RU2537517C1 - Полупроводниковый преобразователь давления - Google Patents

Полупроводниковый преобразователь давления Download PDF

Info

Publication number
RU2537517C1
RU2537517C1 RU2013130312/28A RU2013130312A RU2537517C1 RU 2537517 C1 RU2537517 C1 RU 2537517C1 RU 2013130312/28 A RU2013130312/28 A RU 2013130312/28A RU 2013130312 A RU2013130312 A RU 2013130312A RU 2537517 C1 RU2537517 C1 RU 2537517C1
Authority
RU
Russia
Prior art keywords
thin
circuit
semiconductor
bridge
pressure
Prior art date
Application number
RU2013130312/28A
Other languages
English (en)
Other versions
RU2013130312A (ru
Inventor
Вадим Анатольевич Шахнов
Константин Александрович Андреев
Юрий Николаевич Тиняков
Андрей Игоревич Власов
Сергей Владимирович Токарев
Татьяна Анатольевна Цивинская
Виктор Юрьевич Цыганков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана"
Priority to RU2013130312/28A priority Critical patent/RU2537517C1/ru
Application granted granted Critical
Publication of RU2537517C1 publication Critical patent/RU2537517C1/ru
Publication of RU2013130312A publication Critical patent/RU2013130312A/ru

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к преобразователям давления, предназначенным для использования в различных областях науки и техники, связанных с измерением давления среды в условиях воздействия нестационарной температуры измеряемой среды. Техническим результатом изобретения является значительное расширение рабочего температурного диапазона. Полупроводниковый преобразователь давления со схемой термокомпенсации содержит полупроводниковый кристалл, вырезанный в виде пластины. При этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору. Тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления. На полупроводниковом кристалле вне тонкостенной диафрагмы расположены дополнительный тензорезистивный мост и резистор с высоким температурным коэффициентом сопротивления, имеющий отдельные от общей схемы выводы. Полупроводниковый кристалл расположен на подставке, состоящей из стеклянной подложки и полой цилиндрической металлической подставки с наружной резьбой, изготовленных из материалов с одинаковыми коэффициентами теплового расширения. 3 ил.

