RU2543994C2 - Формирование ахроматического фазоконтрастного изображения - Google Patents

Формирование ахроматического фазоконтрастного изображения Download PDF

Info

Publication number
RU2543994C2
RU2543994C2 RU2011143362/07A RU2011143362A RU2543994C2 RU 2543994 C2 RU2543994 C2 RU 2543994C2 RU 2011143362/07 A RU2011143362/07 A RU 2011143362/07A RU 2011143362 A RU2011143362 A RU 2011143362A RU 2543994 C2 RU2543994 C2 RU 2543994C2
Authority
RU
Russia
Prior art keywords
diffraction grating
phase
energy
source
detector
Prior art date
Application number
RU2011143362/07A
Other languages
English (en)
Other versions
RU2011143362A (ru
Inventor
Эвальд РЕССЛЬ
Томас КЕЛЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2011143362A publication Critical patent/RU2011143362A/ru
Application granted granted Critical
Publication of RU2543994C2 publication Critical patent/RU2543994C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/50Optics for phase object visualisation
    • G02B27/52Phase contrast optics
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Изобретение относится к области рентгенотехники. Устройство формирования фазоконтрастного изображения для исследования представляющего интерес объекта (100) содержит источник (101) для генерации пучка излучения; детектор (102) для детектирования излучения после прохождения им представляющего интерес объекта (103); первую фазовую дифракционную решетку (104), расположенную между источником (101) и детектором (102) и имеющую первый шаг; вторую фазовую дифракционную решетку (105), расположенную между источником (101) и детектором (102) и имеющую второй шаг; при этом первый шаг отличается от второго шага; причем первый шаг соответствует первой энергии излучения; второй шаг соответствует второй энергии излучения; первая фазовая дифракционная решетка (104) имеет расстояние Тальбота для первой энергии; а вторая фазовая дифракционная решетка (105) имеет то же самое расстояние Тальбота для второй энергии. Таким образом, устройство формирования изображения обеспечивает фазоконтрастную информацию для двух различных энергий. Технический результат - возможность использования фазовой информации в более широкой энергетической полосе. 3 н. и 11 з.п. ф-лы, 4 ил.

