RU2526450C2 - Анализатор пульсовой волны и способ анализа пульсовой волны - Google Patents

Анализатор пульсовой волны и способ анализа пульсовой волны Download PDF

Info

Publication number
RU2526450C2
RU2526450C2 RU2011136627/14A RU2011136627A RU2526450C2 RU 2526450 C2 RU2526450 C2 RU 2526450C2 RU 2011136627/14 A RU2011136627/14 A RU 2011136627/14A RU 2011136627 A RU2011136627 A RU 2011136627A RU 2526450 C2 RU2526450 C2 RU 2526450C2
Authority
RU
Russia
Prior art keywords
point
pulse wave
waveform
reflected wave
zone
Prior art date
Application number
RU2011136627/14A
Other languages
English (en)
Other versions
RU2011136627A (ru
Inventor
Хиронори САТО
Тацуя КОБАЯСИ
Хидеаки ЙОСИДА
Кендзи ФУДЗИИ
Тосихико ОГУРА
Original Assignee
Омрон Хэлткэа Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Омрон Хэлткэа Ко., Лтд. filed Critical Омрон Хэлткэа Ко., Лтд.
Publication of RU2011136627A publication Critical patent/RU2011136627A/ru
Application granted granted Critical
Publication of RU2526450C2 publication Critical patent/RU2526450C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Hematology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к медицине. Способ анализа пульсовой волны осуществляют с помощью анализатора пульсовой волны. При этом получают форму сигнала пульсовой волны одного сердечного сокращения посредством датчика давления. Преобразуют полученный сигнал в цифровой сигнал посредством блока цифрового преобразования. Получают форму сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала посредством дифференцирующего фильтра четвертого порядка. Посредством вычислительного устройства вычисляют точку экстремума формы сигнала производной четвертого порядка, секционируют форму сигнала пульсовой волны на зону отраженной волны и зону отсутствия отраженной волны и выделяют характеристическую точку зоны отраженной волны. При этом выделяют начальную точку зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, выделяют конечную точку зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка и вычисляют время схождения отраженной волны в качестве индекса. Применение изобретения позволит повысить точность определения времени схождения отраженной волны. 3 н. и 3 з.п. ф-лы, 12 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к анализаторам пульсовой волны и способам анализа пульсовой волны, и, в частности, к анализатору пульсовой волны и способу анализа пульсовой волны для вычисления характеристической точки пульсовой волны.
Уровень техники
Информацией, используемой для диагностики сердечно-сосудистых заболеваний, таких как артериосклероз, является, в том числе, время распространения отраженной волны или время, занимаемое отраженной волной в пульсовой волне. Для получения времени, когда в пульсовой волне существует отраженная волна, необходим анализ для разделения измеренной пульсовой волны на диапазон выбрасываемой волны и диапазон отраженной волны.
В находящейся на рассмотрении заявке на патент Японии № 2005-349116 (в дальнейшем упоминаемом как патентный документ 1), заявитель настоящей заявки предлагает анализатор пульса для выделения характеристической точки пульсовой волны и вычисления такого индекса, как AI (индекс приращения) или TR (время распространения до отраженной волны). Такой индекс, как AI и TR, является индексом, вычисленным посредством выделения точки нарастания комплексной волны или точки нарастания отраженной волны в качестве характеристической точки.
В документе «Increased Systolic Pressure in Chronic Uremia Role of Arterial Wave Reflections», авторов London et al., предложен способ анализа характеристик пульсовой волны, полученной только в одной точке на артерии и получения индекса, например, индекса TR посредством выделения волны, отраженной от разветвленной части подвздошной артерии.
Патентный документ 1: находящаяся на рассмотрении заявка на патент Японии № 2005-349166.
Непатентный документ 1: London et al.: «Increased Systolic Pressure in Chronic Uremia Role of Arterial Wave Reflections», Hypertension, том 20, № 1, 1992, стр.10-19.
Сущность изобретения
Задачи изобретения
Однако точное выделение точки нарастания отраженной волны из комплексной волны является сложной задачей, и, в частности, точка нарастания отраженной волны может с трудом обнаруживаться в комплексной волне, в зависимости от участка измерения. Если точка нарастания отраженной волны не выделяется, то индекс невозможно вычислить с использованием способа, описанного в документе 1. Непатентный документ 1 относится к методу сбора данных о другом признаке и вычисления индекса, но имеет недостаток, заключающийся в сложности применения к пульсовой волне, измеряемой на плече, которую можно измерять даже дома.
В свете вышеизложенного, одной целью настоящего изобретения является создание анализатора пульсовой волны и способа анализа пульсовой волны, способных выделять время схождения отраженной волны и вычислять индекс, используемый для диагностики сердечного заболевания.
Средства решения проблемы
Для достижения вышеупомянутой цели, в соответствии с одним аспектом настоящего изобретения, анализатор пульсовой волны содержит блок определения пульсовой волны для определения пульсовой волны; и вычислительное устройство для выполнения процедуры на основании пульсовой волны, определенной блоком определения пульсовой волны; при этом, процедура, выполняемая вычислительным устройством, содержит процедуру выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса, и процедуру вычисления времени схождения отраженной волны в качестве индекса.
В соответствии с другим аспектом настоящего изобретения, способ анализа пульсовой волны содержит этап выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса, полученной датчиком давления для определения пульсовой волны; и этап вычисления времени схождения отраженной волны в качестве индекса.
В соответствии с другим дополнительным аспектом настоящего изобретения, программа анализа пульсовой волны является программой для предписания компьютеру выполнять процедуру анализа пульсовой волны и вычисления индекса; при этом программа предписывает компьютеру выполнять этапы получения сигнала датчика от датчика давления для определения пульсовой волны; этап выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного удара пульса на основании сигнала датчика; и этап вычисления времени схождения отраженной волны в качестве индекса.