Description

Область техники
Изобретение относится к измерительной технике, в частности к преобразователям давления, предназначенным для использования в различных областях науки и техники, связанных с измерением давления среды в условиях воздействия нестационарной температуры измеряемой среды.
Уровень техники
Одной из основных проблем создания полупроводниковых преобразователей давления среды является обеспечение температурной компенсации для уменьшения погрешностей измерения давления, существенно связанных с влиянием рабочих температур среды (газа или жидкости).
Известен датчик давления, устанавливаемый на подставке, снижающей давление (Патент РФ 2120117. ЕМКОСТНОЙ ДАТЧИК ДАВЛЕНИЯ, УСТАНАВЛИВАЕМЫЙ НА ПОДСТАВКЕ (ВАРИАНТЫ), СНИЖАЮЩАЯ ДАВЛЕНИЕ ПОДСТАВКА И СПОСОБ АНОДНОГО СОЕДИНЕНИЯ ДВУХ ПЛАСТИН, МПК G01L 9/12, дата публикации 10.10.1998). В данном изобретении датчик давления смонтирован во внешнем корпусе с использованием снижающей напряжение изолирующей подставки. Снижающая напряжения подставка для использования в датчике давления, имеющем чувствительный элемент, выполненный из полупроводникового материала, содержит стеклянную трубку, первый торец которой является опорой для чувствительного элемента датчика давления, а второй торец припаян к торцу металлического опорного элемента, имеющего сквозной канал. На свободном конце находится направляющий выступ с радиальным опорным буртиком. Подставка также содержит подводящий металлический штуцер, выполненный внутри с ответным радиальным опорным буртиком, причем опорный элемент своим радиальным буртиком опирается на радиальный буртик подводящего штуцера и скреплен с ним по указанным радиальным поверхностям. Второй торец стеклянной трубки имеет первый слой нанесенного на него материала и по меньшей мере второй слой, способный припаиваться к первому слою, первый слой материала, нанесенного на второй торец стеклянной трубки, выбран из группы металлов: цирконий, гафний, ниобий, тантал, ванадий, хром, молибден и вольфрам. Подводящий штуцер выполнен из материала, коэффициент теплового расширения которого больше, чем коэффициент теплового расширения стеклянной трубки, а металлический опорный элемент имеет коэффициент теплового расширения меньший, чем у подводящего штуцера, и больший, чем у стеклянной трубки.
Недостатком данного решения является высокая сложность монтажа полупроводникового преобразователя и невысокие значения измеряемых давлений (ориентировочно до 500 кПа).
Наиболее близким техническим решением является полупроводниковый датчик давления, содержащий схему температурной компенсации (патент РФ 2084846. ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ СО СХЕМОЙ ТЕРМОКОМПЕНСАЦИИ, МПК G01L 9/04, дата публикации 20.07.1997 г.). В данном изобретении полупроводниковый преобразователь давления со схемой термокомпенсации содержит полупроводниковый кристалл, вырезанный в виде пластины, являющейся стенкой полости с измеряемым давлением. При этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы. Схема термокомпенсации выполнена в виде двухполюсника, включенного последовательно в цепь питания мостовой схемы. Двухполюсник содержит биполярный транзистор, выводы эмиттер и коллектор которого являются выходами двухполюсника, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору, причем тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления. Двухполюсник размещен на полупроводниковом кристалле вне тонкостенной диафрагмы с одной ее стороны, с другой стороны тонкостенной диафрагмы диаметрально противоположно двухполюснику вне диафрагмы на полупроводниковом кристалле размещен введенный последовательно в цепь питания токоограничивающий и нормирующий тонкопленочный резистор, выполненный из материала с малым температурным коэффициентом сопротивления. В мостовую схему введены два балансировочных тонкопленочных резистора, выполненных из материала с малым температурным коэффициентом сопротивления и подключенных первыми выводами к эмиттеру транзистора, вторыми выводами связанных соответственно с двумя смежными тензорезисторами мостовой схемы, причем выводом полупроводникового преобразователя давления является измерительная диагональ мостовой схемы.
Недостатком данного решения является то, что данная схема может быть использована для термокомпенсации в нешироком диапазоне температур (примерно от минус 25°C до плюс 85°C). Также данная схема не содержит необходимых дополнительных элементов для активной термокомпенсации с применением микропроцессорных схем обработки сигнала.
Раскрытие изобретения
Задачей предлагаемого технического решения является устранение недостатков прототипа и, как следствие, значительное расширение рабочего температурного диапазона.
Поставленная задача решается тем, что полупроводниковый преобразователь давления со схемой термокомпенсации содержит полупроводниковый кристалл, вырезанный в виде пластины, являющейся стенкой полости с измеряемым давлением. При этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы, а схема термокомпенсации выполнена в виде двухполюсника, включенного последовательно в цепь питания мостовой схемы и содержащего биполярный транзистор, выводы эмиттер и коллектор которого являются выходами двухполюсника, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору. Тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления. При этом на полупроводниковом кристалле, вне тонкостенной диафрагмы, расположены дополнительный тензорезистивный мост, идентичный основному измерительному мосту, и дополнительный резистор с высоким температурным коэффициентом сопротивления, имеющий отдельные от общей схемы выводы. А полупроводниковый кристалл расположен на подставке, состоящей из стеклянной подложки и полой цилиндрической металлической подставки с наружной резьбой, изготовленные из материалов с одинаковыми коэффициентами теплового расширения.
Перечень чертежей
Фиг.1 - Электрическая схема преобразователя давления со схемой термокомпенсации, двумя тензорезистивными измерительными мостами и терморезистором.
Фиг.2 - Аксонометрическая проекция полупроводникового преобразователя с разрезом четверти кристалла.
