RU2533792C2 - Способ получения коллективного концентрата из железистых кварцитов - Google Patents

Способ получения коллективного концентрата из железистых кварцитов Download PDF

Info

Publication number
RU2533792C2
RU2533792C2 RU2012151974/03A RU2012151974A RU2533792C2 RU 2533792 C2 RU2533792 C2 RU 2533792C2 RU 2012151974/03 A RU2012151974/03 A RU 2012151974/03A RU 2012151974 A RU2012151974 A RU 2012151974A RU 2533792 C2 RU2533792 C2 RU 2533792C2
Authority
RU
Russia
Prior art keywords
separation
magnetic
fraction
concentrate
tailings
Prior art date
Application number
RU2012151974/03A
Other languages
English (en)
Other versions
RU2012151974A (ru
Inventor
Владимир Федорович Скороходов
Михаил Степанович Хохуля
Александр Сергеевич Опалев
Максим Владимирович Сытник
Валерий Валентинович Бирюков
Original Assignee
Федеральное государственное бюджетное учреждение науки Горный институт Кольского научного центра Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Горный институт Кольского научного центра Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Горный институт Кольского научного центра Российской академии наук
Priority to RU2012151974/03A priority Critical patent/RU2533792C2/ru
Publication of RU2012151974A publication Critical patent/RU2012151974A/ru
Application granted granted Critical
Publication of RU2533792C2 publication Critical patent/RU2533792C2/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к обогащению полезных ископаемых и может быть использовано в горной и металлургической промышленности. Способ получения коллективного концентрата из железистых кварцитов включает измельчение исходной руды, ее гидравлическую классификацию с получением сливного и пескового продуктов, стадиальную магнитную сепарацию и гравитационное обогащение хвостов магнитной сепарации. Магнитную фракцию основной магнитной сепарации подвергают тонкой классификации. Надрешетный продукт классификации направляют на доизмельчение и перечистную магнитную сепарацию с возвратом магнитного продукта на классификацию. Подрешетный продукт подвергают дообогащению с выделением магнитной и немагнитной фракций. Магнитную фракцию подвергают магнитно-гравитационному разделению с выделением магнетитового концентрата. Немагнитную фракцию объединяют с хвостами предыдущих стадий и направляют для разделения на винтовую и гидравлическую сепарации с получением гематитового концентрата и отвальных хвостов. Хвосты магнитно-гравитационной сепарации подвергают дешламации с выделением слива в хвосты, а пески возвращают в операцию доизмельчения. Тяжелую фракцию основной стадии винтовой сепарации направляют на перечистную винтовую сепарацию с выделением легкой фракции в хвосты и получением чернового гематитового концентрата, доводка которого осуществляется гидравлической сепарацией. Технический результат - повышение извлечения железосодержащих минералов. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к обогащению полезных ископаемых и может быть использовано в горной и металлургической промышленности.
К настоящему времени большая часть месторождений богатых и легкообогатимых железистых кварцитов уже отработана, что вызывает необходимость вовлечения в переработку руд сложного вещественного состава. Это обстоятельство требует создания новых технологий, обеспечивающих высокую технико-экономическую эффективность получения железорудных концентратов.
Известен способ обогащения магнетитовой руды, включающей ее измельчение с последующим гравитационным разделением материала на тяжелый песковый и легкий сливной продукты, после чего легкий сливной продукт подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, при этом немагнитный продукт выводят из процесса и сбрасывают в отвал, а магнитный продукт направляют в питание мельницы. Тяжелый песковый продукт подвергают доизмельчению и последующей магнитной сепарации с получением магнитного и немагнитного продуктов, при этом немагнитный продукт выводят из процесса и сбрасывают в отвал (Патент РФ №2307710, кл. В03В 7/00, опубл. 10.10.2007 г.).
Недостатком способа является то, что он не обеспечивает выделения коллективного концентрата в случае обогащения смешанных, магнетит-гематит-мартитовых руд, поскольку тяжелую фракцию гравитационного обогащения подвергают магнитной сепарации с получением магнитного продукта и немагнитной фракции, направляемой в отвал вместе со слабомагнитными минералами (гематитом, гетитом).