Технический результат изобретения
В соответствии с настоящим изобретением можно выделять время схождения отраженной волны. Пульсовую волну можно анализировать автоматически даже в том случае, когда точка нарастания отраженной волны не выделена с использованием такого индекса.
Краткое описание чертежей
Фиг.1 - изображение конкретного примера конфигурации устройства анализатора пульсовой волны в соответствии с вариантом осуществления.
Фиг.2 - взаимосвязь времени распространения пульсовой волны (PTT: время прохождения пульса) и продолжительности (TRD: продолжительность распространения отраженной волны) отраженной волны в измеряемой пульсовой волне между предплечьем и лодыжкой.
Фиг.3 - взаимосвязь времени PTT и продолжительности TRD между шеей и областью бедра.
Фиг.4 - взаимосвязь скорости распространения (PWV: скорость распространения пульсовой волны) пульсовой волны и продолжительности TRD между предплечьем и лодыжкой.
Фиг.5 - взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности TRD между шеей и областью бедра.
Фиг.6 - блок-схема последовательности операций для процедуры анализа сигнала давления (сигнала датчика), полученного из чувствительного элемента полупроводникового датчика 19 давления, в анализаторе пульсовой волны в соответствии с вариантом осуществления.
Фиг.7 - вид, представляющий конкретный пример взаимосвязи между формой сигнала пульсовой волны, первой производной от формы сигнала и второй производной от формы сигнала.
Фиг.8A - вид, представляющий характеристики точки перехода через нуль.
Фиг.8B - вид, представляющий характеристики точки перехода через нуль.
Фиг.8C - вид, представляющий характеристики точки перехода через нуль.
Фиг.9 - вид, представляющий пример использования производной четвертого порядка.
Фиг.10 - вид, представляющий частотные характеристики дифференцирующего фильтра четвертого порядка.
Фиг.11 - блок-схема конкретной последовательности операций для процедуры выделения характеристической точки в анализаторе пульсовой волны в соответствии с вариантом осуществления.
Фиг.12 - вид, представляющий конкретный пример полосового фильтра, применяемого в анализаторе пульсовой волны в соответствии с вариантом осуществления.
Наилучший вариант осуществления изобретения
Варианты осуществления настоящего изобретения описаны в дальнейшем со ссылками на чертежи. В последующем описании, одинаковые позиции обозначают одинаковые компоненты и элементы конфигурации. Их названия и функции также являются одинаковыми.
Как показано на фиг.1, анализатор пульсовой волны в соответствии с настоящим вариантом осуществления содержит чувствительный блок 1, дисплейный блок 3 и блок 7 фиксирующей стойки.
Дисплейный блок 3 содержит секцию 24 управления, выполненную с возможностью внешнего управления для управления вводом разнотипной информации, имеющей отношение к анализу пульсовой волны или чему-то подобному, и дисплейную секцию 25, содержащую LED (светоизлучающий диод) или LCD (жидкокристаллический дисплей) для выдачи из системы разнотипной информации, например, результата анализа пульсовой волны.
Блок 7 фиксирующей стойки содержит ROM (постоянное запоминающее устройство) 12 и RAM (оперативное запоминающее устройство) 13 для хранения данных и программ для управления анализатором пульсовой волны, CPU (центральный процессор) 11 для выполнения различных процедур, содержащих вычисление для точного управления анализатором пульсовой волны, нагнетательный насос 15, насос 16 отрицательного давления, переключающий клапан 17, схему 14 управления для приема сигнала от центрального процессора (CPU) 11 и передачи в нагнетательный насос 15, насос 16 отрицательного давления и переключающий клапан 17, фильтр 22 с перестраиваемой характеристикой, который может переключаться в, по меньшей мере, два значения, и A/D (аналого-цифровой) преобразователь 23.
Центральный процессор (CPU) 11 обращается к устройству ROM 12 и считывает программу, и открывает и исполняет программу на устройстве RAM 13 для управления анализатором пульсовой волны в целом. Центральный процессор (CPU) 11 принимает управляющий сигнал от пользователя посредством секции 24 управления, и управляет анализатором пульсовой волны в целом на основании управляющего сигнала. Другими словами, центральный процессор (CPU) 11 передает сигнал управления в схему 14 управления, мультиплексор 20, и фильтр 22 с перестраиваемой характеристикой на основании управляющего сигнала, введенного с секции 24 управления. Центральный процессор (CPU) 11 так же выполняет управление отображением результата анализа пульсовой волны или подобного результата на дисплейной секции 25.
Нагнетательный насос 15 является насосом для повышения внутреннего давления (в дальнейшем, называемого «манжетным давлением») нажимной манжеты (пневматической камеры) 18, описан в дальнейшем, и насос 16 отрицательного давления является насосом для снижения манжетного давления. Переключающий клапан 17 избирательно переключает и соединяет либо нагнетательный насос 15, либо насос 16 отрицательного давления с воздушной трубкой 5. Схема 14 управления управляет упомянутыми компонентами в соответствии с сигналом управления из центрального процессора (CPU) 11.
Чувствительный блок 1 содержит полупроводниковый датчик 19 давления, содержащий множество чувствительных элементов, мультиплексор 20 для избирательного вывода сигнала давления, выдаваемого каждым из множества чувствительных элементов, усилитель 21 для усиления сигнала давления, выдаваемого из мультиплексора 20, и нажимную манжету 18, содержащую пневматическую камеру, отрегулированную по давлению таким образом, чтобы прижимать полупроводниковый датчик 19 давления к месту измерения.
Полупроводниковый датчик 19 давления содержит множество чувствительных элементов, расположенных с предварительно заданным интервалом в одном направлении полупроводникового кристалла, изготовленного из монокристаллического кремния, и прижимается к месту измерения, на котором выполняется измерение, например, плечу, давлением нажимной манжеты 18. Полупроводниковый датчик 19 давления определяет пульсовую волну объекта измерения, распространяющуюся по лучевой артерии в данном состоянии. Полупроводниковый датчик 19 давления вводит сигнал давления, выдаваемый при определении пульсовой волны, в мультиплексор 20 для каждого канала каждого чувствительного элемента. Для примера, собрано сорок чувствительных элементов.
