RU2549415C2 - Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана - Google Patents
Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана Download PDFInfo
- Publication number
- RU2549415C2 RU2549415C2 RU2012152008/05A RU2012152008A RU2549415C2 RU 2549415 C2 RU2549415 C2 RU 2549415C2 RU 2012152008/05 A RU2012152008/05 A RU 2012152008/05A RU 2012152008 A RU2012152008 A RU 2012152008A RU 2549415 C2 RU2549415 C2 RU 2549415C2
- Authority
- RU
- Russia
- Prior art keywords
- tetrafluoride
- uranium
- mixture
- hours
- temperature
- Prior art date
Links
Images
Landscapes
- Silicon Compounds (AREA)
Abstract
Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана, в том числе обедненного, в октаоксид триурана с получением ценного прекурсора поликристаллического кремния - тетрафторида кремния. Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана заключается в том, что смешивают тетрафторид урана с диоксидом кремния, который предварительно подвергают механоактивации в присутствии фторида натрия 0,5-3% масс., гомогенизируют смесь в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и проводят термообработку гранул в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C. Изобретение обеспечивает высокий выход высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, а также снижение температуры процесса, что позволяет использовать более дешевые конструкционные материалы. 1 ил., 1 табл., 16 пр.
Description
Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана, в том числе обедненного, в U3O8 с получением ценного прекурсора поликристаллического кремния - тетрафторида кремния:
Наиболее близким к предлагаемому способу получения (прототипом) тетрафторида кремния и диоксида урана из тетрафторида урана является способ, включающий механообработку в дезинтеграторе при относительной скорости 5÷15 тыс.об/мин в течение 7-20 мин смеси тетрафторида урана и диоксида кремния в мольном соотношении (1,05-1,10):1, термообработку смеси при 600-650°C в трубчатой печи (без перемешивания фаз) в воздушной среде в течение 1-2 ч и последующее обесфторивание твердого продукта водяным паром при 500-550°С в течение 1 ч при перемешивании твердой фазы (Патент РФ 2412908 С1, МПК C01G 43/01, С01В 33/107).
Недостатками прототипа являются:
- нестехиометрическое соотношение реагентов, в результате которого получаемый U3O8 загрязняется фтором (~1,3% F- в виде фторида уранила), что обусловливает необходимость проведения высокотемпературной операции обесфторивания твердого продукта;
-невысокий выход SiF4 при использовании кристаллических форм диоксида кремния (кварц, кристобалит, тридимит и др.), особенно при осуществлении процесса конверсии в условиях отсутствия перемешивания смеси реагентов (лодочка, тигель) при температуре ниже 600°C;
- высокие температуры проведения процесса, при которых в качестве конструкционного материала аппарата необходимо использование дорогостоящих сплавов на основе никеля.
Техническим результатом предлагаемого изобретения является повышение выхода высокочистого, не загрязненного летучими соединениями урана, тетрафторида кремния при стехиометрическом соотношении UF4:SiO2 (1:1), снижение температуры процесса, позволяющее использовать более дешевые конструкционные материалы для аппаратурного оформления процесса.
Технический результат достигается тем, что в способе получения тетрафторида кремния и октаоксида триурана тетрафторид урана смешивают с диоксидом кремния с последующей термообработкой в воздушной среде, причем диоксид кремния предварительно подвергают механоактивации в присутствии фторида натрия (0,5-3% масс.), гомогенизируют с тетрафторидом урана в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C, а термообработку гранул проводят в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C.
