RU2535797C1 - Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами - Google Patents

Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами Download PDF

Info

Publication number
RU2535797C1
RU2535797C1 RU2013119304/05A RU2013119304A RU2535797C1 RU 2535797 C1 RU2535797 C1 RU 2535797C1 RU 2013119304/05 A RU2013119304/05 A RU 2013119304/05A RU 2013119304 A RU2013119304 A RU 2013119304A RU 2535797 C1 RU2535797 C1 RU 2535797C1
Authority
RU
Russia
Prior art keywords
carbon
fibers
polyacrylonitrile
carbon black
fibres
Prior art date
Application number
RU2013119304/05A
Other languages
English (en)
Other versions
RU2013119304A (ru
Inventor
Полина Юрьевна Сальникова
Дарья Александровна Житенева
Александр Александрович Лысенко
Владимир Александрович Лысенко
Ольга Игоревна Гладунова
Анатолий Алексеевич Якобук
Юрий Николаевич Сазанов
Ольга Владимировна Асташкина
Ярослав Олегович Перминов
Андрей Юрьевич Кузнецов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна"
Priority to RU2013119304/05A priority Critical patent/RU2535797C1/ru
Publication of RU2013119304A publication Critical patent/RU2013119304A/ru
Application granted granted Critical
Publication of RU2535797C1 publication Critical patent/RU2535797C1/ru

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила (ПАН), наполненных углеродными наночастицами. Сформированные волокна подвергают термообработке в воздушной среде при нагреве. Волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2 - 10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут. Изобретение обеспечивает полное проведение процесса окислительной стабилизации волокон из ПАН, наполненных техническим углеродом (углеродными наночастицами), а также упрощение технологии за счет уменьшения времени проведения процесса, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды. 1 табл., 5 пр.