Мультиплексор 20 избирательно выводит сигнал давления, выдаваемый каждым чувствительным элементом. Сигнал давления, поданный из мультиплексора 20, усиливается усилителем 21 и избирательно выводится в A/D-преобразователь 23 через фильтр 22 с перестраиваемой характеристикой.
В настоящем варианте осуществления, мультиплексор 20 последовательно переключает множество сигналов давления, выводимых из множества чувствительных элементов, и выводит упомянутые сигналы в соответствии с сигналом управления из центрального процессора (CPU) 11 до тех пор, пока не будет выбран оптимальный чувствительный элемент для определения пульсовой волны. Канал фиксируется в соответствии с сигналом управления из центрального процессора (CPU) 11 после того, как выбран оптимальный чувствительный элемент для определения пульсовой волны. В данном случае, мультиплексор 20 выбирает и выводит сигнал давления, выдаваемый из выбранного чувствительного элемента.
Фильтр 22 с перестраиваемой характеристикой является фильтром нижних частот для отсечения составляющей сигнала, большей чем или равной предварительно заданному значению, и может переключаться в, по меньшей мере, два значения.
A/D-преобразователь 23 преобразует сигнал давления, который представляет собой аналоговый сигнал, полученный из полупроводникового датчика 19 давления, в цифровую информацию, и подает упомянутый сигнал в центральный процессор (CPU) 11. Сигнал давления, выданный каждым чувствительным элементом, содержащимся в полупроводниковом датчике 19 давления, одновременно отбирается мультиплексором 20 до тех пор, пока канал мультиплексора 20 не будет зафиксирован центральным процессором (CPU) 11. После того как канал мультиплексора 20 зафиксирован центральным процессором (CPU) 11, осуществляется получение сигнала давления, выдаваемого из соответствующего элемента датчика. Период, с которым осуществляется выборка сигнала давления (в дальнейшем, называемый «периодом дискретизации»), составляет, например, 2 мс.
Вышеописанный фильтр 22 с перестраиваемой характеристикой переключает значения частоты отсечки до тех пор, пока не будет зафиксирован канал мультиплексора 20, и после фиксации канала. Выборка выполняется при одновременном переключении множества сигналов давления до тех пор, пока не будет зафиксирован канал мультиплексора 20. Поэтому, в данном случае выбирается значение частоты отсечки, большее, чем частота выборки (например, 20 kHz). Тем самым может предотвращаться появление периодических изменений сигнала после аналого-цифрового (A/D) преобразования, и может быть подходящим образом выбран оптимальный чувствительный элемент. После того как канал зафиксирован, выбирается значение, которое становится частотой отсечки, меньшее чем или равное 1/2 от частоты выборки, (например, 500 Гц) в отношении одного определенного сигнала давления, в соответствии с сигналом управления из центрального процессора (CPU) 11. Тем самым, можно удалять шум от наложения спектров, и может точно выполняться анализ пульсовой волны. Шумом от наложения спектров называют шум, имеющий частотную составляющую, большую или равную чем 1/2 от частоты выборки, который появляется в частотной области, ниже чем или равной 1/2 от частоты выборки, под действием эффекта частоты преобразования, при преобразовании аналогового сигнала в цифровой сигнал, в соответствии с теоремой выборки.
В настоящем варианте осуществления, дисплейный блок 3 может быть миниатюрным, так как центральный процессор (CPU) 11, устройство ROM 12 и устройство RAM 13 расположены в блоке 7 фиксирующей стойки.
Блок 7 фиксирующей стойки и дисплейный блок 3 расположены отдельно, но дисплейный блок 3 может содержаться в блоке 7 фиксирующей стойки. И наоборот, центральный процессор (CPU) 11, устройство ROM 12 и устройство RAM 13 могут располагаться в дисплейном блоке 3. Для выполнения операций управления различного типа возможно подсоединение персонального компьютера (PC).
В настоящем варианте осуществления, анализатор пульсовой волны вычисляет продолжительность отраженной волны в измеряемой пульсовой волне (в дальнейшем, называемую TRD: продолжительностью распространения отраженной волны) в качестве индекса, используемого для диагностики сердечных заболеваний, например, артериосклероза, на основании формы сигнала пульсовой волны. Так как скорость распространения пульсовой волны, выброшенной из сердца, становится быстрее по мере того, как развивается артериосклероз, то скорость распространения пульсовой волны (в дальнейшем называемая PWV: скоростью распространения пульсовой волны) принято считать эффективным индексом при диагностике сердечных заболеваний, например, артериосклероза. Авторы настоящего изобретения вычисляли время распространения пульсовой волны (в дальнейшем, называемое PTT: временем прохождения пульса) и продолжительность распространения отраженной волны (TRD) на основании большого числа выборок пульсовых волн и подтвердили, что между ними существует корреляция. На фиг.2 показана взаимосвязь времени распространения пульсовой волны (PTT) и продолжительности распространения отраженной волны (TRD) между предплечьем и лодыжкой, и на фиг.3 показана взаимосвязь времени распространения пульсовой волны (PTT) и продолжительности распространения отраженной волны (TRD) между шеей и областью бедра. Аналогично, авторы настоящего изобретения вычисляли скорость распространения пульсовой волны (PWV) и продолжительность распространения отраженной волны (TRD) на основании большого числа выборок пульсовых волн, и подтвердили, что между ними существует корреляция. На фиг.4 показана взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности распространения отраженной волны (TRD) между предплечьем и лодыжкой, и на фиг.5 показана взаимосвязь скорости распространения пульсовой волны (PWV) и продолжительности распространения отраженной волны (TRD) между шеей и областью бедра. В соответствии с данным подтверждением, продолжительность распространения отраженной волны (TRD) также может быть эффективным индексом при диагностике сердечных заболеваний, например, артериосклероза.