Изобретение реализуется следующим образом (Фиг. 1). Механическую активацию диоксида кремния с целью увеличения его удельной поверхности и повышения его реакционной способности проводят в аппарате-измельчителе (аттриторе, планетарной, вибрационной, шаровой мельнице или других аппаратах). Длительность и условия механической активации диоксида кремния определяются типом аппарата-измельчителя и формой диоксида кремния (кристаллический или рентгеноаморфный SiO2). В случае использования кристаллических форм SiO2 механическую активацию диоксида кремния проводят в присутствии добавки NaF (0,5-3% масс.). Далее в течение заданного времени осуществляется операция гомогенизации смеси реагентов в любом подходящем устройстве (смеситель типа «турбула», дезинтегратор и т.п.), затем - гранулирование (размер гранул ~ 1 мм) гомогенизированной смеси (шихты) любым известным способом для улучшения контакта между частицами реагентов и уменьшения пылеуноса. После гранулирования материал поступает в аппарат для сушки, которую проводят в токе сухого воздуха или в вакууме при температуре 250-300°C, либо любым другим известным способом. Сушка гранул позволяет минимизировать содержание воды в системе и тем самым снизить вероятность протекания побочных реакций, в частности, с образованием фтороводорода. После сушки гранулы направляют на стадию конверсии, которую можно проводить как в аппарате с отсутствием перемешивания материала (например, тигель), так и с перемешиванием (например, вращающаяся трубчатая печь). Процесс конверсии тетрафторида урана в октаоксид триурана осуществляется в токе осушенного воздуха при температуре ниже 600°C в течение 1-2 часов. Выделяющийся высокочистый газообразный тетрафторид кремния выводится из реактора с продувочным газом и улавливается путем криоконденсации, или сорбции (поглощения) на фториде натрия (калия), или иным известным способом.
Твердый продукт - октаоксид триурана собирают в любые подходящие емкости. По результатам химического анализа U3O8 содержание в нем Na не превышает 5-10-2%, что не требует дополнительной очистки U3O8.
Соблюдение стехиометрического соотношения реагентов при полноте протекании реакции исключает необходимость дополнительного высокотемпературного обесфторивания твердого продукта (U3O8), а низкое содержание натрия исключает необходимость очистки от этой примеси.
Изобретение иллюстрируется следующими примерами.
Пример 1 (по прототипу). Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 10,0 г смешивают с 52,3 г тетрафторида урана в дезинтеграторе в течение 10 минут (9000 об/мин). Полученную смесь помещают в аппарат без перемешивания (лодочка, трубчатая печь), через который продувают воздух. Аппарат нагревают со скоростью 15°C/мин до 650°C и выдерживают смесь в течение 2 ч. Выход по SiF4 составляет 35%.
Пример 2. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту сушат при 250°C в вакууме в течение 2 ч и помещают в аппарат без перемешивания (лодочка, трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 650°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 65%.
Пример 3. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в присутствии 1% NaF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту сушат при 250°C в вакууме в течение 2 ч и помещают в аппарат без перемешивания (лодочка, трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 90%.
Пример 4. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в присутствии 1% NaF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°C в вакууме в течение 2 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Пример 5. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г в присутствии 3,0% NaF (1,2 г) подвергают механической активации в центробежной планетарной мельнице в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в вакууме в течение 2 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Пример 6 (по прототипу). Рентгеноаморфный диоксид кремния (SiO2 89%) массой 40,0 г смешивают в дезинтеграторе в течение 10 минут (8000 об/мин) с 186,3 г тетрафторида урана. Полученную смесь помещают в аппарат без перемешивания (лодочка, трубчатая печь), через который продувают воздух. Аппарат нагревают со скоростью 10°С/мин до 600°C и выдерживают смесь в течение 1 ч. Выход по SiF4 составляет 65%.
Пример 7. Рентгеноаморфный диоксид кремния (SiO2 89%) массой 35,0 г подвергают механической активации в вибрационной мельнице в течение 15 мин, смешивают его с 163,0 г тетрафторида урана, гомогенизированную смесь сушат при 270°C в вакууме в течение 3 ч, после чего помещают в аппарат без перемешивания (лодочка, трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10°C/мин до 500°C и выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 90%.
Пример 8. Рентгеноаморфный диоксид кремния (SiO2 89%) массой 100,0 г подвергают механической активации в вибрационной мельнице в течение 15 мин, смешивают его с 465,7 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 270°C в вакууме в течение 3 ч, после чего помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10°C/мин до 500°C и выдерживают материал при этой температуре 1 ч. Выход по SiF4 составляет 100%.
