RU2540402C1 - Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения - Google Patents

Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения Download PDF

Info

Publication number
RU2540402C1
RU2540402C1 RU2013143414/04A RU2013143414A RU2540402C1 RU 2540402 C1 RU2540402 C1 RU 2540402C1 RU 2013143414/04 A RU2013143414/04 A RU 2013143414/04A RU 2013143414 A RU2013143414 A RU 2013143414A RU 2540402 C1 RU2540402 C1 RU 2540402C1
Authority
RU
Russia
Prior art keywords
nickel
room temperature
solution
cations
hydrotalcite
Prior art date
Application number
RU2013143414/04A
Other languages
English (en)
Inventor
Ольга Евгеньевна Лебедева
Ирина Геннадьевна Рыльцова
Роман Николаевич Саенко
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет"
Priority to RU2013143414/04A priority Critical patent/RU2540402C1/ru
Application granted granted Critical
Publication of RU2540402C1 publication Critical patent/RU2540402C1/ru

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Группа изобретений относится к слоистому двойному гидроксиду со структурой гидроталькита и способу его получения. Слоистый двойной гидрокисд описывается общей формулой Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, y принимает значения от 0,0025 до 0,0625, x=0,25. Способ получения указанного слоистого двойного гидроксида со структурой гидроталькитсоединения заключается в том, что в раствор, содержащий нитраты магния, алюминия и никеля с суммарной концентрацией ионов металлов 1 М при постоянном перемешивании добавляют раствор осадителя, содержащий гидроксид натрия и гипохлорит натрия, со скоростью ~3 мл/мин. Выпавший осадок подвергают старению под маточным раствором в течение 48 часов при комнатной температуре и в течение 72 часов при 80°С. Маточный раствор охлаждают до комнатной температуры и декантируют. Осадок подвергают сначала анионному обмену, затем промывают дистиллированной водой и высушивают при комнатной температуре. Технический результат - получение новых магний-алюминий-никелевых синтетических гидроталькитоподобных материалов, содержащих в составе бруситоподобных слоев катионы никеля в степени окисления +3 и характеризующихся однофазностью, высокой окристаллизованностью и стабильностью никеля в неустойчивой для него степени окисления +3. 2 з.п. ф-лы, 4 ил., 3 пр.