Известен способ извлечения гематита из хвостов магнитной сепарации железных руд сложного вещественного состава, включающий мокрое магнитное обогащение руды с получением магнетитового концентрата и хвостов, которые подвергают гидравлической классификации с выделением песков в хвосты, а слив направляют на вторичную гидравлическую классификацию в гидроциклоны с выделением слива в хвосты. Пески направляют на контрольную гидравлическую классификацию в гидроциклоны с последующим направлением слива в хвосты. Пески контрольной гидравлической классификации направляют на флотацию с получением гематитового концентрата (Патент РФ №2427430, кл. В03В 7/00, В03С 1/00, опубл. 27.08.2011 г.).
Недостатком известного способа обогащения хвостов магнитной сепарации железных руд сложного вещественного состава является низкая эффективность используемого процесса и получение гематитового концентрата с низкой массовой долей железа общего, которое составляет не более 52,2% вследствие низкой эффективности узла подготовки хвостов мокрой магнитной сепарации гидроциклонированием.
Известен способ обогащения железных руд, включающий измельчение исходного материала, его классификацию на тонкую и крупную фракцию, измельчение крупной фракции, обесшламливание и магнитную сепарацию тонкой фракции с получением концентрата и хвостов, причем измельченную крупную фракцию после обесшламливания объединяют с измельченным исходным материалом и направляют на классификацию (Патент РФ №2028832, кл. В03С 1/00, опубл. 20.02.1995).
Недостатком известного способа является низкая эффективность процесса обогащения из-за потерь массовой доли железа со слабомагнитными минералами -гематита и мартита, направляемыми в хвосты мокрой магнитной сепарации.
По технической сущности и достигаемому результату наиболее близким к заявленному является способ получения коллективного концентрата из железистых кварцитов, осуществляемый по магнитно-гравитационной технологии на дробильно-обогатительной фабрике ОАО «Олкон», включающий двухстадиальное измельчение руды, гидравлическую классификацию с последующими раздельными операциями магнитного обогащения песков и слива, магнитную в несколько стадий сепарацию тонкозернистых фракций материала и гравитационное обогащение хвостов основной магнитной сепарации на отсадочных машинах (Справочник по обогащению руд. Обогатительные фабрики, Москва, Недра, 1984 г., с.195).
К основным недостаткам известного способа получения коллективного магнетит-гематитового концентрата относятся: большая энергоемкость способа, связанная с переизмельчением крупных раскрытых зерен рудных минералов и многостадийностью обогащения на магнитных сепараторах, существование значительных (до 300%) циркуляционных нагрузок на основной процесс измельчения продуктов крупных фракций чернового концентрата, низкая эффективность процессов гидравлической классификации в гидроциклонах и гравитационного обогащения, обусловленные соответственно повышенным содержанием тонких классов в песковом продукте, направляемом на доизмельчение, а также высокими потерями тонких фракций гематита с хвостами отсадки.
Техническим результатом изобретения является повышение извлечения железосодержащих минералов за счет повышения эффективности схемы подготовки железистых кварцитов к обогащению для последующего получения дополнительной товарной продукции в виде магнетитового и гематитового железного концентратов кондиционного содержания.
Достигается это тем, что способ получения коллективного концентрата из железистых кварцитов, включающий измельчение исходной руды, гидравлическую классификацию измельченного продукта с выделением слива и песков, стадиальную магнитную сепарацию и гравитационное обогащение хвостов магнитной сепарации, отличающийся тем, что магнитную фракцию основной магнитной сепарации подвергают тонкой классификации, при этом надрешетный продукт классификации направляют на доизмельчение и перечистную магнитную сепарацию с возвратом магнитного продукта на классификацию, а подрешетный продукт дообогащают с выделением магнитной и немагнитной фракций, причем магнитную фракцию подвергают магнитно-гравитационному разделению с выделением магнетитового концентрата, а немагнитную фракцию объединяют с хвостами предыдущих стадий и направляют для разделения на винтовую и гидравлическую сепарации с получением гематитового концентрата и отвальных хвостов, причем хвосты магнитно-гравитационной сепарации подвергают дешламации с выделением слива в хвосты, а пески возвращают в операцию доизмельчения, кроме того, тяжелая фракция основной стадии винтовой сепарации направляется на перечистную винтовую сепарацию с выделением легкой фракции в хвосты и получением чернового гематитового концентрата, доводка которого осуществляется гидравлической сепарацией.