Пример 9. Диоксид кремния в форме кристобалита (99% SiO2) массой 30,0 г в присутствии 0,5% NaF (0,15 г) подвергают механической активации в центробежной планетарной мельнице в течение 45 мин, после чего его смешивают с 155,43 г тетрафторида урана, гомогенизированную смесь гранулируют, сушат при 300 в токе воздуха в течение 1 ч, после чего помещают шихту в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10°C/мин до 575°C и выдерживают 2 ч. Выход по S1F4 составляет 100%.
Пример 10. Диоксид кремния в форме кристобалита (99% SiO2) массой 30,0 г в присутствии 0,5% NaF (0,9 г) подвергают механической активации в центробежной планетарной мельнице в течение 45 мин, после чего его смешивают с 155,43 г тетрафторида урана, гомогенизированную смесь гранулируют, сушат при 300°C в токе воздуха в течение 1 ч, после чего помещают шихту в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10°C/мин до 575°C и выдерживают 2 ч. Выход по SiF4 составляет 85%.
Пример 11. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в присутствии 3,5% NaF (1,05 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°C в вакууме в течение 2 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Пример 12. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в присутствии 1% NaF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 220°C в вакууме в течение 2 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 90%.
Пример 13. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в центробежной планетарной мельнице в присутствии 1% NaF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 330°C в вакууме в течение 2 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Пример 14. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г в присутствии 3,0% NaF (1,2 г) подвергают механической активации в центробежной планетарной мельнице в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°C в вакууме в течение 0,5 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 85%.
Пример 15. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г в присутствии 3,0% NaF (1,2 г) подвергают механической активации в центробежной планетарной мельнице в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°C в вакууме в течение 2,5 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 600°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Пример 16. Диоксид кремния в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г в присутствии 3,0% NaF (1,2 г) подвергают механической активации в центробежной планетарной мельнице в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°C в вакууме в течение 2,0 ч, помещают в аппарат без перемешивания (тигель, электропечь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°C/мин до 650°C и выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.
Условия проведения процесса и выход SiF4 сведены в таблицу 1.
Из приведенных примеров видно, что:
- присутствие NaF в количестве 0,3% снижает выход SiF4 на 15% за счет снижения удельной поверхности смеси SiO2 + NaF (опыт 10), а превышение содержания NaF в смеси до 3,5% не сказывается на выходе готового продукта, но повышает содержание натрия в октаоксиде триурана до 8·10-2% (опыт 11);
- уменьшение температуры сушки гранул до 220°C приводит к снижению выхода готового продукта до 90%, а повышение температуры сушки до 330°C никак не сказывается на выходе SiF4 (опыты 12-13);
- снижение времени термообработки гранул до 0,5 ч приводит к уменьшению выхода SiF4 до 85%, в то время как увеличение времени термообработки до 2,5 ч не сказывается на выходе SiF4 (опыты 14-15);
- повышение температуры термообработки гранул до 650°C (опыт 16) не сказывается на выходе готового продукта, но может привести к уменьшению коррозионной стойкости оборудования.
Как видно из приведенных примеров, заявленный способ получения высокочистого тетрафторида кремния и октаоксида триурана из тетрафторида урана:
- не требует дополнительных операций по высокотемпературному обесфториванию твердого продукта реакции, поскольку процесс проводится при стехиометрическом соотношении реагентов;
- обеспечивает высокий (до 100%) выход высокочистого тетрафторида кремния при температуре не выше 600°C даже в аппарате без перемешивания при использовании как рентгеноаморфных, так и кристаллических форм диоксида кремния;
- позволяет использовать более дешевые, по сравнению с никелевыми сплавами, конструкционные материалы.