Description

Область изобретения
Изобретение относится к формированию ахроматического фазоконтрастного изображения. В частности, изобретение относится к устройству формирования фазоконтрастного изображения для исследования представляющего интерес объекта, к модулю с фазовой дифракционной решеткой для устройства формирования фазоконтрастного изображения и к способу формирования фазоконтрастного изображения для исследования представляющего интерес объекта.
Предпосылки создания изобретения
Строгое ограничение для систем формирования фазоконтрастного изображения на основе решетки, таких как системы формирования фазоконтрастного рентгеновского изображения для жесткого рентгеновского излучения (от 15 до 30 кэВ), состоит в том, что система обычно должна быть предназначена для определенного значения энергии EM. Следовательно, такие системы будут использовать фазовую информацию в более или менее узкой полосе с шириной полосы, составляющей приблизительно 10% вблизи заданной энергии. Для маммографических систем типичные спектры гораздо шире по полосе, и необходимый выбор заданной энергии может значительно ограничивать в спектре часть энергии рентгеновского излучения, участвующую в процессе формирования фазоконтрастного изображения.
Краткое описание изобретения
Было бы желательно создать систему формирования изображения и способ, которые используют большее количество доступной энергии.
Изобретение относится к устройству формирования фазоконтрастного изображения для исследования представляющего интерес объекта, к модулю с фазовой дифракционной решеткой для устройства формирования фазоконтрастного изображения и к способу формирования фазоконтрастного изображения для исследования представляющего интерес объекта в соответствии с признаками независимых пунктов формулы изобретения. Дополнительные признаки приведенных в качестве примеров вариантов реализации изобретения заявляются в зависимых пунктах формулы изобретения.
Следует отметить, что признаки, которые описываются в дальнейшем для примера по отношению к устройству формирования изображения или модулю, также могут быть реализованы как стадии способа в соответствии с приводимыми в качестве примеров вариантами реализации изобретения, и наоборот.
В соответствии с приводимым в качестве примера вариантом реализации изобретения, предлагается устройство формирования фазоконтрастного изображения для исследования представляющего интерес объекта, причем устройство содержит источник, детектор, первую фазовую дифракционную решетку (G1) и вторую фазовую дифракционную решетку (G1'). Источник предназначен для генерации пучка излучения, в частности пучка полихроматического рентгеновского излучения. Детектор служит для детектирования излучения после прохождения им представляющего интерес объекта и первой и второй фазовых дифракционных решеток. Первая фазовая дифракционная решетка располагается между источником и детектором и имеет первый шаг, а вторая фазовая дифракционная решетка также располагается между источником и детектором и имеет второй шаг, где первый шаг отличается от второго шага.
Другими словами, может быть создано устройство формирования фазоконтрастного изображения, которое использует, по меньшей мере, две различные фазовые дифракционные решетки. Это дает возможность использовать фазовую информацию в более широком энергетическом диапазоне, например, при формировании дифференциального фазоконтрастного изображения (DPCI) на основе рентгеновского излучения.
Кроме того, две фазовые дифракционные решетки могут иметь различную высоту, т.е. различную толщину и/или углубления с различной глубиной.
В соответствии с другим, приведенным в качестве примера вариантом реализации изобретения, вторая фазовая дифракционная решетка расположена вблизи от первой фазовой дифракционной решетки. Например, две фазовые дифракционные решетки формируются как целая часть модуля с фазовыми дифракционными решетками.
В соответствии с еще одним, приведенным в качестве примера вариантом реализации изобретения, вторая фазовая дифракционная решетка располагается на предварительно заданном расстоянии от первой фазовой дифракционной решетки. Это также может помочь использовать фазоконтрастную информацию на большей ширине полосы, чем обычные 10%.
Следует отметить, что дополнительно могут быть предложены фазовые дифракционные решетки, которые отличаются по соответствующему шагу или/высотам.
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, обеспечивается третья дифракционная решетка, где третья дифракционная решетка представляет собой поглощательную дифракционную решетку, которая формирует часть детектора или располагается справа перед детектором. Третья дифракционная решетка имеет третий шаг и/или высоту, который отличается от первого шага и второго шага первой и второй дифракционных фазовых решеток.
В соответствии с еще одним, приведенным в качестве примера вариантом реализации настоящего изобретения, устройство формирования изображения дополнительно содержит четвертую дифракционную решетку, расположенную между источником и представляющим интерес объектом, где четвертая дифракционная решетка представляет собой поглощательную дифракционную решетку и имеет четвертый шаг, который отличается от первого шага и второго шага.
Эта решетка используется для генерации когерентного рентгеновского излучения. Рентгеновское излучение из трубки (даже каждая монохроматическая компонента) не может быть использовано для интерференции из-за недостатка когерентности. Данная решетка «генерирует когерентные лучи» путем разделения источника на более мелкие части (линейные источники).