Новым в способе по отношению к прототипу является то, что магнитную фракцию основной магнитной сепарации подвергают тонкой классификации, при этом надрешетный продукт классификации направляют на доизмельчение и перечистную магнитную сепарацию с возвратом магнитного продукта на классификацию, а подрешетный продукт подвергают дообогащению с выделением магнитной и немагнитной фракций, причем магнитную фракцию подвергают магнитно-гравитационному разделению с выделением магнетитового концентрата, а немагнитную фракцию объединяют с хвостами предыдущих стадий и направляют для разделения на винтовую и гидравлическую сепарации с получением гематитового концентрата и отвальных хвостов, причем хвосты магнитно-гравитационной сепарации подвергают дешламации с выделением слива в хвосты, а пески возвращают в операцию доизмельчения, кроме того, тяжелая фракция основной стадии винтовой сепарации направляется на перечистную винтовую сепарацию с выделением легкой фракции в хвосты и получением чернового гематитового концентрата, доводка которого осуществляется гидравлической сепарацией.
Указанная совокупность признаков в технической патентной литературе не обнаружена. Следовательно, изобретение отвечает критерию «изобретательский уровень».
Изобретение - способ получения коллективного концентрата из железистых кварцитов иллюстрируется схемой.
Способ получения коллективного концентрата из железистых кварцитов осуществляется следующим образом.
Железистые кварциты, содержащие минеральные частицы магнетита и гематита, измельчают в стержневой мельнице, работающей в открытом цикле со спиральным классификатором с получением крупных фракций песков и тонких фракций слива.
Пески классификатора поступают на II стадию измельчения в шаровую мельницу. Разгрузка шаровой мельницы, объединяясь со сливом классификатора, подается на I стадию магнитной сепарации, где разделяется на два технологических потока: магнитное и гравитационное обогащение.
Как правило, каждая последующая стадия мокрой магнитной сепарации увеличивает не только массовую долю железа общего в стадиальном черновом концентрате, но и в стадиальных технологических хвостах.
В процессе стадиальной дезинтеграции железистых кварцитов в мельницах измельчения обеспечивают процесс раскрытия минеральных зерен за счет отделения рудных от нерудных минералов и рудных минералов с высокими магнитными свойствами - магнетита от рудных минералов со слабыми магнитными свойствами - гематита. За счет этого обеспечивают стадиальное увеличение количества свободных рудных зерен в подготовленном для дальнейшего обогащения материала.
Поскольку магнетит обладает высокой остаточной намагниченностью, а применение размагничивания и разбавления пульпы не оказывают существенного влияния на отделение сростков, получение качественного концентрата в I стадии основной магнитной сепарации возможно только при полном раскрытии сростков в последней стадии измельчения.
Черновой концентрат основной магнитной сепарации в виде железорудной пульпы с высокой плотностью подвергают механической классификации и разделяют по крупности на вибрационном высокочастотном грохоте с выделением тонких фракций железосодержащих минералов в подрешетный продукт. В результате механической вибрации черновому концентрату магнитной сепарации сообщают высокочастотные импульсы при высоком уровне ускорения вибрационных колебаний. При этом рудные железосодержащие минералы, обладающие большой объемной плотностью за счет процесса сегрегации, направляются к источнику вибрации - просеивающей поверхности. Крупные минеральные частицы, в основном сростки железосодержащих и нерудных минералов, обладающие меньшей величиной объемной плотности, концентрируются в верхних слоях потока пульпы, перемещающегося на просеивающих поверхностях грохота. Мелкие частицы, расположенные на его поверхности с высокой массовой долей железа общего и объемной плотностью, проникают через отверстия просеивающей поверхности в подрешетный продукт. Крупные минеральные частицы с низкой массовой долей железа общего и объемной плотностью за счет большого угла наклона просеивающей поверхности попадают в надрешетный продукт. Вибрационная классификация чернового концентрата магнитной сепарации увеличивает содержание общего железа в подрешетном продукте грохота и позволяет выделить надрешетный продукт с низкой массовой долей железа общего.
Питанием вибрационного грохота также является магнитный продукт II стадии магнитной сепарации, поступающий в виде циркулирующей нагрузки после его измельчения в шаровой мельнице.