Claims (1)
- Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана путем его смешения с диоксидом кремния с последующей термообработкой в воздушной среде, отличающийся тем, что диоксид кремния предварительно подвергают механоактивации в присутствии фторида натрия (0,5-3% масс.), гомогенизируют с тетрафторидом урана в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C, причем термообработку гранул проводят в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152008/05A RU2549415C2 (ru) | 2012-12-05 | 2012-12-05 | Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152008/05A RU2549415C2 (ru) | 2012-12-05 | 2012-12-05 | Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012152008A RU2012152008A (ru) | 2014-06-10 |
RU2549415C2 true RU2549415C2 (ru) | 2015-04-27 |
Family
ID=51214131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012152008/05A RU2549415C2 (ru) | 2012-12-05 | 2012-12-05 | Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2549415C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2614712C1 (ru) * | 2015-12-28 | 2017-03-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4615872A (en) * | 1984-09-05 | 1986-10-07 | D. Swarovski & Co. | Process for producing silicon tetrafluoride |
US5888468A (en) * | 1998-06-05 | 1999-03-30 | Starmet Corp. | Method for producing silicon tetrafluoride from uranium tetrafluoride |
US5901338A (en) * | 1998-06-05 | 1999-05-04 | Starmet Corporation | Method for producing uranium oxide and silicon tetrafluoride from uranium tetrafluoride, silicon, and a gaseous oxide |
RU2412908C1 (ru) * | 2009-09-08 | 2011-02-27 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана |
-
2012
- 2012-12-05 RU RU2012152008/05A patent/RU2549415C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4615872A (en) * | 1984-09-05 | 1986-10-07 | D. Swarovski & Co. | Process for producing silicon tetrafluoride |
US5888468A (en) * | 1998-06-05 | 1999-03-30 | Starmet Corp. | Method for producing silicon tetrafluoride from uranium tetrafluoride |
US5901338A (en) * | 1998-06-05 | 1999-05-04 | Starmet Corporation | Method for producing uranium oxide and silicon tetrafluoride from uranium tetrafluoride, silicon, and a gaseous oxide |
RU2412908C1 (ru) * | 2009-09-08 | 2011-02-27 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2614712C1 (ru) * | 2015-12-28 | 2017-03-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана |
Also Published As
Publication number | Publication date |
---|---|
RU2012152008A (ru) | 2014-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KATO et al. | New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO2 absorbent | |
CN101570332B (zh) | 一种高纯度、低放射性球形硅微粉的制备方法 | |
Carella et al. | High lithium content silicates: A comparative study between four routes of synthesis | |
JP2008273828A (ja) | Uo2の2工程乾式製法 | |
CN101544374B (zh) | 一种制备四氟化硅的方法 | |
CN110740972B (zh) | 生产铀硅化物的方法 | |
CN108383131B (zh) | 一种利用固相转化法将粉煤灰制备成不同沸石的方法 | |
RU2549415C2 (ru) | Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана | |
CN103818897A (zh) | 一种用兰炭制备多层石墨烯的方法 | |
RU2412908C1 (ru) | Способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана | |
RU2538700C2 (ru) | Способ получения тетрафторида кремния и диоксида урана из тетрафторида урана | |
JP5354148B2 (ja) | リチウム造粒体製造用粉末の製造方法 | |
Sakurai et al. | Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle | |
RU2614712C1 (ru) | Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана | |
Guo et al. | Preparation of mesoporous zirconia microspheres as inert matrix | |
CN102134078A (zh) | 一种硫酸石英砂闭环生产四氟化硅的方法 | |
CN112044365B (zh) | 一种用于制备氮化铀的流化床装置及其使用方法 | |
Liu et al. | Reduction mechanism of iron titanium based oxygen carriers with H 2 for chemical looping applications–a combined experimental and theoretical study | |
US5901338A (en) | Method for producing uranium oxide and silicon tetrafluoride from uranium tetrafluoride, silicon, and a gaseous oxide | |
CN101786607A (zh) | 利用生产硅烷过程中生成的副产物制备氟化氢的方法 | |
JP2022135413A (ja) | ウラン吸着材、その製造方法、それを用いた被験水溶液からウランを抽出する方法、および、ウラン含有鉱物からウランを回収する方法 | |
CN105668563B (zh) | 基于酸雾与气磨石墨的原位石墨烯的制备方法 | |
JP5489766B2 (ja) | 廃液からアルカリ金属ケイフッ化物と硝酸を製造する方法 | |
CN112191090A (zh) | 一种用水泥基材料固定二氧化碳的方法及装置 | |
Polenov et al. | Solid-phase conversion of depleted uranium tetrafluoride into oxides using mechanoactivated quartz with the addition of sodium fluoride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171206 |