Фиг.3 - Конструкция полупроводникового датчика давления.
Осуществление изобретения
Схема содержит (фиг.1, 2) тензорезистивный измерительный мост с резисторами R1, R2, R3, R4, дополнительный измерительный мост с резисторами R5, R6, R7, R8, транзисторную схему компенсации с транзистором VT1 и резисторами R9 и R10, контакты 1, 2 и 3 для подключение питания схемы, контакты 4, 5 и 6, 7 для снятия выходных сигналов с измерительных мостов, а также терморезистор Rt с контактами 8 и 9.
Схема располагается на кристалле полупроводникового преобразователя 10, выполненном в виде пластины, которая содержит (фиг.2) активную часть в виде упругодеформируемой мембраны 11 с жестким центром 12, сформированной методом анизотропного травления в кремниевой пластине и неактивную часть в виде рамки вокруг мембраны 13.
Тензорезисторы R1, R2, R3, R4 измерительного моста располагаются в заделке мембраны в жестком центре 14 и неподвижной рамке преобразователя давления 15, таким образом, что при деформации мембраны сжимаемые и растягиваемые тензорезисторы находятся в противоположных плечах измерительного моста, тем самым увеличивая выходной сигнал и уменьшая нелинейность выходной характеристики преобразователя.
Тензорезисторы R4, R5, R6, R7 располагаются в неактивной части (в зоне практического отсутствия деформации) пластины и полностью идентичны тензорезисторам основного измерительного моста. Также в неактивной части пластины располагается транзисторная схема компенсации, содержащая резисторы R9, R10 с низким температурным коэффициентом сопротивления.
Полупроводниковый преобразователь давления работает следующим образом: на контакт 1 подается «плюс» питания измерительных мостов, на контакты 2 и 3 «минус» питания, с диагоналей мостов с выходов 4, 5 и 6, 7 снимаются выходные характеристики. При отсутствии давления основной измерительный мост находится в состоянии равновесия. При подаче давления происходит деформация мембраны, на которой расположены тензорезисторы R1, R2, R3, R4, при этом происходит изменение их сопротивления и на выходе измерительного моста (4 и 5) появляется сигнал, пропорциональный измеряемому давлению. Одновременно тензорезисторы R5, R6, R7, R8 дополнительного измерительного моста, расположенные в неактивной части мембраны, не испытывают напряжения при деформации мембраны и их сопротивление не изменяется.
При увеличении температуры происходит изменение номиналов тензорезисторов и снижение выходного сигнала, но увеличение температуры также приводит к увеличению тока через транзистор и основной измерительный мост, что увеличивает выходной сигнал, и, таким образом, поддерживает его на постоянном уровне при повышении температуры. При значительном увеличении температуры (свыше 85°C) эффективность транзисторной схемы компенсации снижается и необходимо использовать дополнительные элементы термокомпенсации.
В дополнительном измерительном мосте при повышении температуры также происходит изменение номиналов тензорезисторов. Величина выходного сигнала, поступающего с основного измерительного моста, складывается из полезного сигнала измеряемого давления и величины температурной погрешности, а сигнал, поступающий с дополнительного измерительного моста, содержит информацию только о величине погрешности, следовательно, температурную погрешность можно компенсировать при помощи отдельной микропроцессорной схемы обработки сигнала вычитанием сигналов основного и дополнительного измерительных мостов. Данным способом можно компенсировать случайную составляющую температурной погрешности.
Также на неактивной части пластины располагается дополнительный терморезистор, который при использовании микропроцессорной схемы обработки сигнала используется в качестве термодатчика и позволяет определять температуру измеряемой среды для измерения величины и компенсации систематической температурной погрешности при микропроцессорной обработке информации. При калибровке датчика давления на различных температурах информация о величине температуры и погрешности, возникающей при данной температуре, записываются в память схемы обработки сигнала. В процессе измерения датчиком давления при помощи терморезистора определяется текущая температура, а соответствующая ей величина погрешности вычитается из сигнала, поступившего с основного измерительного моста.
Для снижения погрешности, вызванной механическими напряжениями в сопрягаемых конструктивных элементах датчика давления, возникающей из-за различия в температурных коэффициентах линейного расширения, полупроводниковый преобразователь 10 методом электростатической анодной сварки крепится на квадратную подложку из боросиликатного стекла 16 (фиг.3) с близким по величине к кремнию температурным коэффициентом. Стеклянная подложка по размеру соответствует кремниевому кристаллу. Подложка располагается на полой цилиндрической металлической подставке с наружной резьбой 17 из материала с температурным коэффициентом, близким к температурному коэффициенту материала стеклянной подложки. Таким образом, металлическая подставка позволяет надежно закрепить чувствительный элемент в общей конструкции датчика давления, а структура (подставка-подложка-преобразователь) из элементов с близкими по величине коэффициентами линейного расширения позволяет снизить влияние напряжений, возникающих при изменении температуры.
Полупроводниковый преобразователь может подключаться к измерительному каналу через штуцер. Давление подается в подмембранную полость через отверстие в подставке 18 и стеклянной подложке 19 или на планарную сторону полупроводникового преобразователя. Стеклянная подложка выполнена из термостойкого стекла марки Пирекс П-15, а подставка из прецизионного сплава 29НК.
В результате предложенная конструкция преобразователя давления позволяет измерять давление среды в диапазоне от 0 до 400 МПа (в зависимости от толщины и площади активной части пластины и при подаче давления на планарную сторону кристалла преобразователя давления) в температурном диапазоне от минус 40°C до плюс 125°C с общей погрешностью до 0,1%.