Тонкие фракции подрешетного продукта, представленные раскрытыми зернами магнетита, гематита и породообразующих минералов, подвергаются в дальнейшем магнитной сепарации последней стадии, которая позволяет значительно увеличить содержание общего железа в выделяемый магнетитовый концентрат. Для последующей доводки концентрата до кондиционного содержания по общему железу его направляют на магнитно-гравитационную сепарацию. Применение этого высокоселективного метода связано с тем, что магнетитовый продукт, получаемый в последней стадии магнитной сепарации, состоит, в основном, из раскрытых зерен магнетита и незначительного количества сростков магнетита с породообразующими минералами, обладающими близкими физическими свойствами. Принцип магнитно-гравитационного разделения основан на воздействии на минеральную суспензию, содержащую сильномагнитные тонкоизмельченные частицы, однородным магнитным полем низкой напряженности (от 4 до 16 кА/м) и закрученным восходящим водным потоком (вертикальная составляющая скорости в пределах (0,8-2,0)·10-2 м/с), приводящее к формированию псевдоожиженного ферромагнитного слоя, являющегося высокоэффективной разделительной средой, фильтрационные параметры которого зависят от соотношения магнитных и гидродинамических сил. Сильномагнитные частицы и богатые сростки под действием магнитного поля участвуют в процессе агрегирования, образуя вертикально вытянутые агрегаты, которые, имея низкое сопротивление движению, концентрируются в нижней части восходящего потока и выводятся из процесса разделения в виде магнитной фракции или магнетитового концентрата. Немагнитные частицы и сростки магнетита с породообразующими минералами не участвуют в агрегировании и двигаются в межагрегатных поровых каналах под действием восходящего водного потока в верхнюю часть сепарационного объема и выводятся в виде немагнитной фракции или слива. В отличие от обычной магнитной сепарации магнитно-гравитационное разделение позволяет управлять режимом агрегирования магнитных частиц путем подбора соответствующего соотношения значений напряженности магнитного поля и скорости восходящего водного потока, обеспечивая отделение частиц магнетита от сростков с требуемым содержанием сильномагнитного минерала. Данная особенность процесса разделения позволяет получать конечный магнетитовый продукт в виде железорудного концентрата постоянного качества. Слив магнитно-гравитационной сепарации представляет собой продукт с низким содержанием твердой фазы (в пределах 0,5-1,5%) и содержит, в основном, сростки магнетита с породообразующими минералами, требующими доизмельчения для раскрытия магнетита и его последующего извлечения. Поскольку содержание твердого в питании операции доизмельчения должно составлять 50-70%, то слив магнитно-гравитационной сепарации подвергают дешламации, обеспечивающей получение сгущенного продукта требуемой плотности и отвальных хвостов. В операции дешламации возможно применение магнитных дешламаторов, позволяющих более эффективно улавливать частицы магнетита микронных размеров, всегда присутствующие в магнетитсодержащих продуктах из-за высокой хрупкости данного минерала.
Крупные фракции надрешетного продукта грохота подвергают измельчению в следующей стадии шарового измельчения вместе с циркулирующей нагрузкой в виде песков магнитного дешламатора, выделенных в процессе разделения слива, полученного при переработке магнетитового продукта III стадии обогащения путем его доводки магнитно-гравитационной сепарацией с использованием магнитного поля пониженной напряженности.
Обесшламливание слива магнитно-гравитационного сепаратора производилось с использованием магнитного дешламатора, пески которого, в виде циркулирующей нагрузки, поступали в дальнейшем на доизмельчение в шаровую мельницу.
Комбинированное сочетание МГ-сепарации и тонкого грохочения позволило реализовать принцип стадиального вывода готового концентрата на основных стадиях технологического процесса за счет высокой эффективности этих операций при разделении узкоклассифицированных продуктов, каким является подрешетный продукт грохота.
Получаемые в процессе переработки железистых кварцитов немагнитные продукты всех стадий магнитной сепарации, а также слив дешламации объединяют и направляют в цикл гравитационного обогащения для извлечения гематита. Первоначально объединенный продукт разделяют в основной стадии винтовой сепарации, причем ее тяжелая фракция направляется на перечистную винтовую сепарацию с выделением легкой фракции в хвосты и получением чернового гематитового концентрата, дальнейшая доводка которого осуществляется с использованием псевдоожиженного слоя в гидравлическом сепараторе с наклонными пластинами.
Разделение минеральных частиц на винтовых сепараторах производят по существующему различию плотности между частицами гематита и породообразующими минералами (кварц, полевые шпаты, амфиболы и т.д.), что обеспечивает получение отвальных хвостов в каждой из стадий винтовой сепарации.