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, первый шаг соответствует первой энергии излучения, излучаемой источником. Второй шаг соответствует второй энергии излучения. Кроме того, первая дифракционная фазовая решетка имеет расстояние Тальбота для первой энергии, и вторая дифракционная решетка имеет такое же расстояние Тальбота для второй энергии.
Таким образом, интенсивности для двух различных заданных энергий (первая энергия и вторая энергия, E1, E2) накладываются в месте расположения детектора для одной и той же величины расстояния dT Тальбота.
В соответствии с еще одним, приведенным в качестве примера, вариантом реализации настоящего изобретения поглощательная дифракционная решетка G2 имеет третий шаг, равный среднему гармоническому от величин шагов указанных двух дифракционных решеток: 2 Ч (первый шаг Ч второй шаг)/(первый шаг + второй шаг).
На детекторе, следовательно, будет иметь место суперпозиция модуляций двух интенсивностей. Это будет проявляться в биениях с большой и малой частотной компонентой. В процессе восстановления фазы нужно будет принимать во внимание эффект биений. В стандартной системе (Pfeiffer и др.) модуляция имеет тригонометрическую форму. В более общем случае, описанном здесь, происходит суперпозиция двух таких профилей с различной частотой, которые тем не менее детектируется, если выполняется пошаговое изменение фазы на протяжении одного полного периода биений.
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, первая энергия имеет величину в два раза больше второй энергии.
В соответствии с еще одним, приведенным в качестве примера, вариантом реализации настоящего изобретения, устройство формирования изображения приспособлено для использования в качестве маммографического устройства формирования изображения для исследования женской молочной железы.
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, источник представляет собой источник рентгеновского излучения, где устройство приспособлено для использования в качестве устройства формирования изображения с дифференциальным контрастом на основе рентгеновского излучения.
В соответствии с еще одним, приведенным в качестве примера вариантом реализации настоящего изобретения, устройство формирования изображения приспособлено для использования в качестве устройства формирования оптического изображения, где пучок энергии, используемой для зондирования объекта, представляет собой пучок оптического излучения с длиной волны в диапазоне, например, от 400 до 1400 нм.
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, создается модуль с фазовыми решетками для устройства формирования фазоконтрастного изображения для исследования представляющего интерес объекта, причем модуль содержит: первую фазовую дифракционную решетку, расположенную между источником устройства формирования изображения и детектором устройства формирования изображения, где первая фазовая дифракционная решетка имеет первый шаг, и вторую фазовую дифракционную решетку, расположенную между источником и детектором, где вторая фазовая дифракционная решетка имеет второй шаг, и где первый шаг отличается от второго шага.
Модуль с фазовыми решетками может быть сконструирован так, что расстояние между первой и второй фазовыми решетками может регулироваться электронным образом, с помощью блока управления. Кроме того, обе фазовые дифракционные решетки могут быть заменены различными фазовыми дифракционными решетками, или к модулю могут быть добавлены дополнительные фазовые дифракционные решетки. В соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения модуль содержит три различных фазовых дифракционных решетки, которые могут перемещаться с помощью блока управления для того, чтобы регулировать их расстояние по отношению друг к другу.
В соответствии с другим вариантом реализации настоящего изобретения предлагается способ формирования фазоконтрастного изображения для исследования объекта, представляющего интерес, содержащий стадии генерации источником пучка излучения, использования первой фазовой дифракционной решетки, имеющей первый шаг и расположенной между источником и детектором для создания первого изображения Тальбота, соответствующего первой энергии излучения, на расстоянии Тальбота от первой дифракционной решетки, использования второй фазовой дифракционной решетки, имеющей второй шаг и расположенной между источником и детектором для создания второго изображения Тальбота, соответствующего второй энергии излучения на том же расстоянии Тальбота от первой решетки, и детектирования с помощью детектора пучка излучения после прохождения им представляющего интерес объекта и первой и второй решеток, где первый шаг отличается от второго шага.
В соответствии с еще одним, приведенным в качестве примера вариантом реализации настоящего изобретения, способ дополнительно содержит стадию использования третьей фазовой дифракционной решетки, имеющей третий шаг и расположенной между источником и детектором, для создания третьего изображения Тальбота, соответствующего третьей энергии излучения, на том же расстоянии Тальбота от первой решетки, где третий шаг отличается от первого шага и второго шага.
Поглощающая решетка G0 может использоваться для получения когерентности, а другая поглощающая решетка G2 может использоваться для детектирования полос в целом. Стандартные детекторы не могут предложить достаточно высокое пространственное разрешение по отношению к непосредственному детектированию полос.
В соответствии с другим, приведенным в качестве примера вариантом реализации настоящего изобретения, способ дополнительно содержит стадию использования поглощающей решетки, имеющей шаг, который равен среднему гармоническому шагов двух решеток:
2 Ч (первый шаг Ч второй шаг)/(первый шаг + второй шаг), где поглощающая решетка является частью детектора.
Можно видеть, в качестве основной концепции согласно приведенному в качестве примера варианту реализации изобретения, что дополнительная фазовая дифракционная решетка G1' располагается прямо перед первой фазовой дифракционной решеткой G1 или позади нее, с шагом, отличным от шага решетки G1. Идея состоит в наложении интенсивностей для двух заданных энергий E1 и E2 в месте расположения детектора для одной и той же величины расстояния Тальбота.
Изобретение основано на заключении, что фазовый сдвиг данного слоя материала обратно пропорционален энергии излучения (для рентгеновского излучения). Следовательно, фазовая дифракционная решетка, предназначенная для генерации картины с постоянным фазовым сдвигом величины π при заданной энергии E2 будет давать фазовый сдвиг 2π для половины заданной энергии. Таким образом, может не быть измеряемого результата на монохроматической компоненте волны с энергией E1=E2/2. Для того чтобы сконструировать систему, которая также дает фазовый контраст для E1, другая дифракционная решетка G1' размещается прямо позади (или перед) решеткой G1.
Если вторая фазовая дифракционная решетка G1 удаляется, может быть получено дополнительное изображение, которое затем может быть удалено из оригинального изображения, полученного за счет использования обеих фазовых дифракционных решеток, для того чтобы выделить E2. Нужно отметить, что различение между вкладами двух энергий также может быть возможным при пошаговом изменении фазы с обеими решетками G1 и G1'.
Эти и другие аспекты настоящего изобретения станут очевидными и будут объяснены со ссылкой на варианты реализации, описанные здесь ниже.
Приведенные в качестве примера варианты реализации настоящего изобретения будут описаны далее со ссылкой на сопровождающие чертежи.
Краткое описание чертежей
Фиг. 1 показывает два спектра рентгеновского излучения после исследования ткани молочной железы толщиной 8 см.
Фиг. 2 показывает компоновку детектора и дифракционной решетки в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения.
Фиг. 3 показывает систему формирования изображения в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения.
Фиг. 4 показывает блок-схему способа в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения.
Подробное описание вариантов осуществления изобретения
Иллюстрации на чертежах являются схематичными и выполнены не без сохранения масштаба. На различных чертежах аналогичные или идентичные элементы имеют одни и те же ссылочные позиции.
Фиг. 1 показывает спектры рентгеновского излучения после прохождения им 8 см ткани молочной железы. Источником рентгеновского излучения является молибден с энергией 35 кэВ, длиной волны 13 мкм при фильтрации молибдена.
Горизонтальная ось 112 показывает энергию рентгеновского излучения в диапазоне от 10 кэВ до 35 кэВ. Вертикальная ось 113 показывает число отсчетов в условных единицах.
Верхняя кривая 114 показывает число отсчетов в случае, когда ткань молочной железы содержит 33% воды и 67% липидов, а нижняя кривая 115 показывает число отсчетов, когда ткань молочной железы содержит 50% воды и 50% липидов.
Два характеристических пика 116, 117 можно видеть приблизительно при 17,3 кэВ и 17,4 кэВ, и 19,7 кэВ и 20,0 кэВ соответственно.
Как можно видеть из спектра, изображенного на фиг. 1, устройство в соответствии с изобретением может преимущественно использовать два пика 116, 117 для формирования изображения, при использовании большого количества энергии, доступной для процесса формирования фазоконтрастного изображения.
Фиг. 2 показывает измерительную установку, содержащую четыре дифракционные решетки и детектор 109 излучения в соответствии с приведенным в качестве примера вариантом реализации настоящего изобретения.
Рентгеновские лучи или другие лучи электромагнитной энергии 110, например, излучаемые источником рентгеновского излучения (не изображен на фиг. 2), сначала проходят начальную дифракционную решетку 107 (G0). Затем лучи проходят представляющий интерес объект 103, например молочную железу или другой вид ткани, которая исследуется. Затем лучи проходят первую и вторую фазовые дифракционные решетки 104, 105 (G1, G1'), которые располагаются перед детектором 109 и четвертой дифракционной решеткой 106, которая является поглощающей дифракционной решеткой (G2). Расстояния между двумя фазовыми дифракционными решетками G1, G1' и детектором 109 соответствуют соответствующему расстоянию Тальбота каждой фазовой дифракционной решетки, соответствующей различным заданным энергиям.
Способ формирования изображения в соответствии с изобретением основан на способе Pfeiffer и др. «Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray source», Nature Physics, 2006, использующем три различных дифракционных решетки G0, G1 и G2 для того, чтобы детектировать фазовые сдвиги, вносимые объектом, при наблюдении интерференционных полос с использованием поглощающих дифракционных решеток G2 на детекторе.
Дополнительная часть технических средств состоит из фазовой дифракционной решетки G1', которая расположена прямо позади (или перед) стандартной фазовой дифракционной решеткой G1 с шагом p2, отличным от шага p1 решетки G1. Размещение таково, что изображения Тальбота для двух различных заданных энергий E1 и E2 в месте расположения детектора накладываются, т.е. для (более или менее) одной и той же величины расстояния dT Тальбота.