Claims (1)

  1. Полупроводниковый преобразователь давления со схемой термокомпенсации, содержащий полупроводниковый кристалл, вырезанный в виде пластины, являющейся стенкой полости с измеряемым давлением, при этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы, а схема термокомпенсации выполнена в виде двухполюсника, включенного последовательно в цепь питания мостовой схемы и содержащего биполярный транзистор, выводы эмиттер и коллектор которого являются выходами двухполюсника, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору, причем тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления, отличающийся тем, что на полупроводниковом кристалле, вне тонкостенной диафрагмы, расположены дополнительный тензорезистивный мост, идентичный основному измерительному мосту, и резистор с высоким температурным коэффициентом сопротивления, имеющий отдельные от общей схемы выводы, а полупроводниковый кристалл расположен на подставке, состоящей из стеклянной подложки и полой цилиндрической металлической подставки с наружной резьбой, изготовленных из материалов с одинаковыми коэффициентами теплового расширения.
RU2013130312/28A 2013-07-03 2013-07-03 Полупроводниковый преобразователь давления RU2537517C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013130312/28A RU2537517C1 (ru) 2013-07-03 2013-07-03 Полупроводниковый преобразователь давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013130312/28A RU2537517C1 (ru) 2013-07-03 2013-07-03 Полупроводниковый преобразователь давления

Publications (2)

Publication Number Publication Date
RU2537517C1 true RU2537517C1 (ru) 2015-01-10
RU2013130312A RU2013130312A (ru) 2015-01-10

Family

ID=53278970

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013130312/28A RU2537517C1 (ru) 2013-07-03 2013-07-03 Полупроводниковый преобразователь давления

Country Status (1)

Country Link
RU (1) RU2537517C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187746U1 (ru) * 2018-12-26 2019-03-18 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе биполярного транзистора с термокомпенсацией
RU2687307C1 (ru) * 2018-07-02 2019-05-13 Акционерное общество "Научно-исследовательский институт физических измерений" Интегральный преобразователь давления
RU195160U1 (ru) * 2019-06-13 2020-01-16 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе вертикального биполярного транзистора с термокомпенсацией
RU202558U1 (ru) * 2020-12-09 2021-02-24 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Датчик давления с интегральным преобразователем температуры сверхнизкого энергопотребления

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167269A (zh) * 2017-06-01 2017-09-15 陈畅 一种应变式电子测力计