Основная винтовая сепарация обеспечивает выведение из дальнейшего обогащения отвальных хвостов с минимальным содержанием гематита, а перечистная операция увеличивает почти на 25% содержание массовой доли железа в черновом гематитовом концентрате, дообогащение которого осуществлялось в гидравлическом сепараторе, состоящем из отдельных секций с установленными в них наклонными пластинами. Обогащение тонкозернистого материала под действием восходящего потока воды происходит в отличие от известных конструкций промышленных сепараторов не в объеме пульпы по принципу равнопадаемости или гидравлической классификации, а внутри псевдоожижженного слоя по сегрегационному принципу разделения, благодаря расположению в нем пакета параллельных относительно друг другу пластин.
В результате реализации способа получения коллективного концентрата из железистых кварцитов снижаются потери рудных минералов технологии обогащения, повышается массовая доля железа в концентрате и снижаются потери железа в отвальных хвостах.
Пример выполнения способа.
На чертеже изображена схема и основные показатели процесса получения коллективного концентрата из железистых кварцитов Заимандровской группы месторождений.
Исходные железистые кварциты с массовой долей железа общего 27,5% подвергают измельчению в стержневой мельнице, обеспечивающей частичное раскрытие минералов и получение материала крупностью -2+0 мм. Разгрузку мельницы направляют на гидравлическую классификацию в спиральный классификатор с получением пескового и сливного продуктов. Песковый продукт после его доизмельчения в открытом цикле в шаровой мельнице и объединения со сливным продуктом подают в I стадию мокрой магнитной сепарации, где происходит отделение свободных зерен магнетита от породообразующих минералов и осуществляется вывод из процесса обогащения немагнитной фракции с массовой долей железа общего 12,3%. Магнитную фракцию I стадии магнитной сепарации с содержанием Feобщ. 31,9% подвергают разделению на просеивающей поверхности высокочастотного вибрационного грохота. В результате механической классификации на просеивающей полиуретановой поверхности с размером ячеек 0,125 мм выделяют крупные классы надрешетного продукта и тонкие фракции подрешетного. Получение крупных фракций чернового магнетитового концентрата на просеивающей поверхности грохота осуществляют в режиме сегрегационного разделения частиц по объемному весу и крупности с увеличением до 45,2% массовой доли железа в подрешетном продукте и уменьшения ее содержания до 29,9% в надрешетном.
Питанием грохота также является магнитный продукт второй стадии магнитной сепарации, содержащий около 40% общего железа и поступающий в виде циркулирующей нагрузки после его доизмельчения и раскрытия сростков в шаровой мельнице.
Подрешетный продукт после его получения тонким грохочением подвергается в дальнейшем магнитной сепарации последней стадии, которая позволяет увеличить содержание железа общего более чем на 16% - с 45,2% до 61,4% при извлечении до 75,7% от исходной руды.
Крупные фракции надрешетного продукта вибрационного высокочастотного грохота доизмельчают в мельнице последней стадии шарового измельчения вместе с циркулирующей нагрузкой в виде песков магнитного дешламатора, выделенных в процессе переработки немагнитных классов магнитно-гравитационного разделения.
Последующая доводка чернового магнетитового концентрата III стадии магнитной сепарации осуществлялась его направлением на магнитно-гравитационную сепарацию, обеспечивающую получение кондиционного магнетитового концентрата, содержащего выше 66% Feобщ.
Хвосты мокрой магнитной сепарации различных стадий магнитной сепарации железистых кварцитов, содержащие гематит, направляют на основную стадию винтовой сепарации с получением чернового гематитового концентрата и хвостов. Черновой гематитовый концентрат с массовой долей железа общего выше 34% подвергают дообогащению на второй стадии винтовой сепарации, позволяющей осуществить выделение продукта с содержанием около 59% Feобщ.
Перечистка продукта II стадии винтовой сепарации производилась его направлением в гидравлический сепаратор, состоящий из секций с наклонно расположенными в них параллельными пластинами. Тяжелая фракция гидравлического сепаратора представляет собой конечный гематитовый концентрат, содержащий 65% железа общего при извлечении 15% от исходной руды. Массовая доля железа в общих хвостах составляет 4,9%, потери с которыми достигают 11,2% Feобщ.
Гематитовый концентрат гравитационного обогащения объединялся с магнетитовым концентратом магнитной сепарации, в результате чего получен суммарный коллективный концентрат, содержащий 66,5% Feобщ. при извлечении 88,7%.
Реализация способа получения коллективного концентрата из железистых кварцитов на примере группы месторождений Заимандровского района позволяет повысить эффективность как процесса мокрой магнитной сепарации за счет повышения технологических показателей получения магнетитового концентрата, так и гравитационной переработки общих хвостов магнитного обогащения путем дополнительного извлечения гематита.