Расположение основано на том наблюдении, что фазовый сдвиг данного слоя материала обратно пропорционален энергии рентгеновского излучения. Следовательно, фазовая дифракционная решетка, предназначенная для генерации картины с постоянным фазовым сдвигом величины π при заданной энергии E2, будет давать фазовый сдвиг 2π для половины заданной энергии. Таким образом, может не быть измеряемого результата на монохроматической компоненте волны с энергией E1=E2/2. Однако, так как прямо позади (или прямо перед) G1 установлена другая дифракционная решетка G1', система формирования изображения также дает фазоконтрастную информацию для первой энергии E1.
Явления биений будут наблюдаться при интенсивностях, измеряемых с помощью детектора, но расстояние dT Тальбота будет одинаковым для обеих заданных энергий E1 и E2.
Далее предполагается, что система формирования изображения имеет расстояние dT Тальбота как для E1=E2/2, так и для E2 за счет использования фазовых дифракционных решеток G1 и G1' с шагом p1 и p2 соответственно. Фазовый сдвиг π, генерируемый решеткой G1 для энергии E2, приводит к фазовому сдвигу 2π при энергии E1. Эффект Тальбота для энергии E1 должен наблюдаться на расстоянии dT=p22/8λ1. Высота решетки G1' выполнена такой, чтобы она давала фазовый сдвиг π при энергии E1. Суперпозиция двух различных фазовых решеток в едином месте расположения будет давать эффект биений при фазовом сдвиге с высокой частотой, соответствующей шагу peff=2p1p2/(p1+p2). Изображения Тальбота этой периодической структуры будут наблюдаться на одном и том же расстоянии dT, если
Figure 00000001
Для E2/E1=2 это дает p2/p1
Figure 00000002
1,8 и peff
Figure 00000002
1,3. Поглощающая дифракционная решетка может быть изготовлена с шагом peff/2 по отношению к шагу полос, полученных за счет волновых полей E1 и E2 по отдельности. Процедура восстановления фазы также может быть модифицирована для того, чтобы принять во внимание влияние биений двух монохроматических компонент. Другими словами, так как два модулированных сигнала, соответствующих двум энергиям, накладываются, две фазы должны определяться по модуляции интенсивности.
Хотя способ может работать наилучшим образом для отношения энергии, равного 2, в принципе он также применим к другим отношениям с немного уменьшающейся видимостью полос.
Наконец, также возможно наложить изображения Тальбота более чем двух когерентных монохроматических компонент на одном и том же расстоянии от первой фазовой дифракционной решетки при использовании более одной дополнительной фазовой дифракционной решетки.
Фиг. 3 показывает систему 300 формирования изображения в соответствии с приведенным в качестве примера вариантом реализации изобретения. Система 300 формирования изображения, изображенная на фиг. 3, может быть приспособлена для использования в качестве системы формирования оптического изображения или системы формирования рентгеновского изображения, например маммографической системы формирования изображения. Представляющим интерес объектом 103 может быть молочная железа пациента, которая располагается между двумя создающими давление пластинами 301, 302 для приложения давления к молочной железе пациента.
Источник 101 может быть источником рентгеновского излучения или, например, источником оптического излучения.
Излучение, испускаемое источником 101, сначала проходит дифракционную решетку 107, а затем представляющий интерес объект 103, изображение которого нужно получить. После этого излучение проходит две или более фазовые дифракционные решетки 104, 105. Две или более фазовые дифракционные решетки 104, 105 могут быть объединены в соответствующем корпусе 310 и, таким образом, могут формировать модуль. Модуль подсоединяется к блоку 303 управления так, что фазовые дифракционные решетки 105, 104 могут перемещаться вверх и вниз вдоль стрелок 308, 309.
Кроме того, обеспечивается детектор 102 с поглощательной дифракционной решеткой 106 для детектирования излучения. Как источник 101, так и детектор 102 подсоединяются к блоку 303 управления через линии 304, 305 соответственно.
Детектор 102 содержит интерферометр Тальбота 311.
Кроме того, линия 307 передачи данных присоединяет блок 303 управления к входному и выходному устройству 306, которое может быть использовано для введения управляющей информации для управления системой 300 формирования изображения и которое также может быть использовано для вывода визуальной информации, относящейся к окончательному изображению.
Преимущество системы формирования изображения, показанной на фиг. 3, состоит в том, что может быть использована относительно большая часть спектра рентгеновского излучения для процесса формирования фазоконтрастного изображения при использовании одной или более дополнительных фазовых дифракционных решеток.
Фиг. 4 показывает блок-схему способа в соответствии с приведенным в качестве примера вариантом реализации изобретения. На стадии 401 пучок излучения генерируется источником, например источником рентгеновского излучения. Затем, на стадии 402, две фазовые дифракционные решетки используются для создания изображений Тальбота, соответствующих различным энергиям излучения на расстоянии Тальбота от первой фазовой дифракционной решетки. Затем, на стадии 403, детектируется окончательный пучок после прохождения им представляющего интерес объекта и двух фазовых дифракционных решеток.
Следует отметить, что термин «содержащий» не исключает наличия других элементов или стадий, а упоминание элементов в единственном числе не исключает наличия множества соответствующих элементов. Кроме того, элементы, описанные в связи с различными вариантами реализации, могут комбинироваться.
Нужно отметить, что ссылки на ссылочные позиции в формуле изобретения не должны рассматриваться как ограничивающие рамки формулы изобретения.