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2036445C1 (ru) * 1988-05-31 1995-05-27 Машиностроительное конструкторское бюро "Радуга" Преобразователь давления
RU2084846C1 (ru) * 1992-05-14 1997-07-20 Александр Викторович Цивинский Полупроводниковый преобразователь давления со схемой термокомпенсации
RU2086940C1 (ru) * 1995-08-10 1997-08-10 Общество с ограниченной ответственностью "МикроТехнология" Полупроводниковый датчик давления
RU2088942C1 (ru) * 1995-06-05 1997-08-27 Уфимский государственный нефтяной технический университет Преобразователь давления и температуры

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2036445C1 (ru) * 1988-05-31 1995-05-27 Машиностроительное конструкторское бюро "Радуга" Преобразователь давления
RU2084846C1 (ru) * 1992-05-14 1997-07-20 Александр Викторович Цивинский Полупроводниковый преобразователь давления со схемой термокомпенсации
RU2088942C1 (ru) * 1995-06-05 1997-08-27 Уфимский государственный нефтяной технический университет Преобразователь давления и температуры
RU2086940C1 (ru) * 1995-08-10 1997-08-10 Общество с ограниченной ответственностью "МикроТехнология" Полупроводниковый датчик давления

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687307C1 (ru) * 2018-07-02 2019-05-13 Акционерное общество "Научно-исследовательский институт физических измерений" Интегральный преобразователь давления
RU187746U1 (ru) * 2018-12-26 2019-03-18 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе биполярного транзистора с термокомпенсацией
RU195160U1 (ru) * 2019-06-13 2020-01-16 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе вертикального биполярного транзистора с термокомпенсацией
RU202558U1 (ru) * 2020-12-09 2021-02-24 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Датчик давления с интегральным преобразователем температуры сверхнизкого энергопотребления

Also Published As

Publication number Publication date
RU2013130312A (ru) 2015-01-10

Similar Documents

Publication Publication Date Title
RU2537517C1 (ru) Полупроводниковый преобразователь давления
US9976923B2 (en) Capacitive pressure-measuring cell having at least one temperature sensor and pressure measurement method
TWI618922B (zh) 用於利用測量單元裝置測量真空壓力的方法及裝置
JP5432129B2 (ja) 多孔質誘電体ダイアフラムを有する静電圧力センサ
EP3088859B1 (en) Pressure measurement device
JPH09119880A (ja) 圧力センサ
JP2597042B2 (ja) 差圧測定装置
US7757563B2 (en) Capacitance manometers and methods of making same
WO2013002180A1 (ja) 隔膜気圧計
CN102288354A (zh) 压敏电阻式压力传感器
CN112484916B (zh) 一种贴片式压力传感器温度响应特性校准方法
CN107667279A (zh) 压力感测设备
JP2008209284A (ja) 圧力測定装置および圧力測定方法
RU2397460C1 (ru) Датчик давления на основе тензорезисторной тонкопленочной нано- и микроэлектромеханической системы
Uhlig et al. Pressure sensitivity of piezoresistive nickel–carbon Ni: aC: H thin films
Frantlović et al. Temperature measurement using silicon piezoresistive MEMS pressure sensors
KR20090014711A (ko) 압력 게이지 교정 방법 및 이를 이용한 압력 게이지 교정시스템
CN109994596A (zh) 一种高性能宽量程带温敏型薄膜压敏芯片
US20150030054A1 (en) Wide-range precision constant volume gas thermometer
RU2398196C1 (ru) Устройство для измерения давления на основе нано- и микроэлектромеханической системы с частотным выходным сигналом
US20190025146A1 (en) Pressure sensor
RU2687307C1 (ru) Интегральный преобразователь давления
CN104931193A (zh) 一种带有参考真空室的mems皮拉尼计
US20090212899A1 (en) Low Pressure Transducer Using Beam and Diaphragm
Pons et al. Low-cost high-sensitivity integrated pressure and temperature sensor