Description

Группа изобретений относится к области химии, в частности к синтетическим слоистым двойным гидроксидам (СДГ) со структурой гидроталькита, содержащим катионы переходных металлов в нестабильной степени окисления, с общей формулой
Mg(1-x)Me3+x(OH)2(Ann-)x/n·mH2O, где в качестве трехзарядного металла выступают одновременно никель и алюминий Alx-yNiy, причем y=0,0025-0,0625, х=0,25, и способам их получения.
Из литературных данных известно, что катионный и анионный состав в формуле Me2+(1-x)Me3+x(OH)2(Ann-)x/n·mH2O, где Me2+ и Me3+ - катионы металлов двух- и трехзарядные, соответственно, An- - неорганический или органический анион, может меняться в широких пределах. В качестве Me2+ могут выступать: Mg2+, Ni2+, Zn2+, Fe2+, Co2+, Cu2+, Mn2+, в качестве Me3+-Al3+, Fe3+, Cr3+, Sc3+, Mn3+, V3+, Ga3+. В межслоевое пространство как при синтезе, так и после ионного обмена могут быть введены следующие неорганические анионы: ОН-, NO3-, ClO4-, Cl-, Br-, I-, СО32-, SO42-, HPO42-, CrO42-, Mo7O246-, V10O286-, H2W12O406- и т.д., а также ряд органических, например анионы поверхностно-активных веществ с различной длиной углеводородного радикала, анионы карбоновых кислот, аминокислот, комплексные анионы и т.д. (Cavani F., et al. Hydrotalcite-type anionic clays: preparation, properties and applications // Catalysis Today, 1991, №11, P.173-301; Evans D.G., Duan X. Layered Double Hydroxides // Struct. Bond, 2006, V.119, P.234). Реже встречаются упоминания об использовании в качестве Ме2+ ионов Са2+ (Millange F., et al. Efficient Separation of Terephthalate and Phthalate Anions by Selective Ion-Exchange Intercalation in the Layered Double Hydroxide Ca2Al(ОН)6·NO3·2H2O // Chem. Mater, 2000, V.12, №7, P.1990-1994) и благородных металлов Pd2+, Pt2+, Ir2+, Rh2+ (Basile F., et al. Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals // Applied Clay Science, 2000, V.16, P.185-200), в качестве Me3+-In3+ (Aramendia M.A., et al. Synthesis and characterization of a novel Mg/In hydrotalcite-like compound. // Materials Letters, 2000, V.43, P.118-121), Co3+ (Vaysse C., et al. Thermal evolution of carbonate pillared layered hydroxides with (Ni, L) (L-Fe, Co) Based Slabs: Grafting or Nongrafting of Carbonate Anions? // Inorganic Chemistry, 2002, V.41, №25, P.6905-6913, Рыльцова И.Г., Матяш Ю.Н., Лебедева О.Е. Сорбционные свойства кобальтсодержащих слоистых гидроксидов //Сорбционные и хроматографические процессы, 2010, Т.10, Вып.1, с.108-114).
Однако из уровня техники не известен синтетический слоистый двойной гидроксид (СДГ) со структурой гидроталькита, содержащий в качестве Ме3+ катионы алюминия и никеля, переходного металла в нестабильной степени окисления, а именно: Alx+yNiy, где х=0,25, y=0,0025-0,0625.
Известны различные способы получения слоистых двойных гидроксидов со структурой гидроталькита, содержащих никель. Наиболее распространенным является метод соосаждения компонентов из растворов.
В патенте US 3,879,523 [United States patent, апр. 22. 1975 Miyata, et al. "Composite metal hydroxides"] описывается синтез слоистых двойных гидроксидов различного катионного и анионного состава, включая СДГ, содержащих катионы алюминия и катионы металлов подгруппы железа - железо, кобальт и никель. Данные соединения синтезированы методом соосаждения, где в качестве осадителя использовалась смесь гидроксида и карбоната натрия. Синтез осуществляли при постоянном перемешивании путем непрерывной подачи, с помощью управляемых насосов, водных растворов солей металлов (сульфата алюминия 0,1 моль/л и нитрата никеля 0,6 моль/л), раствора карбоната натрия (0,1 моль/л) и раствора гидроксида натрия (2 моль/л) со скоростью 20 мл/мин, 20 мл/мин и 17 мл/мин соответственно, в реактор, оборудованный мешалкой. Температура синтеза 30±1°С, pH поддерживали = 10±0,2. После окончания реакции воду удаляли с использованием дегидратирующего устройства, оснащенного вакуумным насосом. Осадок промывали 200 мл воды и высушивали на воздухе при 80°С в течение 10 часов. Формула полученного образца Ni6Al2(OH)16CO3·4H2O, где никель содержится в степени окисления +2.
Недостатком данного способа является то, что при его осуществлении невозможно получить СДГ, содержащий никель в качестве трехзарядного катиона.
Синтез смешанных СДГ, наиболее близких по элементному составу, описан в статьях (Lebedeva О. et al. Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on the activation under oxidising and reducing atmospheres // Applied Catalysis A: General, 1999, V.183, P.61-71) и (В.M. Choudary et al. Synthesis, Characterization, Ion Exchange, and Catalytic Properties of Nanobinary and Ternary Metal Oxy/Hydroxides \\ Chem. Mater. 2005, 17, 2740-2743).