Claims (14)

1. Устройство формирования фазоконтрастного изображения для исследования представляющего интерес объекта, причем устройство (100) содержит:
источник (101) для генерации пучка излучения;
детектор (102) для детектирования излучения после прохождения им представляющего интерес объекта (103);
первую фазовую дифракционную решетку (104), расположенную между источником (101) и детектором (102) и имеющую первый шаг;
вторую фазовую дифракционную решетку (105), расположенную между источником (101) и детектором (102) и имеющую второй шаг;
при этом первый шаг отличается от второго шага;
причем первый шаг соответствует первой энергии излучения;
второй шаг соответствует второй энергии излучения;
первая фазовая дифракционная решетка (104) имеет расстояние Тальбота для первой энергии; и
вторая фазовая дифракционная решетка (105) имеет то же самое расстояние Тальбота для второй энергии.
2. Устройство формирования изображения по п.1, в котором вторая фазовая дифракционная решетка (105) располагается поблизости от первой фазовой дифракционной решетки (104).
3. Устройство формирования изображения по п.1, в котором вторая фазовая дифракционная решетка (105) располагается на предварительно определенном расстоянии от первой фазовой дифракционной решетки (104).
4. Устройство формирования изображения по п.1, в котором первая энергия в два раза больше второй энергии.
5. Устройство формирования изображения по п.1, дополнительно содержащее:
третью дифракционную решетку (106);
при этом третья дифракционная решетка (106) представляет собой поглощательную дифракционную решетку, которая расположена перед детектором (102); и
третья дифракционная решетка (106) имеет третий шаг, который отличается от первого шага и второго шага.
6. Устройство формирования изображения по п. 5,
в котором поглощательная дифракционная решетка (106) имеет третий шаг, равный среднему гармоническому шагов указанных двух дифракционных решеток в виде
2 (первый шаг второй шаг)/(первый шаг + второй шаг).
7. Устройство по п.1, дополнительно содержащее:
четвертую дифракционную решетку (107), расположенную между источником (101) и представляющим интерес объектом (103);
при этом четвертая дифракционная решетка (107) имеет четвертый шаг, который отличается от первого шага и второго шага.
8. Устройство формирования изображения по п.1, дополнительно содержащее:
пятую дифракционную решетку (108);
при этом пятая дифракционная решетка (108) представляет собой фазовую дифракционную решетку, имеющую пятый шаг, отличающийся от первого шага и второго шага.
9. Устройство формирования изображения по п.1, в котором источник (101) представляет собой источник рентгеновского излучения; и
причем устройство приспособлено для использования в качестве устройства формирования дифференциального фазоконтрастного изображения на основе рентгеновского излучения.
10. Устройство формирования изображения по п.1, в котором источник (101) выполнен с возможностью формирования пучка излучения, имеющего длину волны в диапазоне от 400 нм до 1400 нм, так что устройство формирования изображения приспособлено для использования в качестве устройства формирования оптического изображения.
11. Модуль с фазовыми дифракционными решетками (104, 105) для устройства формирования фазоконтрастного изображения (300) для исследования представляющего интерес объекта, причем модуль (104, 105) содержит:
первую фазовую дифракционную решетку (104), размещаемую между источником (101) устройства формирования изображения и детектором (102) устройства формирования изображения, при этом первая фазовая дифракционная решетка имеет первый шаг;
вторую фазовую дифракционную решетку (105), размещаемую между источником (101) и детектором (102), при этом вторая фазовая дифракционная решетка имеет второй шаг;
при этом первый шаг отличается от второго шага;
причем первый шаг соответствует первой энергии излучения;
второй шаг соответствует второй энергии излучения;
первая фазовая дифракционная решетка (104) имеет расстояние Тальбота для первой энергии; и
вторая фазовая дифракционная решетка (105) имеет то же самое расстояние Тальбота для второй энергии.
12. Способ формирования фазоконтрастного изображения для исследования представляющего интерес объекта, причем способ содержит этапы, на которых:
генерируют пучок излучения источником;
используют первую фазовую дифракционную решетку (104), имеющую первый шаг и размещаемую между источником (101) и детектором (102) для создания первого изображения Тальбота, соответствующего первой энергии излучения, на расстоянии Тальбота от первой фазовой дифракционной решетки;
используют вторую фазовую дифракционную решетку (105), имеющую второй шаг и размещаемую между источником (101) и детектором (102) для создания второго изображения Тальбота, соответствующего второй энергии излучения, на том же самом расстоянии Тальбота от первой фазовой дифракционной решетки;
детектируют, с помощью детектора, пучок излучения после его прохождения через представляющий интерес объект (103) и первую и вторую фазовые дифракционные решетки;
при этом первый шаг отличается от второго шага;
причем первый шаг соответствует первой энергии излучения;
второй шаг соответствует второй энергии излучения;
первая фазовая дифракционная решетка (104) имеет расстояние Тальбота для первой энергии; и
вторая фазовая дифракционная решетка (105) имеет то же самое расстояние Тальбота для второй энергии.
13. Способ по п.12, дополнительно содержащий этап, на котором:
используют третью фазовую дифракционную решетку (108), имеющую третий шаг, и размещаемую между источником (101) и детектором (102) для создания третьего изображения Тальбота, соответствующего третьей энергии излучения, на том же расстоянии Тальбота от первой фазовой дифракционной решетки;
при этом третий шаг отличается от первого шага и второго шага.
14. Способ по п.12, дополнительно содержащий этап, на котором:
используют поглощательную дифракционную решетку, имеющую шаг, равный среднему гармоническому шагов указанных двух дифракционных решеток, выраженному как
2 (первый шаг второй шаг)/(первый шаг + второй шаг);
при этом поглощательная дифракционная решетка расположена перед детектором.
RU2011143362/07A 2009-03-27 2010-03-19 Формирование ахроматического фазоконтрастного изображения RU2543994C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09156457.5 2009-03-27
EP09156457 2009-03-27
PCT/IB2010/051198 WO2010109390A1 (en) 2009-03-27 2010-03-19 Achromatic phase-contrast imaging

