RU2687307C1 - Интегральный преобразователь давления - Google Patents

Интегральный преобразователь давления Download PDF

Info

Publication number
RU2687307C1
RU2687307C1 RU2018124170A RU2018124170A RU2687307C1 RU 2687307 C1 RU2687307 C1 RU 2687307C1 RU 2018124170 A RU2018124170 A RU 2018124170A RU 2018124170 A RU2018124170 A RU 2018124170A RU 2687307 C1 RU2687307 C1 RU 2687307C1
Authority
RU
Russia
Prior art keywords
crystal
working surface
membrane
working
strain gauges
Prior art date
Application number
RU2018124170A
Other languages
English (en)
Inventor
Андрей Валерьевич НИКОЛАЕВ
Иван Владимирович Ползунов
Александр Александрович Родионов
Вадим Александрович Шокоров
Original Assignee
Акционерное общество "Научно-исследовательский институт физических измерений"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт физических измерений" filed Critical Акционерное общество "Научно-исследовательский институт физических измерений"
Priority to RU2018124170A priority Critical patent/RU2687307C1/ru
Application granted granted Critical
Publication of RU2687307C1 publication Critical patent/RU2687307C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges

Abstract

Использование: для контроля и (или) измерения давления жидкостей и газов. Сущность изобретения заключается в том, что интегральный преобразователь давления содержит кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной в центре кристалла с обратной стороны, на рабочей поверхности кристалла сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, на поверхности мембраны с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста, с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов, с возможностью выборки номинала сопротивления для настройки выходных сигналов, четыре последовательно соединенные терморезистора расположены на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла. Технический результат: обеспечение возможности увеличения точности и надежности преобразователя. 1 з.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к измерительной технике, в частности к полупроводниковым датчикам давления с мостовой измерительной цепью и может быть использовано в различных системах контроля и (или) измерения давления жидкостей и газов.
Известна матрица интегральных преобразователей давления [Патент RU 2362236 C1, G01L 9/04], содержащая несколько интегральных преобразователей давления (ИПД) на основе тонких кремниевых мембран с тензорезистивными чувствительными элементами, включенными по мостовой схеме. Для достижения высокого разрешения и высокой точности измерения тактильного давления, ИПД сформированы на едином монокристаллическом кремниевом кристалле с равномерным шагом по двум ортогональным направлениям и соединены в единую электрическую схему слоем металлизации с внешними выводами, предназначенными для подачи напряжения питания на тензомост и регистрации выходного электрического сигнала, пропорционального приложенному давлению, с каждого ИПД, а также измерения температуры кристалла с помощью интегрального диффузионного резистора или диода.
Недостатками данного технического решения является низкая точность, обусловленная различием температурных коэффициентов сопротивлений (ТКС) и сопротивлений тензорезисторов вследствие технологического разброса при формировании резисторов и низкая надежность, обусловленная высокой сложностью монтажа и большими габаритными размерами матрицы при сравнительно малой толщине кристалла.
Известен полупроводниковый преобразователь давления со схемой термокомпенсации [Патент RU 2537517 C1, G01L 9/00], содержащий полупроводниковый кристалл, вырезанный в виде пластины. При этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору. Тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления. На полупроводниковом кристалле вне тонкостенной диафрагмы расположены дополнительный тензорезистивный мост и резистор с высоким температурным коэффициентом сопротивления, имеющий отдельные от общей схемы выводы. Полупроводниковый кристалл расположен на подставке, состоящей из стеклянной подложки и полой цилиндрической металлической подставки с наружной резьбой, изготовленных из материалов с одинаковыми коэффициентами теплового расширения.
Недостатком данного технического решения является недостаточная точность в части температурного ухода начального выходного сигнала и величины начального выходного сигнала, обусловленных различием температурных коэффициентов сопротивлений (ТКС) и сопротивлений тензорезисторов соответственно, вследствие технологического разброса при формировании резисторов. Еще одним недостатком является низкая надежность, обусловленная более сложным циклом изготовления за счет напыления двух тонкопленочных резисторов и формирования транзистора.