В статье (Lebedeva О. et al. Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on the activation under oxidising and reducing atmospheres // Applied Catalysis A: General, 1999, V 183, P.61-71) описан синтез Ni2+/Al3+ и (Ni+Mg)2+/Al3+-СДГ методом соосаждения из растворов при комнатной температуре в воздушной атмосфере. Соли соответствующих металлов растворяли в дистиллированной воде и помещали в пластиковый реактор с использованием насоса хроматографического типа с постоянным потоком 1 мл/мин. Второй раствор 0,5 М гидроксида натрия одновременно подавался с использованием pH-стата. pH для соосаждения поддерживался постоянным 9,0±0,2. После того как соосаждение заканчивалось, суспензию подвергали старению при 70±5°С в течение 15 часов при перемешивании. Далее осадок отделяли центрифугированием, промывали дистиллированной водой и высушивали при 80°С. Далее образцы подвергали анионному обмену путем добавления к суспензии осадка в воде карбоната натрия. Соотношение катионов металлов в полученных образцах составило: Ni2+/Al3+=75/25 и Ni2+/Mg2+/Al3+=55/10/35 и 37/38/25.
В статье (В.М. Choudary, et al. Synthesis, Characterization, Ion Exchange, and Catalytic Properties of anobinary and Ternary Metal Oxy/Hydroxides \\ Chem. Mater. 2005, 17, 2740-2743) описан синтез методом соосаждения смешанного никельсодержащего СДГ, в котором в качестве двухзарядных ионов выступает смесь никеля и магния. В качестве источников катионов металлов использованы нитраты соответствующих элементов. В реактор помещали раствор осадителя, содержащий гидроксид и карбонат натрия в молярном соотношении 4/1. К данному раствору прикапыванием добавляли раствор солей металлов с соотношением (Ni+Mg)2+/Al3+=(0,7+1,3)/1 и (Ni+Mg)2+/Al3+=(1,1+1,9)/1 при постоянном перемешивании и комнатной температуре. Суммарная концентрация солей составляла 1 моль/л. Осадок подвергали старению при 60°С в течение 18 часов. Затем фильтровали, промывали и сушили при 120°С.
Недостатками указанных выше способов является невозможность их применения для получения СДГ, содержащих переходные металлы, такие как Ni3+ в неустойчивой степени окисления, а также необходимость поддержания постоянного pH, что осложняет аппаратурное исполнение метода.
Наиболее близким по составу окислителя является способ, предложенный в статье [Vaysse С., et al. Thermal evolution of carbonate pillared layered hydroxides with (Ni, L) (L-Fe, Co) Based Slabs: Grafting or Nongrafting of Carbonate Anions? // Inorganic Chemistry, 2002, V.41, №25, P.6905-6913]. В предложенном методе получения СДГ источником ионов металлов является NaNi0,7L0,3O2 (L=Fe, Co), который синтезирован посредствам высокотемпературной твердофазной реакции. СДГ получали путем гидролиза NaNi0,7L0,3O2 в окислительной среде (5М KOH+0,8 М NaClO), с последующим диспергированием в растворе, содержащим 4 г Na2CO3 в 500 мл воды. Далее осуществляли восстановление добавлением 50 мл 5М раствора Н2О2. После перемешивания в течение 24 ч, полученный СДГ отфильтровывали, промывали и высушивали при 40°С. В результате получали СДГ, отвечающий формуле
Ni2+0,7Co3+0,3(ОН)2(СО3)0,15·0,67H2O·(CO3)0,02. Недостатком данного способа является то, что данным способом нельзя получить СДГ, содержащий Ni3+, а также использование твердофазной реакции для получения источника ионов металлов.
Изучение уровня техники не позволило выявить способ получения СДГ гидроталькитоподобного соединения с общей формулой
Mg(1-x)Al3+(x-y)Ni3+(OH)2((Ann-)x/n·mH2O,
в составе которого в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, в неустойчивой для никеля степени окисления +3.
Задача настоящего изобретения состоит в расширении арсенала уже известных синтетических гидроталькитоподобных соединений с общей формулой Mg(1-x)Me3+x(OH)2((Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, и создании способа получения такого соединения.
Техническим результатом является получение новых магний-алюминий-никелевых синтетических гидроталькитоподобных материалов, содержащих в составе бруситоподобных слоев катионы Ni в степени окисления +3 и характеризующихся однофазностью, высокой окристаллизованностью и стабильностью никеля в неустойчивой для него степени окисления +3.
Для решения поставленной задачи предложена группа изобретений, включающая соединение общей формулы Mg(1-x)Al3+(x-y)Ni3+y(OH)2((Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы никеля и алюминия Alx-yNiy, причем y=0,0025-0,0625, x=0,25, и способ его получения.
Введение в состав СДГ трехзарядного катиона никеля позволило получить новое соединение, отличающееся однофазностью структуры, хорошей закристаллизованностью и высокой стабильностью.
Графические материалы:
Фиг.1. Рентгеновская дифрактограмма образца, подвергнутого старению в течение 48 часов при комнатной температуре и в течение 72 часов при 80°С, состав которого выражен формулой Mg0,75Al0,1875Ni0,0625(OH)2Cl0,004(CO3)0,125·0,438H2O
Фиг.2. Микрофотография ПЭМ образца, состав которого выражен формулой: Mg0,75Al0,1875Ni0,0625(OH)2Cl0,004(CO3)0,125·0,438H2O.
Фиг.3. График изменения количества Ni+3 в Ni2O3·xH2O и в Mg0,75Al0,1875Ni0,0625(OH)2Cl0,004(CO3)0,125·0,438H2O в течение 12 месяцев при комнатной температуре, где mt/mo - доля Ni(III) от общего количества никеля, t - время.
Фиг.4. Рентгеновская дифрактограмма образца, полученного соосаждением при соотношениях реагентов, описанных в примере 3, подвергнутого старению в течение 48 часов при комнатной температуре и в течение 72 часов при 80°С.
Однофазность структуры с хорошей закристаллизованностью подтверждает наличие узких интенсивных рефлексов на рентгеновской дифрактограмме (Фиг.1).
Рассчитан параметр с, отвечающий межслоевому расстоянию; при y=0,0625 он составляет 23,9Å, что превышает соответствующее значение для гидроталькита (22.9Å) и подтверждает внедрение Ni3+ в структуру бруситоподобных слоев.