Claims (3)

1. Способ получения коллективного концентрата из железистых кварцитов, включающий измельчение исходной руды, ее гидравлическую классификацию с получением сливного и пескового продуктов, стадиальную магнитную сепарацию и гравитационное обогащение хвостов магнитной сепарации, отличающийся тем, что магнитную фракцию основной магнитной сепарации подвергают тонкой классификации, при этом надрешетный продукт классификации направляют на доизмельчение и перечистную магнитную сепарацию с возвратом магнитного продукта на классификацию, а подрешетный продукт подвергают дообогащению с выделением магнитной и немагнитной фракций, причем магнитную фракцию подвергают магнитно-гравитационному разделению с выделением магнетитового концентрата, а немагнитную фракцию объединяют с хвостами предыдущих стадий и направляют для разделения на винтовую и гидравлическую сепарации с получением гематитового концентрата и отвальных хвостов.
2. Способ получения коллективного концентрата из железистых кварцитов по п.1, отличающийся тем, что хвосты магнитно-гравитационной сепарации подвергают дешламации с выделением слива в хвосты, а пески возвращают в операцию доизмельчения.
3. Способ получения коллективного концентрата из железистых кварцитов по п.1, отличающийся тем, что тяжелая фракция основной стадии винтовой сепарации направляется на перечистную винтовую сепарацию с выделением легкой фракции в хвосты и получением чернового гематитового концентрата, доводка которого осуществляется гидравлической сепарацией.
RU2012151974/03A 2012-12-04 2012-12-04 Способ получения коллективного концентрата из железистых кварцитов RU2533792C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012151974/03A RU2533792C2 (ru) 2012-12-04 2012-12-04 Способ получения коллективного концентрата из железистых кварцитов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012151974/03A RU2533792C2 (ru) 2012-12-04 2012-12-04 Способ получения коллективного концентрата из железистых кварцитов

