном значении pH не более 14 (патент RU 2330340, МПК G21F 9/12, 2008 год).
Недостатками известного способа являются недостаточно высокая степень очистки от радионуклидов сбросных водных растворов радиохимических производств, а также недостаточно широкий спектр сорбируемых элементов.
Известен способ очистки от радионуклидов водной технологической среды атомных производств путем фильтрации воды через гранулированную загрузку ферроцианидсодержащего сорбента, содержащего 0,2-2 масс.% гидразина; 35-48 масс.% воды и 20-35 масс.% ферроцианида никеля состава Me(I)4-2x[NixFe(CN)6, где Me(I)-Li+, Na+, K+, NH4+ или их смесь; остальное - гидроксид циркония (патент RU 2399974, МПК G21F 9/12, 2010 год) (прототип).
К недостаткам известного способа относятся возможность его применения только для очистки радионуклидов цезия, а также недостаточно высокая степень очистки (1,9·104-5,8·105).
Таким образом, перед авторами стояла задача разработать способ извлечения радионуклидов и микроэлементов как из жидких, так и из твердых объектов радиохимических производств, обеспечивающий широкий спектр извлекаемых элементов наряду с высокой степенью их извлечения.
Поставленная задача решена в способе извлечения радионуклидов и микроэлементов, включающем контактирование с сорбентом на основе цианоферрата переходного металла, в котором контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л.
В настоящее время из патентной и научно-технической литературы не известен способ извлечения радионуклидов и микроэлементов из загрязненных твердых и жидких объектов радиохимических производств с использованием сорбента в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л, при соотношении Тсорб:Ж не менее 0,001 кг/л.
Проведенные авторами исследования позволили установить, что использование суспензии порошка цианоферрата переходного металла в растворе гуминовой кислоты приводит к одновременному сорбционному извлечению не только ионов цезия и стронция, но также дополнительно большого числа ионов других микроэлементов - часто находящихся в радиоактивных отходах в результате попадания туда продуктов деления и активации (Co, Mn, Fe, Zr, Nb, U, Th, Y, La, РЗМ).
В основе предлагаемого технического решения лежит обнаруженное авторами усиление сорбционной специфичности (сродства) цианоферратов переходных металлов к катионам s-, p-, d- и f-элементов на уровне микроконцентраций под действием гуминовой кислоты. Это объясняется тем, что в присутствии гуминовой кислоты коэффициент распределения Kd (мг/г) указанных микроэлементов по отношению к цианоферратам переходных металлов возрастает на 1-3 порядка по величине вследствие того, что микроэлементы сорбируются не в виде простых аква-ионов, а в виде комплексов с гуминовой кислотой. Причем сама гуминовая кислота практически не сорбируется цианоферратом переходного металла. Здесь проявляется особенность гуминовой кислоты как представителя природных органических многофункциональных соединений: являясь комплексообразователем для всех ионов химических элементов в водных растворах, гуминовая кислота тем не менее не подавляет (как большинство известных лигандов), а усиливает сорбционное сродство образуемых комплексов с цианоферратами.
Экспериментальным путем авторами установлены количественные пределы содержания гуминовой кислоты, обеспечивающие увеличение коэффициента распределения. Так, при снижении содержания гуминовой кислоты менее 0,15 г/л наблюдается снижение коэффициента распределения, что обусловлено подавлением комплексообразования микроэлементов с гуминовой кислотой и, как следствие, подавлением их сорбции. При повышении содержания гуминовой кислоты более 0,25 г/л также наблюдается снижение коэффициента распределения, что обусловлено образованием особопрочных комплексов микроэлементов с димерной формой гуминовой кислоты, что подавляет их сорбцию.
На фиг.1 отображена зависимость коэффициента распределения (Kd) при сорбции микроэлементов Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Sr, Zr, Cs, Ce, Nd, Th, U из пробы речной воды Белоярского водохранилища (Свердловская область) порошком берлинской лазури Fe4[Fe(CN)6]3 со средним размером частиц 200 мкм в зависимости от концентрации гуминовой кислоты в воде (pH=7,6; 23°C; масса сорбента - 0,20 г; объем раствора - 300 мл).