Характерные для слоистых гидроксидов отдельные агрегаты-чешуйки зафиксированы при оценке морфологии готового образца методом просвечивающей электронной микроскопии (Фиг.2).
Стабильность Ni3+ в составе соединения Mg0,75Al0,1875Ni0,0625(OH)2Cl0,004(CO3)0,125·0,438H2O подтверждает фиг.3, где представлены данные изменения количества Ni+3, полученные за 12 месяцев в сравнении с изменением количества Ni+3 в Ni2O3·xH2O при комнатной температуре, где mt/mo - доля Ni(III) от общего количества никеля, t - время.
Сопоставительный анализ с известными синтетическими слоистыми двойными гидроксидами показывает, что заявленное соединение соответствует критериям «новизна» и «изобретательский уровень» по составу гидроталькитоподобного соединения с общей формулой Mg(1-x)Al3+(x-y)Ni3+y(OH)2((Ann-)x/n·mH2O, где в качестве трехзарядных катионов металла выступают одновременно катионы никеля и алюминия, причем y=0,0025-0,0625, x=0,25, и свойствам: однофазность структуры с хорошей закристаллизованностью и высокая стабильность Ni3+.
Для получения гидроталькитоподобных соединений с общей формулой
Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O,
где y=0,0025-0,0625 и х=0,25, предложен способ, который заключается в соосаждении из раствора нитратов магния, алюминия и никеля гидроксидом натрия в присутствии окислителя - гипохлорита натрия, старении полученного осадка, анионном обмене, отмывке и сушке, при этом:
- соосаждение СДГ гидроталькитоподобного соединения из раствора нитратов магния, алюминия и никеля осуществляют раствором осадителя, содержащего гидроксид натрия и свежеприготовленный гипохлорит натрия в соотношении 24:1, при этом содержание гидроксида и гипохлорита натрия в 1%-ном избытке от стехиометрического, в предположении образования СГ типа гидроталькита что позволяет окислить Ni2+ до Ni3+;
- соосаждение проводят при постоянном перемешивании реакционной смеси со скоростью добавления осадителя 3 мл/мин, что позволяет получить СДГ с однородным распределением катионов вводимых металлов в объеме бруситоподобных слоев;
- изменение pH раствора в процессе синтеза от слабокислого pH ~5 до щелочного pH~10, не влияет на состав получаемого продукта, что избавляет от необходимости поддерживать постоянный pH среды и упростить аппаратурное исполнение метода, а следовательно снижает затраты при синтезе;
- старение полученного осадка под маточным раствором в течение 48 часов при комнатной температуре и 72 часов при температуре 80°С позволяет получить хорошо окристаллизованный материал;
- после охлаждения до комнатной температуры маточный раствор декантируют и проводят анионный обмен с последующей отмывкой до отрицательной реакции на удаляемые ионы;
- сушку образцов осуществляют при комнатной температуре до постоянной массы.
Предложенный способ соответствует условиям новизны и изобретательского уровня, т.к. из уровня техники не известен способ получения СДГ гидроталькитоподобных соединений содержащих катионы Ni3+ с общей формулой:
Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O,
где y=0,0025-0,0625 и x=0,25.
Примеры использования предложенного способа.
Пример 1. Для получения СДГ гидроталькитоподобного соединения с общей формулой Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O, где y=0,0625, к раствору, содержащему нитраты магния, алюминия и никеля в мольном соотношении 6:1,50:0,50 и суммарной концентрацией ионов металлов 1 М добавляли прикапыванием раствор осадителя. Раствор солей готовили растворением отдельных навесок: 56,26 г нитрата магния шестиводного, 20,60 г нитрата алюминия девятиводного, 5,33 г нитрата никеля шестиводного в дистиллированной воде. Общий объем раствора солей составлял 300 мл. Для приготовления осадителя растворяли 26,37 г гидроксида натрия в 150 мл воды, в готовый раствор прибавляли 20 мл свежеприготовленного раствора гипохлорита натрия. Раствор гипохлорита натрия готовили пропусканием газообразного хлора, полученного путем электролиза раствора хлорида натрия в электролизере с погруженной диафрагмой, в охлаждаемый водопроводной водой раствор гидроксида натрия, содержащего 1,1 г гидроксида натрия в 20 мл дистиллированной воды, до насыщения. Общий объем раствора-осадителя ~170 мл, при этом содержание гидроксида и гипохлорита натрия в 1%-ном избытке от стехиометрического, в предположении образования СГ типа гидроталькита. Раствор осадителя добавляли при постоянной скорости 3 мл/мин при постоянном перемешивании реакционной смеси. Полученные образцы подвергали старению под слоем маточного раствора в течение 2 суток при комнатной температуре, а затем в течение 3 суток при 80°С. После охлаждения до комнатной температуры, маточный раствор декантировали и проводили анионный обмен на СО32- - анионы. Для проведения каждый образец заливали 100 мл насыщенного раствора карбоната натрия, перемешивали магнитной мешалкой в течение 2 часов. Процедуру повторяли три раза. Затем промывали дистиллированной водой для удаления избытка солей. Полученный осадок заливали дистиллированной водой, перемешивали около трех часов, затем давали отстояться и через сутки раствор декантировали. Процедуру повторяли до отрицательной реакции на карбонат-ионы. Сушку осуществляли при комнатной температуре до постоянной массы.