Измеренную пульсовую волну требуется разделять на зону присутствия отраженной волны и зону отсутствия отраженной волны, чтобы вычислить продолжительность распространения отраженной волны (TRD) по измеренной пульсовой волне. Упомянутая первая зона из двух зон является зоной, в которой выделяются колебания, так как в измеренной пульсовой волне одного удара пульса, которая является комплексной волной, присутствует высокочастотная составляющая, и упомянутая вторая зона является зоной, в которой колебания не выделяются, так как высокочастотная составляющая отсутствует. Другими словами, первую зону можно называть зоной колебаний, и вторую зону можно называть стабильной зоной. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет из измеренной пульсовой волны начальную точку и конечную точку, по меньшей мере, одной зоны из двух зон в качестве характеристических точек для выделения двух зон.
Процедура, представленная блок-схемой, показанной на фиг.6, реализуется, когда центральный процессор (CPU) 11 в блоке 7 фиксирующей стойки обращается к устройству ROM 12 для считывания программы и создает и исполняет упомянутую программу в устройстве RAM 13. По меньшей мере, часть процедуры может быть реализована в аппаратной конфигурации, показанной на фиг.1. Данная процедура будет описана в виде процедуры анализа после того, как фиксируется канал мультиплексора 20.
Как видно из фиг.6, при определении сигнала давления на этапе S101, полупроводниковый датчик 19 давления, содержащий множество чувствительных элементов, подает сигнал давления в мультиплексор 20. В данном случае, сигнал датчика выдается из чувствительного элемента, соответствующего фиксированному каналу, выбранному мультиплексором 20. Сигнал давления, выбранный мультиплексором 20, подается в усилитель 21.
Усилитель 21 усиливает сигнал давления до предварительно заданной амплитуды на этапе S103, и фильтр 22 с перестраиваемой характеристикой выполняет процедуру аналоговой фильтрации на этапе S105. В данном случае, фильтр 22 с перестраиваемой характеристикой отсекает составляющую сигнала с частотой, меньшей чем или равной 1/2 от частоты выборки. Если частота выборки составляет 500 Гц, то составляющая сигнала, имеющая частоту, превышающую 100 Гц, отсекается.
A/D-преобразователь 23 оцифровывает сигнал давления, прошедший фильтр 22 с перестраиваемой характеристикой, на этапе S107, и выполняет процедуру цифровой фильтрации для выделения частоты предварительно заданного диапазона с целью подавления шума или с подобной целью на этапе S109. A/D-преобразователь 23 передает оцифрованный сигнал давления в центральный процессор (CPU) 11.
На этапе S111, центральный процессор (CPU) 11 принимает сигнал давления из A/D-преобразователя 23 и получает разность каждых данных для выполнения дифференцирования от первого до пятого порядков. Центральный процессор (CPU) 11 выполняет дифференцирование N-го порядка формы сигнала пульсовой волны, полученной из сигнала давления, посредством выполнения программы, хранящейся в устройстве ROM 12. На этапе S113, центральный процессор (CPU) 11 секционирует форму сигнала пульсовой волны на основании результата дифференцирования и выделяет форму сигнала пульсовой волны для одного удара пульса. А именно, центральный процессор (CPU) 11 ожидает до тех пор, пока первая производная дифференцирования N-го порядка, полученная на этапе S111, становится положительной. Когда первая производная становится положительной, определяется точка ее перехода через нуль с нарастанием и устанавливается как «точка нарастания во времени». Затем, центральный процессор (CPU) 11 ожидает локального максимального значения первой производной. При определении локального максимума первой производной, центральная память (CPU) 11 определяет, распознан ли один удар пульса. В частности, как видно из фиг.7, когда центральный процессор (CPU) 11 ожидает локального максимального значения исходной формы сигнала и определяет локальное максимальное значение, центральный процессор (CPU) 11 осуществляет привязку формы сигнала к точке нарастания во времени (точке PA) непосредственно перед точкой нарастания (точкой PB). Подтверждается, что существует точка максимума (точка PP) исходной формы сигнала между точкой PA и точкой PB, и подтверждается, что точка PB является минимальным значением между точкой PP и точкой PB. Если подтверждается, что точка PB является минимальным значением, то точка PA устанавливается как «точка нарастания». Тогда форма сигнала пульсовой волны одного удара пульса укладывается от точки PA до точки PB. Точку PA можно также определить как «начальную точку пульсовой волны» одного удара пульса.
На этапе S115, центральный процессор (CPU) 11 выделяет предварительно заданную характеристическую точку из формы сигнала пульсовой волны одного удара пульса, выделенной на этапе S113, и вычисляет продолжительность распространения отраженной волны (TRD) на этапе 117. После этого процедура анализа сигнала датчика завершается.
Как описано выше, характеристическая точка, необходимая для вычисления продолжительности распространения отраженной волны (TRD), содержит начальную точку и конечную точку, по меньшей мере, одной зоны из зоны колебаний и стабильной зоны, и, в частности, анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет начальную точку и конечную точку зоны колебаний на этапе S115, то есть, время схождения составляющей отраженной волны в форме сигнала пульсовой волны одного удара пульса.