Наиболее близким техническим решением (прототипом) является интегральный преобразователь давления [Патент RU 2278447 C2, G01L 9/04], содержащий кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой мембраной в центре кристалла с обратной стороны. На рабочей поверхности кристалла сформированы радиальные и тангенциальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему. Соединение тензорезисторов с металлической разводкой осуществлено с помощью специально созданных за пределами мембраны и за ее переходными областями промежуточных высоколегированных областей р+-типа проводимости, которые охватывают часть мембраны, переходную область и часть кремниевого основания. Промежуточные области р+-типа проводимости имеют одинаковые размеры и форму.
Недостатком прототипа является низкая точность, обусловленная высокой температурной погрешностью, за счет различия температурных коэффициентов тензорезисторов и разбаланса начального выходного сигнала на чувствительном элементе.
Целью предлагаемого технического решения является повышение точности преобразователя.
Поставленная цель достигается тем, что в интегральном преобразователе давления, содержащем кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой мембраной в центре кристалла с обратной стороны, на рабочей поверхности которого сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, согласно предлагаемому изобретению мембрана выполнена квадратной, на поверхности которой с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, при этом по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, а на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов с возможностью выборки номинала сопротивления для настройки выходных сигналов и четыре последовательно соединенных терморезистора, расположенных на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла.
Кроме того, на рабочей поверхности кристалла для изоляции сформирован диэлектрический слой.
Повышение точности обеспечивается за счет компенсации температурной погрешности и за счет настройки разбаланса выходного сигнала.
Компенсация температурной погрешности реализуется:
- четырьмя терморезисторами, позволяющими измерять температуру окружающей среды и температуру схемы кристалла, с последующей компенсацией температурных уходов преобразователя давления;
- восемью рабочими тензорезисторами, попарно соединенными и образующими четыре полумоста, обеспечивающими настройку температурных уходов сигнала путем выбора рабочих тензорезисторов с минимальным разбросом температурных коэффициентов сопротивления и тензочувствительности.
Вместе с тем, наличие трех групп сопротивлений из последовательно соединенных резисторов с возможностью выбора номинала сопротивления обеспечивают настройку начального разбаланса выходного сигнала, тем самым повышают точность измерения давления.
Фиг. 1 - Интегральный преобразователь давления (разрез и аксонометрическая проекция).
Фиг. 2 - Электрическая схема интегрального преобразователя давления.
Интегральный преобразователь давления содержит кремниевый кристалл 1 n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной 2 в центре кристалла 1 с обратной стороны. На рабочей поверхности кристалла 1 сформированы радиальные тензорезисторы 3 р-типа проводимости, соединенные с помощью металлической электрической разводки 4 в мостовую схему. На поверхности мембраны 2 с обратной стороны кристалла 1 методом анизотропного травления сформирован квадратный жесткий центр 5. По периметру мембраны 2 и жесткого центр 5 с рабочей стороны кристалла 1 выполнены одинаковые по форме и размерам тензорезисторы 3, соединенные попарно, образуя четыре полумоста R1 - R8 (фиг. 1, 2), с возможностью выбора идентичных рабочих тензорезисторов 3 для настройки температурных уходов выходного сигнала. На рабочей поверхности кристалла 1 вне зоны мембраны 2 выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов R10 - R13, R14 - R17, R18-R21 (фиг. 1, 2), с возможностью выбора номинала сопротивления для настройки выходных сигналов. Четыре последовательно соединенные терморезистора R9 расположены на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла 1.
Кроме того, на рабочей поверхности кристалла 1 сформирован диэлектрический слой 6, а металлизированная контактная площадка 34 является технологической и служит для отбраковки преобразователя по величине токов утечки и напряжения пробоя на стадии изготовления преобразователя.
Интегральный преобразователь давления работает следующим образом.
На соединенные в зависимости от результатов настройки контактные площадки (8-32) подается напряжение питания измерительного моста. Значения выходного сигнала снимают с контактных площадок 7 и 33. При отсутствии давления измерительный мост находится в состоянии равновесия, а при подаче давления происходит деформация мембраны 2. При этом тензорезисторы 3 (R1-R8), выбранные по результатам настройки с наиболее схожими значениями температурного коэффициента сопротивления и расположенные по периметру мембраны 2 и жесткого центра 5 изменяют свои сопротивления и на выходе измерительного моста (7 и 33) появляется сигнал, пропорциональный измеряемому давлению.