Предлагаемый способ может быть осуществлен следующим образом. Готовят суспензию путем добавления в раствор гуминовой кислоты с концентрацией 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта цианоферрата переходного металла в количестве, обеспечивающем соотношение Тсорб:Ж не менее 0,001 кг/л. Затем приводят в контакт с обрабатываемым объектом: выливают в обрабатываемый раствор или приводят в контакт с поверхностью обрабатываемого объекта. Предлагаемое техническое решение может быть реализовано в замкнутом объеме (статика сорбции в реакторе) или в проточной системе (динамика сорбции в фильтрационной колонке). В первом случае в реактор с очищаемым раствором вносят суспензию предлагаемого состава, после перемешивания дают выдержку для осаждения осадка, очищенный раствор с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.
Во втором случае в трубопровод с очищаемым раствором подают суспензию, содержащую гуминовую кислоту и цианоферрат переходного металла. Раствор, перемешиваемый с суспензией, подают на вход колонки с фильтром из порошка того же самого цианоферрата переходного металла. В результате пропускания через фильтр раствора фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок с фильтра колонки направляют на сушку и кондиционирование для последующего захоронения.
Предлагаемый способ может быть использован для десорбции радионуклидов и микроэлементов с поверхности твердых объектов, например, со стен реактора. В этом случае очищаемую поверхность приводят в контакт с суспензией, содержащей гуминовую кислоту и цианоферрат переходного металла. После обработки поверхности суспензию сливают и пропускают через колонку с фильтрующим дном. Фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки, сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.
Предлагаемый способ относится к "зеленой химии", поскольку гуминовые кислоты являются природно-совместимыми химическими веществами, способными к включению в естественные биохимические реакции в почвах и гидрологических системах. Именно поэтому фильтраты с остатками гуминовой кислоты можно перемещать непосредственно в окружающую среду, например, выливать в грунт или речную воду.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 45 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Разбавление этого объема в пробе соответствует концентрации 0,15 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Тсорб:Ж=4,4:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке по анализу состава отделенного раствора методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):
Figure 00000001
,
где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.
Пример 2. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 75 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Вводят этот объем гуминовой кислоты в пробу речной воды, что соответствует концентрации 0,25 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Tсорб:Ж=2,7:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):
Figure 00000001
,
где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.
В таблице представлены сравнительные коэффициенты распределения Kd, полученные при использовании предлагаемого способа и способа-прототипа.
Таблица
Элементы Kd (предлагаемый способ) Kd (способ- прототип) Kd (предлагаемый способ)
Kd(прототип) отн. едн.
Li 80 <1 >80
Be 4500 <1 >4500
Mg 2200 300 7
Al 11000 370 30
Si 2500 <1 >2500
Ca 2400 500 5
Sc 1900 <1 >1900
Ti 4000 <1 >4000
V 38000 <1 >38000
Cr 11000 <1 >11000
Mn 19000 7000 3
Co 4100 120 34
Ni 7700 100 77
Sr 4700 <60 >70
Y 4500 <1 >4500
Zr 5200 <1 >5200
Cs 4200000 5800000 0,7
Ba 29100 <10 >2900
Ce 30000 <10 >3000
Nd 30500 <10 >3000
Th 31000 <10 >3100
U 7700 1500 5
Таким образом, предлагаемый способ позволяет значительно увеличить степень очистки от радионуклидов и микроэлементов загрязненные объекты радиохимической промышленности.