Точку перехода через нуль формы сигнала производной четвертого порядка от исходной формы сигнала часто используют для выделения общей характеристической точки. Однако для точки перехода через нуль, четкую точку перехода через нуль выделить, как показано на фиг.8A, невозможно из-за влияния флюктуаций нулевой линии или чего-то подобного. Как показано на фиг.8B и 8C, точка перехода через нуль может оказаться неоднозначной. На фиг.8B представлен случай, когда существует несколько точек перехода через нуль, и точка перехода через нуль, выделенная как характеристическая точка формы сигнала пульсовой волны, является неоднозначной. На фиг.8C представлен случай, когда точка перехода через нуль неоднозначна, так как время нулевого значения имеет некоторую продолжительность. В случае неоднозначности точки перехода через нуль, как показано на фиг.8B и 8C, возможно, потребуется выбрать точку перехода через нуль для выделения характеристической точки пульсовой волны. Следовательно, стабильность оказывается недостаточной, если, для автоматического анализа пульсовой волны, характеристическая точка выделяется с использованием точки перехода через нуль. Для автоматического анализа пульсовой волны необходима стабильность. Анализ проблемы выполняется с использованием условия, что, для получения стабильности, не должно быть влияния флуктуации или чего-то подобного нулевой линии, например, точки экстремума. Точка экстремума содержит точку локального максимума и точку локального минимума.
Из условия отображения всех сигналов рядом Фурье, производная четвертого порядка конкретной формы сигнала позволяет эффективно выделять высокочастотную составляющую, содержащуюся в соответствующем сигнале.
[Уравнение 1]
f ( t ) = sin ( t ) + sin ( 2 t ) ( 1 )
Figure 00000001
d d t f ( t ) = cos ( t ) + 2 cos ( 2 t )
Figure 00000002
Figure 00000003
d 3 d t 3 f ( t ) = cos ( t ) 8 cos ( 2 t )
Figure 00000004
d 4 d t 4 f ( t ) = sin ( t ) + 16 sin ( 2 t ) ( 2 )
Figure 00000005
Когда получают производную четвертого порядка от «sin(2t)» в уравнении (1), данная производная имеет вид «16sin(2t)», как показано в уравнении (2). Следовательно, производная четвертого порядка от конкретной формы сигнала эффективно оказывается полезной при выделении высокочастотной составляющей, содержащейся в соответствующем сигнале.
Как видно из фиг.9, форма 41 сигнала является формой сигнала, представляющей уравнение (1), форма 42 сигнала является формой сигнала, представляющей «sin(2t)» в уравнении (1), и форма 43 сигнала является формой сигнала, представляющей уравнение (2). Форма 43 сигнала имеет, по существу, такую же фазу, как форма 42 сигнала. Следовательно, точка локального максимума высокочастотной составляющей, содержавшейся в сигнале, может быть получена как точка локального максимума производной четвертого порядка.
Распространяющаяся волна и отраженная волна имеют высокую частоту относительно периода пульсовой волны. Следовательно, предполагается, что точка максимума распространяющейся волны и отраженной волны выделяются вычислением точки локального максимума производной четвертого порядка от пульсовой волны. Первая точка локального максимума от нарастания формы сигнала производной четвертого порядка от формы сигнала пульсовой волны одного удара пульса выделяется как точка максимума распространяющейся волны, и следующая точка локального максимума может быть выделена, как точка максимума отраженной волны. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет первую точку локального максимума, как характеристическую точку, указывающую начальную точку зоны колебаний.
Конечную точку зоны колебаний получают как точку схождения колебаний. В частности, упомянутую точку определяют как точку, в которой амплитуда составляющей отраженной волны в исходной форме сигнала достигает заданного соотношения от амплитуды в первой точке локального максимума от нарастания формы сигнала производной четвертого порядка от формы сигнала пульсовой волны одного удара пульса, соответствующей пику составляющей распространяющейся волны в исходной форме сигнала. Заданное соотношение, приблизительно, составляет 10%. Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет вышеупомянутую точку как характеристическую точку, указывающую конечную точку зоны колебаний.
Однако форма сигнала производной четвертого порядка быстро реагирует даже на высокочастотный шум. Следовательно, выделение точки максимума распространяющейся волны и отраженной волны, являющейся характеристической точкой при анализе пульсовой волны, может оказаться сложной задачей.
Уравнение (3) отражает дискретную формулу производной.
[Уравнение 3]
f ' ( k ) = f ( k + 1 ) f ( k 1 ) Δ h
Figure 00000006
(3)
В формуле производной, показанной в уравнении (3), содержащуюся максимальную частоту можно отрегулировать изменением величины Δh (в дальнейшем называемой просто «Δh»), которая представляет собой интервал взятия разности данных.
На фиг.10 представлен пример, в котором величина Δh равна 8 мс, 12 мс, 16 мс, 24 мс и 32 мс по отношению к исходной форме сигнала. На фиг.10 форма сигнала, когда, в производной четвертого порядка от исходной формы 51 сигнала, величина Δh равна 8 мс, показана формой 52 сигнала; форма сигнала, когда величина Δh равна 12 мс, показана формой 53 сигнала; форма сигнала, когда величина Δh равна 16 мс, показана формой 54 сигнала; форма сигнала, когда величина Δh равна 24 мс, показана формой 55 сигнала; и форма сигнала, когда величина Δh равна 32 мс, показана формой 56 сигнала. Как видно из фиг.10, из сравнения формы 52 сигнала и формы 56 сигнала следует, что амплитуда формы 52 сигнала уже, и высокочастотная составляющая выделяется.
Форма 56 сигнала имеет плавную амплитуду, и выделяется только низкочастотная составляющая. Следовательно, составляющую пульсовой волны можно селективно выделить посредством регулировки частотных характеристик дифференцирующего фильтра четвертого порядка. Авторы настоящего изобретения выполнили фактическое моделирование, и обнаружили, что характеристическую точку пульсовой волны можно точно выделить с использованием точки локального максимума производной четвертого порядка, полученной с использованием дифференцирующего фильтра четвертого порядка. Результат представлен в выложенной публикации японского патента № 2005-349116, ранее поданной авторами настоящего изобретения и опубликованной.
Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет характеристическую точку пульсовой волны с использованием точки экстремума формы сигнала производной четвертого порядка, полученной дифференцирующим фильтром четвертого порядка. В анализаторе пульсовой волны в соответствии с настоящим вариантом осуществления, можно повысить стабильность, так как точку перехода через нуль применять не требуется. В настоящем варианте осуществления, величину Δh устанавливают продолжительнее, чем период дискретизации (2 мс) данных в дифференцирующем фильтре четвертого порядка. Следовательно, можно подавлять шум, содержащийся в высокочастотной составляющей. В настоящем варианте осуществления, величина Δh принята равной 32 мс.