На основании элементного и гравиметрического анализов выведена формула полученного соединения Mg0,75Al0,1875Ni0,0625(OH)2Cl0,004(CO3)0,125·0,438H2O. Незначительное присутствие хлора обусловлено частичным замещением OH-групп в составе металлгидроксидных слоев на однозарядные анионы, что не противоречит литературным данным.
Однофазность структуры подтверждена методом РФА: полученная дифрактограмма однозначно свидетельствует о наличии единственной кристаллической фазы (Фиг.1). Рассчитан параметр с, отвечающий межслоевому расстоянию, он составили 23,9Å, что превышает соответствующее значение для гидроталькита и подтверждает внедрение Ni3+ в структуру бруситоподобных слоев. Узкие интенсивные пики на дифрактограмме свидетельствуют о хорошей окристаллизованности образца.
Морфологию оценивали методом просвечивающей электронной микроскопии. Зафиксированы характерные для слоистых гидроксидов отдельные агрегаты-чешуйки (Фиг.2).
Стабильность никеля в степени окисления +3 изучалась в течение 12 месяцев. Оценку доли трехвалентного никеля осуществляли согласно следующей методике: к суспензии навески образца массой 0,1 г в 100 мл воды добавляли раствор 1 г KI в 25 мл 1М H2SO4. Выделившийся йод титровали раствором тиосульфата натрия в присутствии крахмала в качестве индикатора
Из анализа данных, представленных на Фиг.3, очевидно, что инкорпорированный в структуру слоистого гидроксида Ni3+ значительно стабильнее, чем в составе гидроксида никеля (III), и его потеря при длительном хранении незначительна.
Пример 2. Для получения СДГ гидроталькитоподобного соединения с общей формулой Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O, где y=0,0025, к раствору, содержащему нитраты магния, алюминия и никеля в мольном соотношении 6:1,98:0,02 и суммарной концентрацией ионов металлов 1 М, добавляли прикапыванием раствор осадителя. Раствор солей готовили растворением отдельных навесок: 56,26 г нитрата магния шестиводного, 27,78 г нитрата алюминия девятиводного, 0,22 г нитрата никеля шестиводного в дистиллированной воде. Общий объем раствора солей составлял 300 мл. Для приготовления осадителя растворяли 26,37 г гидроксида натрия в 150 мл воды, в готовый раствор прибавляли 20 мл свежеприготовленного раствора гипохлорита натрия. Раствор гипохлорита натрия готовили пропусканием газообразного хлора, полученного путем электролиза раствора хлорида натрия в электролизере с погруженной диафрагмой, в охлаждаемый водопроводной водой раствор гидроксида натрия, содержащего 0,045 г гидроксида натрия в 20 мл дистиллированной воды, до насыщения. Общий объем раствора-осадителя ~170 мл, при этом содержание гидроксида и гипохлорита натрия в 1%-ном избытке от стехиометрического, в предположении образования СГ типа гидроталькита. Далее осуществляли последовательность действий, описанную в предыдущем примере. Дифрактограмма и микрофотографии полученного образца имеют вид, идентичный приведенным на Фиг.1 и Фиг.2 соответственно.
Пример 3. Для получения СДГ гидроталькитоподобного соединения с общей формулой Mg(1-x)Al3+(x-y)Ni3+y(OH)2(Ann-)x/n·mH2O, где y=0,125 к раствору, содержащему нитраты магния, алюминия и никеля в мольном соотношении 6:1,0:1,0 и суммарной концентрацией ионов металлов 1 М добавляли прикапыванием раствор осадителя. Раствор солей готовили растворением отдельных навесок: 56,26 г нитрата магния шестиводного, 14,18 г нитрата алюминия девятиводного, 11,00 г нитрата никеля шестиводного в дистиллированной воде. Общий объем раствора солей составлял 300 мл. Для приготовления осадителя растворяли 26,37 г гидроксида натрия в 150 мл воды, в готовый раствор прибавляли 20 мл свежеприготовленного раствора гипохлорита натрия. Раствор гипохлорита натрия готовили пропусканием газообразного хлора, полученного путем электролиза раствора хлорида натрия в электролизере с погруженной диафрагмой, в охлаждаемый водопроводной водой раствор гидроксида натрия, содержащего 0,22 г гидроксида натрия в 20 мл дистиллированной воды, до насыщения. Общий объем раствора-осадителя ~170 мл, при этом содержание гидроксида и гипохлорита натрия в 1%-ном избытке от стехиометрического, в предположении образования СГ типа гидроталькита. Далее осуществляли последовательность действий, описанную в примере 1. Дифрактограмма полученного образца приведена на Фиг.4. Анализ дифрактограммы показывает, что, наряду с целевым продуктом - слоистым гидроксидом, при значении «y», выше заявленного верхнего предела, осаждается также примесная фаза брусита (обозначена на дифрактограмме значком «●»).
Таким образом, приведенные примеры доказывают, что поставленная задача по расширению арсенала синтетических гидроталькитоподобных соединений и создании способа получения нового магний-алюминий-никелевого гидроталькитоподобного материала с общей формулой Mg(1-x)Me3+x(OH)2(Ann-)x/n·mH2O, где в качестве трехвалентного металла в составе бруситоподобных слоев выступают одновременно никель и алюминий Alx-yNiy, при этом у варьируется в диапазоне от 0,0025 до 0,0625, х равно 0,25, характеризующегося однофазностью, высокой окристаллизованностью и стабильностью никеля в неустойчивой для него степени окисления +3, решена.