Claims (1)

  1. Способ извлечения радионуклидов и микроэлементов, включающий контактирование с сорбентом на основе цианоферрата переходного металла, отличающийся тем, что контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л.
RU2013151987/07A 2013-11-21 2013-11-21 Способ извлечения радионуклидов и микроэлементов RU2550343C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013151987/07A RU2550343C1 (ru) 2013-11-21 2013-11-21 Способ извлечения радионуклидов и микроэлементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013151987/07A RU2550343C1 (ru) 2013-11-21 2013-11-21 Способ извлечения радионуклидов и микроэлементов

Publications (2)

Publication Number Publication Date
RU2550343C1 true RU2550343C1 (ru) 2015-05-10
RU2013151987A RU2013151987A (ru) 2015-05-27

Family

ID=53284928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013151987/07A RU2550343C1 (ru) 2013-11-21 2013-11-21 Способ извлечения радионуклидов и микроэлементов

Country Status (1)

Country Link
RU (1) RU2550343C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324411A (zh) * 2021-11-26 2022-04-12 中国辐射防护研究院 一种实验室沉积物和地表水体系中分配系数的测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1034817A (en) * 1962-06-29 1966-07-06 English Electric Co Ltd Decontamination of radioactive solutions
RU2080668C1 (ru) * 1993-07-13 1997-05-27 Леонтьев Александр Иванович Экстрагент-сорбент для очистки почвы
DE19642839A1 (de) * 1996-10-17 1998-04-30 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Immobilisierung von radioaktiven Wasserinhaltsstoffen
RU2330340C2 (ru) * 2006-03-13 2008-07-27 Федеральное государственное унитарное предприятие "РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР - ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТЕХНИЧЕСКОЙ ФИЗИКИ ИМЕНИ АКАДЕМИКА Е.И. ЗАБАБАХИНА" (ФГУП РФЯЦ-ВНИИТФ) Способ извлечения радионуклидов из водных растворов
RU2399974C1 (ru) * 2009-05-19 2010-09-20 Закрытое акционерное общество Производственно-научная фирма "Термоксид" Способ очистки от радионуклидов водной технологической среды атомных производств

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1034817A (en) * 1962-06-29 1966-07-06 English Electric Co Ltd Decontamination of radioactive solutions
RU2080668C1 (ru) * 1993-07-13 1997-05-27 Леонтьев Александр Иванович Экстрагент-сорбент для очистки почвы
DE19642839A1 (de) * 1996-10-17 1998-04-30 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Immobilisierung von radioaktiven Wasserinhaltsstoffen
RU2330340C2 (ru) * 2006-03-13 2008-07-27 Федеральное государственное унитарное предприятие "РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР - ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТЕХНИЧЕСКОЙ ФИЗИКИ ИМЕНИ АКАДЕМИКА Е.И. ЗАБАБАХИНА" (ФГУП РФЯЦ-ВНИИТФ) Способ извлечения радионуклидов из водных растворов
RU2399974C1 (ru) * 2009-05-19 2010-09-20 Закрытое акционерное общество Производственно-научная фирма "Термоксид" Способ очистки от радионуклидов водной технологической среды атомных производств

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324411A (zh) * 2021-11-26 2022-04-12 中国辐射防护研究院 一种实验室沉积物和地表水体系中分配系数的测定方法

Also Published As

Publication number Publication date
RU2013151987A (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
Avramenko et al. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides
Nadaroglu et al. Removal of copper from aqueous solution using red mud
CN109847691A (zh) 一种镧铁改性沸石除磷吸附剂及其制备方法与应用
Du et al. Cr (VI) retention and transport through Fe (III)-coated natural zeolite
Thomson et al. Removal of metals and radionuclides using apatite and other natural sorbents
Kantar et al. Effect of pH-buffering on Cr (VI) reduction with pyrite in the presence of various organic acids: continuous-flow experiments
Malovanyy et al. Adsorption extraction of chromium ions (III) with the help of bentonite clays
CA2101261C (en) Method of composite sorbents manufacturing
CN101505865A (zh) 磁性化学吸收剂、其制造方法、再生方法及废液处理方法
Zhang et al. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials
Namasivayam et al. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste
CN108479689A (zh) 一种去除废水中砷酸根离子的吸附剂
RU2467419C1 (ru) Способ очистки кубовых остатков жидких радиоактивных отходов от радиоактивного кобальта и цезия
CN102553516A (zh) 一种用于处理含砷废水的化学吸附剂及其制备方法
RU2297055C1 (ru) Способ переработки кубового остатка жидких радиоактивных отходов
Saito et al. Oxidative removal of soluble divalent manganese ion by chlorine in the presence of superfine powdered activated carbon
RU2313147C1 (ru) Способ переработки жидких радиоактивных отходов низкого уровня активности
RU2550343C1 (ru) Способ извлечения радионуклидов и микроэлементов
Kuhlmeier et al. Treatability of inorganic arsenic and organoarsenicals in groundwater
Wang et al. Selective recovery of rare earth metals from acid mine drainage by pyrrolidine diglycolamide silica column
RU2399974C1 (ru) Способ очистки от радионуклидов водной технологической среды атомных производств
US20190322554A1 (en) Titania-based treatment solution and method of promoting precipitation and removal of heavy metals from an aqueous source
JP2014008477A (ja) フッ化物イオン除去方法
US20170341954A1 (en) Uranium capture on inorganic-organic graphite-based hybrid material: adsorbent material for mining reclamation and domestic water uses
Pshinko et al. Concentration of U (VI) on a complexing sorbent for its determination by the spectrophotometric method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171122