Publications (2)

Publication Number Publication Date
RU2011143362A RU2011143362A (ru) 2013-05-10
RU2543994C2 true RU2543994C2 (ru) 2015-03-10

Family

ID=42224769

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011143362/07A RU2543994C2 (ru) 2009-03-27 2010-03-19 Формирование ахроматического фазоконтрастного изображения

Country Status (6)

Country Link
US (1) US9881710B2 (ru)
EP (1) EP2411985B1 (ru)
JP (1) JP5631967B2 (ru)
CN (1) CN102365687B (ru)
RU (1) RU2543994C2 (ru)
WO (1) WO2010109390A1 (ru)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971620A (zh) * 2010-06-28 2013-03-13 保罗·谢勒学院 使用平面几何结构的光栅设备进行x射线相衬成像和暗场成像的方法
JP2012135612A (ja) * 2010-12-07 2012-07-19 Fujifilm Corp 放射線位相画像撮影方法および装置
JP2012148068A (ja) * 2010-12-27 2012-08-09 Fujifilm Corp 放射線画像取得方法および放射線画像撮影装置
JP5792961B2 (ja) * 2011-01-25 2015-10-14 キヤノン株式会社 トールボット干渉計及び撮像方法
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US9717470B2 (en) * 2012-08-20 2017-08-01 Koninklijke Philips N.V. Aligning source-grating-to-phase-grating distance for multiple order phase tuning in differential phase contrast imaging
US9360439B2 (en) 2012-12-19 2016-06-07 Industrial Technology Research Institute Imaging system
US8989347B2 (en) 2012-12-19 2015-03-24 General Electric Company Image reconstruction method for differential phase contrast X-ray imaging
US9357975B2 (en) 2013-12-30 2016-06-07 Carestream Health, Inc. Large FOV phase contrast imaging based on detuned configuration including acquisition and reconstruction techniques
US9724063B2 (en) 2012-12-21 2017-08-08 Carestream Health, Inc. Surrogate phantom for differential phase contrast imaging
US10578563B2 (en) 2012-12-21 2020-03-03 Carestream Health, Inc. Phase contrast imaging computed tomography scanner
US9001967B2 (en) * 2012-12-28 2015-04-07 Carestream Health, Inc. Spectral grating-based differential phase contrast system for medical radiographic imaging
US9700267B2 (en) 2012-12-21 2017-07-11 Carestream Health, Inc. Method and apparatus for fabrication and tuning of grating-based differential phase contrast imaging system
US10096098B2 (en) 2013-12-30 2018-10-09 Carestream Health, Inc. Phase retrieval from differential phase contrast imaging
US9494534B2 (en) 2012-12-21 2016-11-15 Carestream Health, Inc. Material differentiation with phase contrast imaging
US9907524B2 (en) 2012-12-21 2018-03-06 Carestream Health, Inc. Material decomposition technique using x-ray phase contrast imaging system
US20150055745A1 (en) * 2013-08-23 2015-02-26 Carl Zeiss X-ray Microscopy, Inc. Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
WO2015044001A1 (en) * 2013-09-30 2015-04-02 Koninklijke Philips N.V. Differential phase contrast imaging device with movable grating(s)
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
CN106535767B (zh) * 2014-07-17 2020-05-01 皇家飞利浦有限公司 X射线成像设备
JP6430636B2 (ja) * 2015-08-26 2018-11-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. デュアルエネルギー微分位相コントラスト撮像
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US11422292B1 (en) * 2018-06-10 2022-08-23 Apple Inc. Super-blazed diffractive optical elements with sub-wavelength structures
WO2020023408A1 (en) 2018-07-26 2020-01-30 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11754767B1 (en) 2020-03-05 2023-09-12 Apple Inc. Display with overlaid waveguide
DE112021002841T5 (de) 2020-05-18 2023-03-23 Sigray, Inc. System und Verfahren für Röntgenabsorptionsspektroskopie unter Verwendung eines Kristallanalysators und mehrerer Detektorelemente
JP2023542674A (ja) 2020-09-17 2023-10-11 シグレイ、インコーポレイテッド X線を用いた深さ分解計測および分析のためのシステムおよび方法
KR20230109735A (ko) 2020-12-07 2023-07-20 시그레이, 아이엔씨. 투과 x-선 소스를 이용한 고처리량 3D x-선 이미징 시스템
US11813102B2 (en) * 2021-10-06 2023-11-14 Houxun Miao Interferometer for x-ray phase contrast imaging
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
WO2023215204A1 (en) 2022-05-02 2023-11-09 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447046A1 (en) * 2003-02-14 2004-08-18 Paul Scherrer Institut Apparatus and method to obtain phase contrast x-ray images
RU2265830C2 (ru) * 1999-11-13 2005-12-10 Хайманн Системс Гмбх Устройство для определения наличия в предмете кристаллических и поликристаллических материалов
DE102007029730A1 (de) * 2007-06-27 2009-01-08 Siemens Ag Mess-System und Verfahren zur nicht-invasiven Bestimmung von Eigenschaften eines Untersuchungsobjektes und Kontrastmittel zur Röntgen-Phasenkontrast-Messung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263341A (ja) * 1988-08-02 1990-10-26 Minolta Camera Co Ltd 光ピックアップ装置の格子
US5812629A (en) * 1997-04-30 1998-09-22 Clauser; John F. Ultrahigh resolution interferometric x-ray imaging
CA2465511C (en) * 2001-10-30 2007-12-18 Loma Linda University Medical Center Method and device for delivering radiotherapy
WO2004058070A1 (ja) * 2002-12-26 2004-07-15 Atsushi Momose X線撮像装置および撮像方法
DE102006037281A1 (de) * 2006-02-01 2007-08-09 Siemens Ag Röntgenoptisches Durchstrahlungsgitter einer Fokus-Detektor-Anordnung einer Röntgenapparatur zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen von einem Untersuchungsobjekt
DE102006063048B3 (de) * 2006-02-01 2018-03-29 Siemens Healthcare Gmbh Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen
DE102006037254B4 (de) 2006-02-01 2017-08-03 Paul Scherer Institut Fokus-Detektor-Anordnung zur Erzeugung projektiver oder tomographischer Phasenkontrastaufnahmen mit röntgenoptischen Gittern, sowie Röntgen-System, Röntgen-C-Bogen-System und Röntgen-Computer-Tomographie-System
DE102006015356B4 (de) * 2006-02-01 2016-09-22 Siemens Healthcare Gmbh Verfahren zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen mit einem Röntgen-System
DE102006046034A1 (de) * 2006-02-01 2007-08-16 Siemens Ag Röntgen-CT-System zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen
WO2007125833A1 (ja) * 2006-04-24 2007-11-08 The University Of Tokyo X線撮像装置及びx線撮像方法
EP1879020A1 (en) * 2006-07-12 2008-01-16 Paul Scherrer Institut X-ray interferometer for phase contrast imaging
US7683300B2 (en) * 2006-10-17 2010-03-23 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
US20100080436A1 (en) * 2007-02-21 2010-04-01 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
WO2009058976A1 (en) * 2007-10-30 2009-05-07 Massachusetts Institute Of Technology Phase-contrast x-ray imaging
CN201191275Y (zh) * 2007-11-23 2009-02-04 同方威视技术股份有限公司 一种x射线光栅相衬成像系统
WO2009076700A1 (en) 2007-12-14 2009-06-25 Commonwealth Scientific And Industrial Research Organisation Phase-contrast imaging method and apparatus
EP2442722B1 (en) 2009-06-16 2017-03-29 Koninklijke Philips N.V. Correction method for differential phase contrast imaging
CA2843311C (en) 2011-07-29 2016-06-07 The Johns Hopkins University Differential phase contrast x-ray imaging system and components
US20140177789A1 (en) 2012-12-21 2014-06-26 Pavlo Baturin Grating-based differential phase contrast imaging system with adjustable capture technique for medical radiographic imaging
WO2015026766A1 (en) 2013-08-19 2015-02-26 University Of Houston System Single step differential phase contrast x-ray imaging
US9515113B2 (en) 2013-08-27 2016-12-06 Rambus Inc. Optical sensing of nearby scenes with tessellated phase anti-symmetric gratings
EP3042383A1 (de) 2013-10-07 2016-07-13 Siemens Healthcare GmbH Phasenkontrast-röntgenbildgebungsvorrichtung und phasengitter für eine solche
US9746405B2 (en) 2014-05-09 2017-08-29 General Electric Company Method for elementally detecting variations in density
US10170274B2 (en) 2015-03-18 2019-01-01 Battelle Memorial Institute TEM phase contrast imaging with image plane phase grating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2265830C2 (ru) * 1999-11-13 2005-12-10 Хайманн Системс Гмбх Устройство для определения наличия в предмете кристаллических и поликристаллических материалов
EP1447046A1 (en) * 2003-02-14 2004-08-18 Paul Scherrer Institut Apparatus and method to obtain phase contrast x-ray images
DE102007029730A1 (de) * 2007-06-27 2009-01-08 Siemens Ag Mess-System und Verfahren zur nicht-invasiven Bestimmung von Eigenschaften eines Untersuchungsobjektes und Kontrastmittel zur Röntgen-Phasenkontrast-Messung