Claims (2)

1. Слоистый двойной гидроксид со структурой гидроталькита общей формулы
Figure 00000001
, где в качестве трехзарядных катионов металла выступают одновременно катионы алюминия и никеля, при этом у принимает значения от 0,005 до 0,0625, а x равно 0,25, характеризующийся однофазностью, высокой окристаллизованностью и стабильностью никеля в неустойчивой для него степени окисления +3.
2. Способ получения слоистых двойных гидроксидов со структурой гидроталькита с общей формулой
Figure 00000002
, где в качестве трехвалентного металла выступают одновременно никель и алюминий Alx-yNiy, где y варьируется в диапазоне от 0,0025 до 0,0625, x равно 0,25, заключающийся в том, что в раствор, содержащий нитраты магния, алюминия и никеля с суммарной концентрацией ионов металлов 1 М при постоянном перемешивании со скоростью ~3 мл/мин добавляют раствор осадителя, содержащий гидроксид натрия и гипохлорит натрия в 1%-ном избытке от стехиометрического в соотношении NaOH:NaClO=24:1, выпавший осадок подвергают старению под маточным раствором в течение 48 часов при комнатной температуре и 72 часов при 80°C, охлаждают до комнатной температуры, маточный раствор декантируют и осадок подвергают сначала анионному обмену, затем промывают дистиллированной водой и высушивают при комнатной температуре.
RU2013143414/04A 2013-09-25 2013-09-25 Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения RU2540402C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013143414/04A RU2540402C1 (ru) 2013-09-25 2013-09-25 Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013143414/04A RU2540402C1 (ru) 2013-09-25 2013-09-25 Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения

Publications (1)

Publication Number Publication Date
RU2540402C1 true RU2540402C1 (ru) 2015-02-10

Family

ID=53286858

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143414/04A RU2540402C1 (ru) 2013-09-25 2013-09-25 Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения

Country Status (1)

Country Link
RU (1) RU2540402C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2611526C1 (ru) * 2015-11-26 2017-02-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения гидроталькитоподобных соединений
CN116143151A (zh) * 2023-01-07 2023-05-23 苏州科技大学 一种微波辐射技术合成Mg3(OH)4(NO3)2材料的方法
RU2799181C1 (ru) * 2022-09-23 2023-07-04 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Слоистый двойной гидроксид со структурой гидроталькита состава Ni/AlHo
US11993519B2 (en) 2017-03-06 2024-05-28 Oxford University Innovation Limited Layered double hydroxide precursor, their preparation process and catalysts prepared therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879523A (en) * 1969-12-12 1975-04-22 Kyowa Chem Ind Co Ltd Composite metal hydroxides
RU2330812C1 (ru) * 2006-10-10 2008-08-10 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный университет" Гидроталькитоподобное соединение и способ его получения
RU2361814C1 (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный университет" Способ получения гидроталькитоподобных соединений
RU2424975C2 (ru) * 2005-12-06 2011-07-27 Акцо Нобель Н.В. Способ получения органически модифицированного слоистого двойного гидроксида
RU2426688C2 (ru) * 2005-12-06 2011-08-20 Акцо Нобель Н.В. Способ получения слоистого двойного гидроксида, модифицированного органическими соединениями