На фиг.11 изображена блок-схема конкретной последовательности операций для процедуры выделения характеристической точки на этапе S115. Как видно из фиг.11, центральный процессор (CPU) 11 получает значение локального максимума второй производной, существующего между точкой PA и точкой PB, показанными на фиг.7, при распознавании пульсовой волны одного удара пульса на этапе S113. Значение локального максимума второй производной, полученное в данном случае, принимается как точка A (в дальнейшем, называемая «точкой APG-A»), точка C (в дальнейшем, называемая «точкой APG-С»), и точка E (в дальнейшем, называемая «точкой APG-E») по порядку. На этапе S301, центральный процессор (CPU) 11 получает точку локального максимума производной четвертого порядка, существующую от точки PA до точки APG-E. Полученная точка локального максимума производной четвертого порядка становится возможным вариантом точки максимума распространяющейся волны и отраженной волны.
На этапе S303, центральный процессор (CPU) 11 получает точку максимума точки локального максимума производной четвертого порядка, существующей в зоне нисходящей ветви от точки PP к точке APG-E, в качестве точки максимума (точки P2) отраженной волны, которая является одной из характеристических точек, и определяет такую точку, как начальную точку зоны колебаний. Точка PP может быть точкой максимума распространяющейся волны или может быть точкой максимума отраженной волны. Следовательно, «зона нисходящей ветви» является просто зоной от точки максимума пульсовой волны (точки PP) до точки выреза (точки APG-E). Точка APG-E является точкой, используемой при анализе в качестве точки, представляющей момент времени закрытия аорты. Данная точка на пульсовой волне, которая представляет момент времени закрытия аорты, определяется как «точка выреза». Центральный процессор (CPU) 11 также может вычислить точку максимума (точку P2) отраженной волны с использованием точки максимума формы сигнала производной четвертого порядка в зоне от точки APG-С до точки APG-E.
На этапе S305, центральный процессор (CPU) 11 вычисляет 10% от амплитуды точки PP, служащей пиком распространяющейся волны, соответствующим первой точке локального максимума от нарастания, служащего точкой PA, показанной на фиг.7, формы сигнала производной четвертого порядка, в качестве порогового значения, получает точку перехода через нуль формы сигнала производной четвертого порядка после точки, в которой амплитуда достигает порогового значения после точки PP, в качестве точки схождения колебаний, которая является одной из характеристических точек, и определяет данную точку, как конечную точку зоны колебаний.
После двух характеристических точек, начальной точки и конечной точки зоны колебаний, которые выделены посредством вышеописанной процедуры, центральный процессор (CPU) 11 вычисляет продолжительность распространения отраженной волны (TRD), которая становится индексом, посредством вычитания времени, указывающего начальную точку, из времени, указывающего конечную точку, на этапе S117.
Анализатор пульсовой волны в соответствии с настоящим вариантом осуществления выделяет начальную точку и конечную точку зоны колебаний, которые несложно выделить из измеренной формы сигнала пульсовой волны, в качестве характеристических точек, и вычисляет время распространения до отраженной волны (TR) в качестве индекса, основанного на упомянутых показателях. Как описано выше с использованием фиг.2-5, время распространения до отраженной волны (TR) коррелируется с индексом, который считается полезным для диагностики уже известного сердечного заболевания, и само время распространения до отраженной волны (TR) принято в качестве полезного индекса. Таким образом, в анализаторе пульсовой волны в соответствии с настоящим вариантом осуществления, из точно измеренной формы сигнала может быть выделена характеристическая точка, и может быть вычислен индекс, полезный при диагностике сердечного заболевания. Конкретных ограничений на место измерения не существует, пульсовую волну можно измерять даже на плече, и, следовательно, возможно несложное применение в обычных домашних условиях. Кроме того, так как при измерении пульсовой волны на плече, положение лежа не обязательно в качестве измерительного положения тела для измерения, то возможно ослабление нагрузки на человека, подлежащего измерению.
Фиг.12 представляет конкретный пример полосового фильтра, используемого в процедуре цифровой фильтрации на этапе S109. Если полосовой фильтр, представленный на фиг.12, применяется для процедуры цифровой фильтрации на этапе S109, то составляющая, имеющая частоту, меньшую чем или равную значению fc1, и составляющая, имеющая частоту большую чем или равную fch, в сигнале давления, оцифрованного на этапе S107, отсекаются. В процедуре цифровой фильтрации, полосовой фильтр обычно применяют для исключения влияния движений тела таким образом, что частота ниже, чем предварительно заданная частота, отсекается. Предварительно заданная частота, предназначенная для исключения влияния движений тела, приблизительно равна 0,5 Гц, и 0,5 Гц и т.д. устанавливается в качестве порогового значения fc1 на стороне нижней пропускаемой частоты. Из документа «Regional pulse-wave velocity in the arterial tree» (J Appl Physiol., 1968; Jan; 24(1): pp.73-78), McDonald DA, известно, что составляющая пульсовой волны, имеющая частоту ниже чем 3 Гц, может стать причиной ошибки, так как пульсовая волна, имеющая частоту ниже, чем 3 Гц, отличается от пульсовой волны, имеющей другие частоты, по скорости распространения пульсовой волны. Кроме того, из документа «Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure: Validation of Generalized Transfer Function» (Circulation том 95, № 7, Апрель 1, 1997, стр.1827-1836), Chen-Huan Chen et al., известно, что составляющая пульсовой волны, имеющая частоту ниже чем 5 Гц, имеет амплитуду, усиливаемую на стадии распространения к плечу, когда местом измерения является плечо. Следовательно, в настоящем варианте осуществления, в качестве порогового значения fc1 на стороне нижней пропускаемой частоты целесообразно задавать значение 5 Гц, с учетом составляющих шумов, чтобы исключать движения тела, частотную зависимость скорости распространения и влияние на пульсовую волну каждого элемента усиления амплитуды на стадии распространения к плечу в процедуре цифровой фильтрации на этапе S109.