Наличие тензорезисторов R1 - R8, трех групп сопротивлений R10 - R13, R14 - R17, R18 - R21 (фиг. 1, 2) позволяет осуществлять настройку начального выходного сигнала, температурного ухода начального сигнала, температурного ухода чувствительности преобразователя при измерении, как избыточного, так и абсолютного давления в широком интервале температур, путем создания опорного давления с одной из сторон преобразователя. Например, при создании опорного давления со стороны рабочей поверхности кристалла 1, его жесткой заделки и подачи давления с обратной стороны тензорезисторы R1, R3, R5, R7 растягиваются, а тензорезисторы R2, R4, R6, R8 сжимаются. При изменении направления задаваемого давления, наоборот, при этом происходит изменение их сопротивления и на выходе настраиваемого измерительного моста появляется сигнал, пропорциональный измеряемому давлению.
При изменении рабочей температуры происходит изменение сопротивлений тензорезисторов 3 (R1 - R8), которое и из-за технологического разброса при формировании может отличаться больше, чем на 10%. На практике для выполнения термокомпенсации начального выходного сигнала и сохранения баланса мостовой схемы необходимо выполнение следующих условий:
Figure 00000001
где R1, R2, R3, R4 - сопротивления тензорезисторов при НКУ,
η1, η2, η3, η4 - ТКС тензорезисторов.
Исходя из этих условий, уменьшения температурных уходов нуля и косвенно чувствительности возможно методом подбора пар тензорезисторов с одинаковым ТКС. В связи с этим наличие восьми тензорезисторов, одинаковых по форме типа «меандр» и размерам позволяет подобрать 16 возможных различных вариантов их применения, таким образом, чтобы ТКС и ТКЧ парных резисторов был максимально близок друг к другу. Для этого необходимо определить значения выходного сигнала при начальном давлении Р=Р0 и при номинальном давлении Р=Рв по следующим формулам, при температурах 20°С (нормальная рабочая температура Тнорм), Тнижн. и Тверхн.:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
где Uпит - напряжение питания, в мВ;
R1t - R8t - значение сопротивлений резисторов при 20°С, верхней и нижней рабочей температуре.
Для определения температурного ухода начального выходного сигнала и чувствительности необходимо рассчитать чувствительность по следующей формуле:
Figure 00000018
где UtРв - выходной сигнал при верхнем значении измеряемого давления при температурах 20°С, Тнижн, Тверхн;
UtР0 - выходной сигнал при нижнем значении измеряемого давления при температурах 20°С, Тнижн, Тверхн.
В соответствии с рассчитанными значениями начального выходного сигнала и чувствительности необходимо рассчитать значение температурного ухода начального выходного сигнала β:
Figure 00000019
где U0верхн), U0нижн) - значения начального выходного сигнала при верхней Тверх и нижней Тнижн рабочих температурах соответственно, рассчитанные по формулам (2-17);
U (20°С) - значение чувствительности при 20°С, рассчитанное по формуле (18);
ΔT - диапазон рабочих температур.
Рассчитать значение температурного ухода диапазона изменения выходного сигнала а по формуле:
Figure 00000020
где U (Тверхн), U (Тнижн), U (20°С) - значения чувствительности при верхней Тверхн, нижней Тнижн рабочих температурах и 20°С соответственно, рассчитанные по формуле (18).
Для настройки начального выходного сигнала при измерении избыточного или абсолютного давления на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов разного сопротивления, которые не испытывают напряжения при деформации мембраны и их сопротивление не изменяется. Это позволяет, учитывая значения температурных коэффициентов сопротивлений данных резисторов, одновременно производить более точную настройку начального выходного сигнала и температурных уходов. При этом, используя нанесенную металлизацию и золотые перемычки, возможно 42592 варианта разварки. Формирование резисторов R1-R8, R10-R21 происходит при одинаковом уровне легирования, что способствует наилучшей настройке. По результатам расчетов выбирается наилучшее по значениям начального выходного сигнала и температурным уходам сочетание резисторов.
В результате предложенная конструкция интегрального преобразователя давления позволяет измерять избыточное и абсолютное давление среды в диапазоне от 0 до 400 МПа (в зависимости от толщины и площади мембраны и жесткого центра) в широком температурном диапазоне (в зависимости от технологии формирования измерительной схемы), с основной приведенной погрешностью до 0,02%, температурным уходом начального выходного сигнала не хуже 3⋅10-4 1/°С и температурным уходом чувствительности не хуже 3⋅10-3 1/°С.
Технический результат заключается в повышении точности преобразователя, за счет термокомпенсации начального выходного сигнала и чувствительности и настройки начального разбаланса выходного сигнала.