Publications (2)

Publication Number Publication Date
RU2012151974A RU2012151974A (ru) 2014-06-10
RU2533792C2 true RU2533792C2 (ru) 2014-11-20

Family

ID=51214114

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012151974/03A RU2533792C2 (ru) 2012-12-04 2012-12-04 Способ получения коллективного концентрата из железистых кварцитов

Country Status (1)

Country Link
RU (1) RU2533792C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722393A (zh) * 2015-03-19 2015-06-24 长沙矿冶研究院有限责任公司 一种提高微细粒镜铁矿回收率的选矿方法
CN105521869A (zh) * 2016-02-02 2016-04-27 大连地拓重工有限公司 一种赤铁矿综合尾矿再选方法
CN108636591A (zh) * 2018-04-16 2018-10-12 辽宁万隆科技研发有限公司长沙分公司 一种从铁尾矿中回收石英的方法
RU2751185C1 (ru) * 2020-09-07 2021-07-12 Акционерное общество "Михайловский ГОК имени Андрея Владимировича Варичева" Способ повышения качества магнетитовых концентратов
RU2754695C1 (ru) * 2020-09-07 2021-09-06 Акционерное общество "Михайловский ГОК имени Андрея Владимировича Варичева" Способ производства магнетитовых концентратов повышенного качества

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083494A (zh) * 2021-04-20 2021-07-09 北京首钢国际工程技术有限公司 一种渣钢脱硫提纯方法
CN113231190A (zh) * 2021-05-12 2021-08-10 广西新福兴硅科技有限公司 一种从石英砂原矿中提取精砂的工艺、精砂及其应用
CN115041300A (zh) * 2022-06-28 2022-09-13 攀枝花学院 倒锥形磁选机
CN115382663B (zh) * 2022-08-20 2024-09-06 太原钢铁(集团)有限公司 一种废矿浆回收富集抛杂系统及其使用方法
CN115338028A (zh) * 2022-08-23 2022-11-15 四川省川机工程技术有限公司 一种赤泥磁选分离工艺及紊流电磁离析系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144164A (en) * 1977-09-20 1979-03-13 Stamicarbon, B.V. Process for separating mixtures of particles
SU1738361A1 (ru) * 1990-05-07 1992-06-07 Горный Институт Кольского Научного Центра Ан Ссср Способ обогащени магнетитовых руд
RU2133154C1 (ru) * 1998-07-03 1999-07-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ получения железного концентрата из железосодержащего сырья
RU2187379C2 (ru) * 2000-02-23 2002-08-20 Горный институт Кольского научного центра РАН Способ магнитно-гравитационной сепарации
RU2387483C2 (ru) * 2008-03-03 2010-04-27 Учреждение Российской академии наук Горный институт Кольского научного центра РАН Способ обогащения дисперсных ферромагнитных материалов
RU2388544C1 (ru) * 2009-03-11 2010-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт минерального сырья им. Н.М. Федоровского" (ВИМС) Способ получения коллективного концентрата из смешанных тонковкрапленных железных руд