В вышеприведенном примере, форму сигнала производной четвертого порядка используют для выделения характеристической точки из пульсовой волны в анализаторе пульсовой волны, но полосовой фильтр можно использовать с учетом вышеописанных рассуждений. Ограничения на применение формы сигнала производной только четвертого порядка не существует, пока форма сигнала является многопорядковой производной третьего или более высоких порядков, но применение формы сигнала производной четвертого порядка предпочтительно потому, что точность экспериментального получения характеристической точки в форме сигнала производной четвертого порядка является высокой.
[Модификация]
Процедура выделения начальной точки и конечной точки зоны колебаний в качестве характеристической точки на этапе S115 не ограничена вышеописанным способом. В качестве модификации, будут описаны другие способы. Другими словами, другой способ данной процедуры содержит способ, содержащий этап вычисления скользящего среднего значения формы сигнала производной четвертого порядка от пульсовой волны одного удара пульса, этап выделения точки, в которой достигается максимальное значение, в качестве начальной точки зоны колебаний, и этап выделения точки, в которой скользящее среднее значение не превышает значения, меньшего на заданное соотношение от максимального значения, после достижения максимального значения, в качестве конечной точки зоны колебаний.
В вышеприведенном описании, принята конфигурация определения пульсовой волны посредством сбора данных изменения давления с использованием датчика давления, но способ определения пульсовой волны не ограничен данной конфигурацией. Например, допустим способ определения пульсовой волны посредством сбора данных изменения объема.
Вышеописанный способ анализа формы сигнала пульсовой волны не ограничен анализом формы сигнала пульсовой волны, и может применяться для анализа других биологических волн, получаемых объединением первой формы сигнала и второй формы сигнала, порождаемых сжатием и расширением сердца, например, формы сигнала сердечных сокращений. Кроме того, анализ пульсовой волны в анализаторе пульсовой волны, то есть, способ выделения характеристической точки и способ вычисления индекса, может быть обеспечен в виде программы. Данная программа может быть записана на машиночитаемом носителе данных для записи, например, дискете, CD-ROM (компакт-диске, предназначенном только для чтения), ROM (постоянном запоминающем устройстве), RAM (оперативном запоминающем устройстве), карте памяти или чем-то подобном, являющемся дополнением к компьютеру, и обеспечиваемом в форме программного продукта. В качестве альтернативы, программу можно обеспечивать в форме записи на такой среде для записи, как жесткий диск, установленный в компьютере. Программу можно также обеспечивать посредством загрузки по сети.
Программа в соответствии с настоящим изобретением может быть предназначена для вызова необходимого модуля в предварительно заданное время в предварительно заданной упорядоченной последовательности и исполнения процедуры программных модулей, обеспеченной в качестве одной составной части операционной системы (OS) компьютера. В данном случае, соответствующий модуль не содержится в самой программе и управляется совместно с OS для исполнения процедуры. Программа в соответствии с настоящим вариантом осуществления также содержит программу, которая не содержит упомянутого модуля.
Программу в соответствии с настоящим вариантом осуществления можно обеспечивать посредством объединения в одну часть с другой программой. В данном случае, модуль, содержащийся в другой программе, также не содержится в самой программе и управляется совместно с другой программой для исполнения процедуры. Программа в соответствии с настоящим вариантом осуществления содержит также программу, встроенную в другую программу.
Программный продукт, подлежащий обеспечению, устанавливается в блок накопления программ, например, на жесткий диск, и выполняется. Программный продукт содержит саму программу и носитель данных, на котором записана программа.
Вышеописанные варианты осуществления являются пояснительными во всех аспектах и не подлежат истолкованию в ограничивающем смысле. Объем настоящего изобретения определяется формулой изобретения, а не вышеприведенным описанием, и все модификации, эквивалентные по смыслу формуле изобретения и не выходящие за пределы объема формулы изобретения, предполагаются охваченными настоящей заявкой.
Описание символов
1 чувствительный блок
3 дисплейный блок
5 воздушная трубка
7 фиксирующая стойка
11 центральный процессор (CPU)
12 постоянное запоминающее устройство (ROM)
13 оперативное запоминающее устройство (RAM)
14 схема управления
15 нагнетательный насос
16 насос отрицательного давления
17 переключающий клапан
18 нажимная манжета
19 полупроводниковый датчик давления
20 мультиплексор
21 усилитель
22 фильтр с перестраиваемой характеристикой
23 аналого-цифровой (A/D) преобразователь
24 секция управления
25 дисплейная секция.

Claims (6)

1. Анализатор пульсовой волны, содержащий:
блок (1) определения пульсовой волны для определения пульсовой волны; и
вычислительное устройство (11) для выполнения процедуры на основании пульсовой волны, определенной блоком определения пульсовой волны;
блок (23) цифрового преобразования для преобразования сигнала пульсовой волны из блока определения пульсовой волны в цифровой сигнал; и
дифференцирующий фильтр (22) четвертого порядка, обеспечивающий регулировку частотных характеристик, для получения формы сигнала производной четвертого порядка от исходной формы сигнала на основе цифрового сигнала, преобразованного блоком цифрового преобразования; причем
процедура, выполняемая вычислительным устройством, содержит:
процедуру (S115) выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного сердечного сокращения,
процедуру вычисления точки экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения; и
процедура выделения характеристической точки содержит:
процедуру выделения начальной точки зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
процедуру выделения конечной точки зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
а вычислительное устройство выполняет также
процедуру (S117) вычисления времени схождения отраженной волны в качестве индекса.