Claims (2)

1. Интегральный преобразователь давления, содержащий кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой мембраной в центре кристалла с обратной стороны, на рабочей поверхности которого сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, отличающийся тем, что мембрана выполнена квадратной, на поверхности которой с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, при этом по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста, с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, а на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов, с возможностью выбора номинала сопротивления для настройки выходных сигналов, и четыре последовательно соединенных терморезистора, расположенных на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла.
2. Интегральный преобразователь давления по п. 1, отличающийся тем, что на рабочей поверхности кристалла для изоляции сформирован диэлектрический слой.
RU2018124170A 2018-07-02 2018-07-02 Интегральный преобразователь давления RU2687307C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124170A RU2687307C1 (ru) 2018-07-02 2018-07-02 Интегральный преобразователь давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124170A RU2687307C1 (ru) 2018-07-02 2018-07-02 Интегральный преобразователь давления

Publications (1)

Publication Number Publication Date
RU2687307C1 true RU2687307C1 (ru) 2019-05-13

Family

ID=66578939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124170A RU2687307C1 (ru) 2018-07-02 2018-07-02 Интегральный преобразователь давления

Country Status (1)

Country Link
RU (1) RU2687307C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195160U1 (ru) * 2019-06-13 2020-01-16 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе вертикального биполярного транзистора с термокомпенсацией
RU224032U1 (ru) * 2023-12-06 2024-03-13 Елизавета Анатольевна Рыблова Полупроводниковый преобразователь давления с повышенной чувствительностью

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1580190A1 (ru) * 1987-10-24 1990-07-23 Предприятие П/Я А-1891 Интегральный преобразователь давлени
US6813956B2 (en) * 2001-10-24 2004-11-09 Kulite Semiconductor Products, Inc. Double stop structure for a pressure transducer
RU2278447C2 (ru) * 2004-07-01 2006-06-20 Госудаственное Учреждение Научно-Производственный Комплекс "Технологический центр" Московского Государственного Института Электронной Техники (ГУ НПК "ТЦ" МИЭТ) Интегральный преобразователь давления
RU2362132C1 (ru) * 2007-12-27 2009-07-20 Государственное Учреждение "Научно-производственный комплекс "Технологический центр" Московского Государственного института электронной техники" (ГУ НПК "ТЦ" МИЭТ) Интегральный преобразователь давления
RU2537517C1 (ru) * 2013-07-03 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" Полупроводниковый преобразователь давления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1580190A1 (ru) * 1987-10-24 1990-07-23 Предприятие П/Я А-1891 Интегральный преобразователь давлени
US6813956B2 (en) * 2001-10-24 2004-11-09 Kulite Semiconductor Products, Inc. Double stop structure for a pressure transducer
RU2278447C2 (ru) * 2004-07-01 2006-06-20 Госудаственное Учреждение Научно-Производственный Комплекс "Технологический центр" Московского Государственного Института Электронной Техники (ГУ НПК "ТЦ" МИЭТ) Интегральный преобразователь давления
RU2362132C1 (ru) * 2007-12-27 2009-07-20 Государственное Учреждение "Научно-производственный комплекс "Технологический центр" Московского Государственного института электронной техники" (ГУ НПК "ТЦ" МИЭТ) Интегральный преобразователь давления
RU2537517C1 (ru) * 2013-07-03 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" Полупроводниковый преобразователь давления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195160U1 (ru) * 2019-06-13 2020-01-16 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Интегральный чувствительный элемент преобразователя давления на основе вертикального биполярного транзистора с термокомпенсацией
RU224032U1 (ru) * 2023-12-06 2024-03-13 Елизавета Анатольевна Рыблова Полупроводниковый преобразователь давления с повышенной чувствительностью

Similar Documents

Publication Publication Date Title
US4320664A (en) Thermally compensated silicon pressure sensor
US7456638B2 (en) MEMS based conductivity-temperature-depth sensor for harsh oceanic environment
US6973837B2 (en) Temperature compensated strain sensing apparatus
KR100955984B1 (ko) 유량계용 압력 감지 장치
EP3156771A1 (en) Sensor chip for multi-physical quantity measurement and preparation method therefor
EP0616688A1 (en) DESIGN OF PIEZORESISTIVE PRESSURE SENSOR IN SILICON.
US4733559A (en) Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates
US3572109A (en) Integral semiconductor strain gage transducers with frequency output
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
US6729187B1 (en) Self-compensated ceramic strain gage for use at high temperatures
KR20170120040A (ko) 압력 센서 제조 방법
CN102798498A (zh) 一种多量程集成压力传感器芯片
US4373399A (en) Semiconductor strain gauge transducer
US20070289388A1 (en) High temperature pressure transducer employing a metal diaphragm
CN102288354A (zh) 压敏电阻式压力传感器
US6700473B2 (en) Pressure transducer employing on-chip resistor compensation
US6118166A (en) Thin-film microstructure sensor having a temperature-sensitive resistor to provide a large TCR with little variation
Kumar et al. Effect of piezoresistor configuration on output characteristics of piezoresistive pressure sensor: an experimental study
RU2687307C1 (ru) Интегральный преобразователь давления
Belwanshi et al. Performance study of MEMS piezoresistive pressure sensors at elevated temperatures
RU2537517C1 (ru) Полупроводниковый преобразователь давления
US4444054A (en) Temperature compensation for diffused semiconductor strain devices
Frantlović et al. Temperature measurement using silicon piezoresistive MEMS pressure sensors
Aravamudhan et al. MEMS based conductivity-temperature-depth (CTD) sensor for harsh oceanic environment
CN106662477B (zh) 传感装置