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879523A (en) * 1969-12-12 1975-04-22 Kyowa Chem Ind Co Ltd Composite metal hydroxides
RU2424975C2 (ru) * 2005-12-06 2011-07-27 Акцо Нобель Н.В. Способ получения органически модифицированного слоистого двойного гидроксида
RU2426688C2 (ru) * 2005-12-06 2011-08-20 Акцо Нобель Н.В. Способ получения слоистого двойного гидроксида, модифицированного органическими соединениями
RU2330812C1 (ru) * 2006-10-10 2008-08-10 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный университет" Гидроталькитоподобное соединение и способ его получения
RU2361814C1 (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный университет" Способ получения гидроталькитоподобных соединений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Vaysse C., et al. Thermal evolution of carbonate pillared layered hudroxides with (Ni, L) (L-Fe, Co) Bases Slabs: Grafting or Nongrafting of Carbonate Anions/ Inorganic Chemistry, 2002, V.41.,N 25, p.6905-6913. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2611526C1 (ru) * 2015-11-26 2017-02-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения гидроталькитоподобных соединений
US11993519B2 (en) 2017-03-06 2024-05-28 Oxford University Innovation Limited Layered double hydroxide precursor, their preparation process and catalysts prepared therefrom
RU2799181C1 (ru) * 2022-09-23 2023-07-04 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Слоистый двойной гидроксид со структурой гидроталькита состава Ni/AlHo
CN116143151A (zh) * 2023-01-07 2023-05-23 苏州科技大学 一种微波辐射技术合成Mg3(OH)4(NO3)2材料的方法

Similar Documents

Publication Publication Date Title
Yamaoka et al. Synthesis of Cu Al hydrotalcite like compound and its ion exchange property
Moezzi et al. Aqueous pathways for the formation of zinc oxide nanoparticles
Okamoto et al. Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents
CN111727172A (zh) 镧系元素掺杂的层状双氢氧化物及其生产方法
Khaldi et al. New varieties of zinc–chromium–sulfate lamellar double hydroxides
US20100256269A1 (en) Nickel incorporation into ldh chlorobenzenesulfonate
Zhang et al. Fast preparation and growth mechanism of erythrocyte-like Cd 2 Ge 2 O 6 superstructures via a microwave-hydrothermal process
RU2540402C1 (ru) Слоистый гидроксид со структурой гидроталькита, содержащий никель в степени окисления +3, и способ его получения
Tezuka et al. The synthesis and phosphate adsorptive properties of Mg (II)–Mn (III) layered double hydroxides and their heat-treated materials
CN110467226B (zh) 一种铁基水滑石的制备方法
Hansen et al. Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: I. The synthesis of pyroaurite and reevesite
Zhou et al. Synthesis and catalytic property of facet-controlled Co 3 O 4 structures enclosed by (111) and (113) facets
Ma et al. Hydrothermal preparation and anion exchange of Co2+–Ni2+–Fe3+ CO32− LDHs materials with well regular shape
Jobbágy et al. Homogeneous precipitation of layered Ni (II)–Cr (III) double hydroxides
Feng et al. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution
CN111792678B (zh) 一种纯钴类水滑石化合物及其制备方法
Wajima Synthesis of hydrotalcite from bittern, and its removal abilities of phosphate and nitrate
Taibi et al. Lamellar nickel hydroxy-halides: anionic exchange synthesis, structural characterization and magnetic behavior
CN110963513A (zh) 一种镁基水滑石的制备方法
Fernández et al. Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis
KR20100093419A (ko) 금속수산화물을 이용한 층상이중수산화물의 제조방법
Yuan et al. Preparation and characterization of L-aspartic acid-intercalated layered double hydroxide
JP2000264626A (ja) カルシウム−アルミニウム系層状複水酸化物の製造方法
Alabada et al. Complex compounds of transition metals with hydroxyaromatic carboxylic acids as precursors for the synthesis of nanosized metal oxides
Saber Preparation, Characterization and Intercalation Reactions of New Nano-Ordered Layered Materials, Zn-Al-Si LDH

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160926