Description

Предлагаемое изобретение относится к области химии, а именно к способам окислительной стабилизации волокон из полиакрилонитрила, в том числе для использования как полупродукта для последующего получения углеродных волокнистых материалов для применения в качестве теплоизоляции печей инертной среды.
Из уровня техники известен способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов, стадия окислительной стабилизации которого проходит по четырехступенчатому режиму в диапазонах 150-190°С, 200-215°С, 220-240°С, 250-280°С в течение 90-120 минут.
Недостатком данного способа является сложная технология, включающая 4 ступени процесса, а также высокая конечная температура окислительной стабилизации - 280°С [Патент РФ 2258104 C1, D01F 6/18, 11/16, C09K 21/14. Способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов, 10.08. 2005].
Наиболее близким к заявленному является способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными нанотрубками (углеродными наночастицами), при котором окислительную стабилизацию волокон, содержащих 5 и 10 масс.% углеродных нанотрубок (углеродных наночастиц), проводят в воздушной среде при постоянной температуре 250°С в течение 10 часов [Min Byung G. Oxidative stabilization of PAN/SWNT composite fiber / Byung G. Min, T.V. Sreekumar, Tetsuya Uchida [et al.] // Carbon. - 2005. - 43. - P.599-604].
Недостатком данного способа является большое общее время процесса окислительной стабилизации - 10 часов.
Предназначение прототипа заключается в использовании волокон из полиакрилонитрила, наполненных углеродными нанотрубками (углеродными наночастицами), после проведения окислительной стабилизации, для получения углеродных волокон с высокой прочностью.
Техническим результатом заявленного изобретения является полное проведение процесса окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом (углеродными наночастицами), а также устранение указанных недостатков, а именно упрощение технологии за счет уменьшения времени проведения процесса, обусловленное совместным участием в процессе окислительной стабилизации кислорода воздуха, а также кислорода, находящегося на поверхности технического углерода, введенного в волокна из полиакрилонитрила, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды.
Поставленная задача достигается тем, что в способе окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами, сформированные волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2-10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, для проведения окислительной стабилизации подвергают термообработке в воздушной среде при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.
Существенным отличием является проведение окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом, при этом содержание технического углерода в волокнах, не прошедших окислительную стабилизацию, составляет 0,2-10%, а поверхность технического углерода содержит кислород в количестве не менее 4,8 атомных %, путем термообработки в воздушной среде, при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.
Заявляемый способ осуществляется следующим образом.
В прядильный раствор полиакрилонитрила вводят технический углерод. Процесс введения наночастиц в прядильный раствор широко описан в литературе, в том числе см. прототип, где осуществляется введение углеродных нанотрубок в прядильный раствор.
Из прядильного раствора формуют волокно из полиакрилонитрила с линейной плотностью 0,2-2,1 текс, наполненное техническим углеродом, при этом содержание технического углерода составляет 0,2-10%. Используют технический углерод, содержащий на своей поверхности не менее 4,8 атомных % кислорода, что определяют по данным рентгенофотоэлектронной спектроскопии, анализируя фотоэлектронную линию кислорода на спектрах высокого разрешения. Технический углерод имеет аморфную структуру с размером частиц по данным сканирующей электронной микроскопии 20-80 нм, то есть лежащим в нанодиапазоне. Частицы образуют агломераты размером 100-200 нм. Такая структура обладает меньшей теплопроводностью по сравнению с такими углеродными материалами, используемыми для теплоизоляции печей, как углеродные волокна, графит, имеющими кристаллическую графитоподобную структуру.
Затем волокно из полиакрилонитрила, наполненное техническим углеродом, подвергают окислительной стабилизации. Волокно заправляют в нагретую до 180°С трубчатую печь. Процесс проводят в одну стадию при нагреве волокна от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.
Для оценки полноты прохождения процесса окислительной стабилизации используют известный метод [Sudhakar Jagannathan, Han Gi Chae, Rahul Jain, Satish Kumar. Structure and electrochemical properties of activated polyacrylonitrile based carbon containing carbon nanotubes. Journal of Power Sources 2008; 185:676-84], основанный на экстракции полиакрилонитрила, не прошедшего окислительную стабилизацию, в диметилформамиде при температуре 150°С в течение 6 часов.
Метод экстракции полиакрилонитрила, не прошедшего окислительную стабилизацию, в диметилформамиде при температуре 150°С в течение 6 часов показывает полное прохождение процесса окислительной стабилизации.
Таблица 1
Экспериментальные результаты
№ п/п Содержание наночастиц % Содержание кислорода на поверхности наночастиц, ат.% Прекурсор для получения углеродных волокон Температура, °С Скорость подъема температуры, °С в минуту Время проведения окислительной стабилизации, мин Потеря массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов, %
начальная максимальная
1 0,2 4,8 Полиакрилонитрил 180 230 0,5 110 0
2 5 4,8 Полиакрилонитрил 180 230 0,5 110 0
3 10 4,8 Полиакрилонитрил 180 230 0,5 110 0
4 5 5 Полиакрилонитрил 180 230 0,5 100 0
5 10 5,2 Полиакрилонитрил 180 230 0,5 90 0
Прототип 5 Данные не приведены Полиакрилонитрил 250 250 - 600 Данные не приведены
Прототип 10 Данные не приведены Полиакрилонитрил 250 250 - 600 Данные не приведены
Пример 1.
Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 0,2% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Пример 2.
Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 5% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Пример 3.
Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 10% технического углерода, на поверхности которого содержится 4,8 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 110 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Пример 4.
Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 5% технического углерода, на поверхности которого содержится 5 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 100 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Пример 5.
Как видно из данных таблицы 1, при проведении окислительной стабилизации волокон из полиакрилонитрила, содержащих 10% технического углерода, на поверхности которого содержится 5,2 атомных % кислорода, в одну стадию при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту, в течение 90 минут, происходит полное прохождение процесса окислительной стабилизации, что характеризуется отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Использование технического углерода, на поверхности которого содержится менее 4,8 атомных % кислорода, существенно увеличивает время полного прохождения окислительной стабилизации, так как снижается количество кислорода, дополнительно привносимого с поверхности технического углерода в реакционную зону.
Использование технического углерода, на поверхности которого содержится не менее 4,8 атомных % кислорода, уменьшает время полного прохождения окислительной стабилизации, так как в зону реакции привносится дополнительный кислород, содержащийся на их поверхности, который снижает роль диффузионного фактора и увеличивает скорость прохождения окислительной стабилизации.
Использование технического углерода, на поверхности которого содержится более 5,2 атомных % кислорода, нецелесообразно, так как дополнительно не уменьшает время полного прохождения окислительной стабилизации.
Уменьшение содержания технического углерода менее 0,2% приводит к увеличению времени полного прохождения окислительной стабилизации, так как снижается количество кислорода, дополнительно привносимого с поверхности технического углерода в реакционную зону.
Увеличение содержания технического углерода от 0,2 до 10% привносит в зону реакции дополнительный кислород, содержащийся на их поверхности, который снижает роль диффузионного фактора и увеличивает скорость прохождения окислительной стабилизации. Кроме того, теплопроводность технического углерода ниже теплопроводности углеродных волокон на основе полиакрилонитрила, следовательно, теплоизоляционные свойства углеродного материала на основе таких волокон лучше, чем у углеродного материала на основе волокон из полиакрилонитрила, не содержащих технический углерод.
Увеличение содержания технического углерода более 10% нецелесообразно, так как не оказывает ускорения проведения окислительной стабилизации. Вместе с тем, высокое, более 10%, содержание технического углерода не позволяет получить из волокон углеродный материал с прочностными характеристиками, достаточными для использования такого материала в качестве теплоизоляции печей инертной среды.
Уменьшение начальной температуры окислительной стабилизации меньше 180°С не позволяет полностью провести процесс окислительной стабилизации за то же время. Это может быть определено по увеличению потери массы волокна после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Увеличение конечной температуры окислительной стабилизации выше 230°С при том же времени окислительной стабилизации не приводит к дополнительному улучшению прочностных показателей и нецелесообразно, так как температуры 230°С достаточно для полного прохождения окислительной стабилизации, что подтверждается отсутствием потери массы волокна после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Уменьшение времени проведения окислительной стабилизации меньше 90 минут при той же температуре не позволяет полностью провести процесс окислительной стабилизации. Это может быть определено по увеличению потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Увеличение времени проведения окислительной стабилизации больше 110 минут при той же температуре нецелесообразно, так как данного времени достаточно для полного прохождения окислительной стабилизации, что подтверждается отсутствием потери массы после экстракции в диметилформамиде при температуре 150°С в течение 6 часов.
Таким образом, был достигнут технический результат заявленного изобретения, заключающийся в полном проведении процесса окислительной стабилизации волокон из полиакрилонитрила, наполненных техническим углеродом (углеродными наночастицами), а также устранении указанных недостатков, а именно упрощении технологии за счет уменьшения времени проведения процесса, обусловленном совместным участием в процессе окислительной стабилизации кислорода воздуха, а также кислорода, находящегося на поверхности технического углерода, введенного в волокна из полиакрилонитрила, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды.
Из уровня техники известен аналог по назначению, представляющий собой волокнистый материал в виде углеродного войлока. Углеродный войлок получают из пековых волокон, он обладает теплоизоляционными свойствами, особенно в диапазоне высоких температур до 2800°С [European Patent 0473073 A1, D04H 1/42 Carbon fiber felting material and process for producing the same, 04.03.1992].
Недостатком данного аналога является использование углеродного волокнистого материала из пековых волокон, так как такие волокна обладают большей теплопроводностью, по сравнению с углеродными волокнами из полиакрилонитрила, равной 1 ккал/(м·ч·°С) при 2200°С, что соответствует ~ 1,16 Вт/(м·К).
Из уровня техники известен аналог по назначению, представляющий собой волокнистый материал в виде углеродного войлока. Углеродный войлок получают из гидратцеллюлозных волокон [Патент РФ 2100500 С1, D04H 3/10, D01F 9/16. Нетканый углеродный материал, 27.12.1997].
Углеродные волокна, полученные из гидратцеллюлозных волокон, широко применяются в качестве теплоизоляции печей. Вместе с тем, углеродные волокна из гидратцеллюлозы обладают худшими физико-механическими свойствами, чем углеродные волокна из полиакрилонитрила или пеков.
На основе волокна из полиакрилонитрила, наполненного техническим углеродом, прошедшего окислительную стабилизацию, готовят иглопробивным способом нетканый материал, затем его подвергают карбонизации и графитации, при этом температура карбонизации не менее 1000°С, а графитации - 2500°С. В результате получают углеродный нетканый материал с теплопроводностью при 2000°С 0,36-0,55 Вт/(м·К) и прочностью в продольном направлении не менее 200 Н/5 см, который используют в качестве теплоизоляции печей инертной среды.