Also Published As

Publication number Publication date
JP5631967B2 (ja) 2014-11-26
WO2010109390A1 (en) 2010-09-30
RU2011143362A (ru) 2013-05-10
CN102365687B (zh) 2015-08-19
CN102365687A (zh) 2012-02-29
JP2012521793A (ja) 2012-09-20
US9881710B2 (en) 2018-01-30
EP2411985A1 (en) 2012-02-01
EP2411985B1 (en) 2017-01-04
US20120020461A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
RU2543994C2 (ru) Формирование ахроматического фазоконтрастного изображения
US10267752B2 (en) X-ray phase-contrast imaging system and imaging method
US9907524B2 (en) Material decomposition technique using x-ray phase contrast imaging system
US10058300B2 (en) Large FOV phase contrast imaging based on detuned configuration including acquisition and reconstruction techniques
US8972191B2 (en) Low dose single step grating based X-ray phase contrast imaging
Berujon et al. X-ray multimodal imaging using a random-phase object
US9842414B2 (en) Monochromatic attenuation contrast image generation by using phase contrast CT
JP5127247B2 (ja) X線装置の焦点‐検出器装置
US8520799B2 (en) Analysis method, radiation imaging apparatus using analysis method, and analysis program for executing analysis method
JP5601909B2 (ja) X線撮像装置及びこれを用いるx線撮像方法
JP6581713B2 (ja) 位相コントラスト及び/又は暗視野撮像のためのx線検出器、該x線検出器を有する干渉計、x線撮像システム、位相コントラストx線撮像及び/又は暗視野x線撮像を行う方法、コンピュータプログラム、コンピュータ読取可能な媒体
US10433799B2 (en) Tilted-grating approach for scanning-mode X-ray grating interferometry
WO2007125833A1 (ja) X線撮像装置及びx線撮像方法
JP2012187341A (ja) X線撮像装置
JP2013541699A (ja) サンプリングを改善した微分位相差イメージング
Wolf et al. Lens-term-and edge-effect in X-ray grating interferometry
EP3139156A1 (en) Dual phase grating interferometer for x-ray phase contrast imaging
Momose et al. Four-dimensional x-ray phase tomography with Talbot interferometer and white synchrotron light
Kocsis et al. Imaging using synchrotron radiation
US20200011812A1 (en) Radiographic image generating device
Wu et al. Retrieval of Monochromatic Fringe Phase Shifts in Polychromatic Talbot-Lau Grating X-Ray Interferometry
Huang et al. Contrast transfer function in grating-based x-ray phase-contrast imaging