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144164A (en) * 1977-09-20 1979-03-13 Stamicarbon, B.V. Process for separating mixtures of particles
SU1738361A1 (ru) * 1990-05-07 1992-06-07 Горный Институт Кольского Научного Центра Ан Ссср Способ обогащени магнетитовых руд
RU2133154C1 (ru) * 1998-07-03 1999-07-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ получения железного концентрата из железосодержащего сырья
RU2187379C2 (ru) * 2000-02-23 2002-08-20 Горный институт Кольского научного центра РАН Способ магнитно-гравитационной сепарации
RU2387483C2 (ru) * 2008-03-03 2010-04-27 Учреждение Российской академии наук Горный институт Кольского научного центра РАН Способ обогащения дисперсных ферромагнитных материалов
RU2388544C1 (ru) * 2009-03-11 2010-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт минерального сырья им. Н.М. Федоровского" (ВИМС) Способ получения коллективного концентрата из смешанных тонковкрапленных железных руд

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Справочник по обогащению руд, Обогатительные фабрики, под ред. БОГДАНОВА О.С., Москва, "Недра", 1984, с.194-196. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722393A (zh) * 2015-03-19 2015-06-24 长沙矿冶研究院有限责任公司 一种提高微细粒镜铁矿回收率的选矿方法
CN105521869A (zh) * 2016-02-02 2016-04-27 大连地拓重工有限公司 一种赤铁矿综合尾矿再选方法
CN108636591A (zh) * 2018-04-16 2018-10-12 辽宁万隆科技研发有限公司长沙分公司 一种从铁尾矿中回收石英的方法
CN108636591B (zh) * 2018-04-16 2020-02-18 辽宁万隆科技研发有限公司长沙分公司 一种从铁尾矿中回收石英的方法
RU2751185C1 (ru) * 2020-09-07 2021-07-12 Акционерное общество "Михайловский ГОК имени Андрея Владимировича Варичева" Способ повышения качества магнетитовых концентратов
RU2754695C1 (ru) * 2020-09-07 2021-09-06 Акционерное общество "Михайловский ГОК имени Андрея Владимировича Варичева" Способ производства магнетитовых концентратов повышенного качества

Also Published As

Publication number Publication date
RU2012151974A (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
RU2533792C2 (ru) Способ получения коллективного концентрата из железистых кварцитов
RU2432207C1 (ru) Способ обогащения железных руд сложного вещественного состава
CN104023851B (zh) 矿石加工
CN109351467B (zh) 一种基于铁矿物嵌布粒度处理磁赤混合矿石的分选工艺
CN105312148B (zh) 一种适用于辉钼矿浮选尾矿中伴生白钨矿的选矿富集方法
JP4870845B1 (ja) 二酸化チタン精鉱の製造方法
RU2388544C1 (ru) Способ получения коллективного концентрата из смешанных тонковкрапленных железных руд
CN108906312A (zh) 一种针对多元化原矿的选矿方法
CN105944825B (zh) 一种细粒赤铁矿的选矿脱硅富集方法
CN110624686A (zh) 一种充分释放磨机能力的磁铁矿选矿工艺
Nunna et al. Beneficiation strategies for removal of silica and alumina from low-grade hematite-goethite iron ores
AU2009286309B2 (en) A novel method for production of iron ore concentrates suitable for iron and steel making processes.
CN108144740B (zh) 应用于硼镁铁矿的高压辊磨超细碎粗粒抛尾方法
RU2754695C1 (ru) Способ производства магнетитовых концентратов повышенного качества
CN108144741B (zh) 一种采用高梯度立环磁选机除铁提高硼精矿品位的方法
CN108144742B (zh) 一种采用高压辊磨机的低品位铀硼铁伴生矿选矿工艺方法
RU2457035C1 (ru) Способ обогащения железосодержащих руд
CN108144743A (zh) 采用高压辊磨机的低品位铀硼铁伴生矿选矿工艺方法
RU2290999C2 (ru) Способ обогащения железных руд
CN113953080B (zh) 一种混合铁矿石的选矿方法
Özcan et al. Beneficiation and flowsheet development of a low grade iron ore: A case study
RU2751185C1 (ru) Способ повышения качества магнетитовых концентратов
RU2490068C2 (ru) Способ обогащения железорудного сырья
Grewal Introduction to mineral processing
RU2540173C2 (ru) Способ обогащения железорудного сырья

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181205