Claims (1)

  1. Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами, в котором сформированные волокна подвергают термообработке в воздушной среде при нагреве, отличающийся тем, что волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2-10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут.
RU2013119304/05A 2013-04-25 2013-04-25 Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами RU2535797C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013119304/05A RU2535797C1 (ru) 2013-04-25 2013-04-25 Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013119304/05A RU2535797C1 (ru) 2013-04-25 2013-04-25 Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами

Publications (2)

Publication Number Publication Date
RU2013119304A RU2013119304A (ru) 2014-10-27
RU2535797C1 true RU2535797C1 (ru) 2014-12-20

Family

ID=53286125

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013119304/05A RU2535797C1 (ru) 2013-04-25 2013-04-25 Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами

Country Status (1)

Country Link
RU (1) RU2535797C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148978A1 (en) 2020-01-22 2021-07-29 Mersen Scotland Holytown Limited Thermal insulation materials suitable for use at high temperatures, and process for making said materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258104C1 (ru) * 2004-01-15 2005-08-10 Общество с ограниченной ответственностью "НПЦ" УВИКОМ" Способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов
RU2330906C1 (ru) * 2007-03-19 2008-08-10 Общество С Ограниченной Ответственностью "Завод Углеродных И Композиционных Материалов" Способ получения непрерывного углеродного волокна с высоким модулем упругости
RU2343235C1 (ru) * 2007-08-14 2009-01-10 Андрей Алексеевич Харитонов Способ получения высокопрочного и высокомодульного углеродного волокна

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258104C1 (ru) * 2004-01-15 2005-08-10 Общество с ограниченной ответственностью "НПЦ" УВИКОМ" Способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов
RU2330906C1 (ru) * 2007-03-19 2008-08-10 Общество С Ограниченной Ответственностью "Завод Углеродных И Композиционных Материалов" Способ получения непрерывного углеродного волокна с высоким модулем упругости
RU2343235C1 (ru) * 2007-08-14 2009-01-10 Андрей Алексеевич Харитонов Способ получения высокопрочного и высокомодульного углеродного волокна

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIN BYUNG G. et al " Oxidative stabilization of PAN/SWNT composite fiber", Carbon, 2005, N 43. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148978A1 (en) 2020-01-22 2021-07-29 Mersen Scotland Holytown Limited Thermal insulation materials suitable for use at high temperatures, and process for making said materials

Also Published As

Publication number Publication date
RU2013119304A (ru) 2014-10-27

Similar Documents

Publication Publication Date Title
Qian et al. Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure
Ishida et al. Microfibrillar carbon from native cellulose
Li et al. Electrophoretic deposition of carbon nanotubes onto carbon fiber felt for production of carbon/carbon composites with improved mechanical and thermal properties
JP2011162898A (ja) 炭素繊維前駆体繊維及びそれを用いた炭素繊維の製造方法
KR20140008942A (ko) 그라핀 탄소섬유 조성물 및 탄소섬유의 제조방법
Niu et al. Evaluating multi‐step oxidative stabilization behavior of coal tar pitch‐based fiber
Hu et al. Synthesis of carbon nanotubes on carbon fibers by modified chemical vapor deposition
CN111003709B (zh) 一种利用废弃烟蒂制备活性炭的方法及制得的活性炭与应用
RU2535797C1 (ru) Способ окислительной стабилизации волокон из полиакрилонитрила, наполненных углеродными наночастицами
Tang et al. Influence of cuticle layers, temperatures and activators on the properties of size-controllable tubular activated carbon powder from wool waste under air flow
CN109576899B (zh) 一种环保固化碳毡及其制备方法
KR101005115B1 (ko) 표면에 그라파이트 나노 구조층을 갖는 셀룰로오스 탄화물 구조체의 합성방법
CN109957860A (zh) 粘胶高温石墨碳纤维的制备方法
Hu et al. Preparation of graphitic carbon nanofibres by in situ catalytic graphitisation of phenolic resins
CN105544021A (zh) 一种抑制碳纤维结构不均匀性的方法
Marković Use of coal tar pitch in carboncarbon composites
RU2708208C1 (ru) Способ обработки частично-карбонизованного углеродного волокнистого материала перед графитацией
KR20180110643A (ko) 탄소섬유 제조용 전구체 섬유, 이의 제조방법 및 이를 이용한 탄소섬유의 제조방법
Raman et al. Synthesis of silicon carbide through the sol—gel process from rayon fibers
Ramı́rez et al. Adding a micropore framework to a parent activated carbon by carbon deposition from methane or ethylene
CN114775113A (zh) 一种自活化聚丙烯腈基含氮多孔碳纤维、制备方法及应用
RU2555468C2 (ru) Способ термической обработки углеродосодержащих волокнистых материалов
JPS61132630A (ja) 炭素質繊維
Elagib et al. Carbonization performance of pre-oxidized PAN fibers prepared by microwave heating
JP2008169491A (ja) 炭素化布帛の製造方法およびこれにより得られた炭素化布帛

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160426