2. Анализатор пульсовой волны по п.1, в котором
в процедуре выделения начальной точки зоны отраженной волны, точка локального максимума первой формы сигнала производной четвертого порядка с точки нарастания пульсовой волны первого сердечного сокращения выделяется как характеристическая точка, которая является начальной точкой зоны отраженной волны; и
в процедуре выделения конечной точки зоны отраженной волны, точка, в которой амплитуда пульсовой волны достигает заданного соотношения после точки, соответствующей точке экстремума, выделяется из амплитуды пульсовой волны в точке, соответствующей точке экстремума первой формы сигнала производной четвертого порядка с точки нарастания пульсовой волны одного сердечного сокращения, в качестве характеристической точки или конечной точки зоны отраженной волны.
3. Анализатор пульсовой волны по п.1, в котором
в процедуре выделения начальной точки зоны отраженной волны, точка, в которой скользящее среднее значение формы сигнала производной четвертого порядка одного сердечного сокращения является максимальным, выделяется как характеристическая точка или начальная точка зоны отраженной волны; и
в процедуре выделения конечной точки зоны отраженной волны, точка, в которой скользящее среднее значение не превышает значения, меньшего на заданное соотношение от максимального значения, после достижения точки, в которой скользящее среднее значение формы сигнала производной четвертого порядка одного удара пульса является максимальным, выделяется как характеристическая точка, которая является конечной точкой зоны отраженной волны.
4. Анализатор пульсовой волны по п.1, в котором процедура, выполняемая вычислительным устройством, дополнительно содержит процедуру фильтрации для коррекции и исключения шумовой составляющей посредством скользящего среднего значения формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения.
5. Способ анализа пульсовой волны, содержащий этапы, на которых:
получают форму сигнала пульсовой волны одного сердечного сокращения посредством датчика давления для определения пульсовой волны;
преобразуют сигнал формы пульсовой волны в цифровой сигнал,
получают форму сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала;
вычисляют точку экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения;
секционируют форму сигнала пульсовой волны одного сердечного сокращения на зону отраженной волны и зону отсутствия отраженной волны,
выделяют характеристическую точку зоны отраженной волны; при этом на шаге выделения характеристической точки:
выделяют начальную точку зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
выделяют конечную точку зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
вычисляют время схождения отраженной волны в качестве индекса (S117).
6. Машиночитаемый носитель, на котором хранятся программные инструкции для предписания компьютеру выполнять процедуру анализа пульсовой волны и вычисления индекса; при этом программа предписывает компьютеру выполнять этапы:
получения сигнала датчика из датчика давления для определения пульсовой волны (S101);
преобразования сигнала датчика из датчика давления в цифровой сигнал;
получения формы сигнала производной четвертого порядка от исходной формы сигнала на основе преобразованного цифрового сигнала;
вычисления точки экстремума формы сигнала производной четвертого порядка в зоне пульсовой волны одного сердечного сокращения,
выделения характеристической точки для выделения зоны отраженной волны из формы сигнала пульсовой волны одного сердечного сокращения на основании сигнала датчика (S115);
при этом выделение характеристической точки содержит:
выделение начальной точки зоны отраженной волны на основе точки экстремума формы сигнала производной четвертого порядка, и
выделение конечной точки зоны отраженной волны на основе амплитуды формы сигнала производной четвертого порядка,
вычисления времени схождения отраженной волны в качестве индекса (S117).
RU2011136627/14A 2009-02-03 2010-01-28 Анализатор пульсовой волны и способ анализа пульсовой волны RU2526450C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-022972 2009-02-03
JP2009022972A JP5200968B2 (ja) 2009-02-03 2009-02-03 脈波解析装置、脈波解析方法、および脈波解析プログラム
PCT/JP2010/051118 WO2010090122A1 (ja) 2009-02-03 2010-01-28 脈波解析装置および脈波解析方法

Publications (2)

Publication Number Publication Date
RU2011136627A RU2011136627A (ru) 2013-03-10
RU2526450C2 true RU2526450C2 (ru) 2014-08-20

Family

ID=42542020

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011136627/14A RU2526450C2 (ru) 2009-02-03 2010-01-28 Анализатор пульсовой волны и способ анализа пульсовой волны

Country Status (7)

Country Link
US (1) US20110282224A1 (ru)
JP (1) JP5200968B2 (ru)
KR (1) KR101654390B1 (ru)
CN (1) CN102307520B (ru)
DE (1) DE112010000746T5 (ru)
RU (1) RU2526450C2 (ru)
WO (1) WO2010090122A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200968B2 (ja) * 2009-02-03 2013-06-05 オムロンヘルスケア株式会社 脈波解析装置、脈波解析方法、および脈波解析プログラム
TWI459926B (zh) * 2011-08-19 2014-11-11 中原大學 Pulse pressure signal measurement system and its measurement method
JP5628234B2 (ja) * 2012-03-26 2014-11-19 株式会社デンソーアイティーラボラトリ 血流簡易検査装置及び血流簡易検査方法並びに血流簡易検査用プログラム
JP5991100B2 (ja) * 2012-09-13 2016-09-14 オムロンヘルスケア株式会社 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム
JP6003470B2 (ja) * 2012-09-25 2016-10-05 オムロンヘルスケア株式会社 血圧測定装置、脈波検出方法
JP6149548B2 (ja) * 2013-07-01 2017-06-21 オムロンヘルスケア株式会社 電子血圧計
CN103720462A (zh) * 2013-11-06 2014-04-16 路红生 脉搏波信号分析方法和装置
JP5911840B2 (ja) * 2013-11-25 2016-04-27 株式会社カオテック研究所 診断データ生成装置および診断装置
CN104545853A (zh) * 2014-12-26 2015-04-29 河南机电高等专科学校 一种基于双ppg的血压测量方法和装置
CN105078438B (zh) * 2015-06-19 2017-08-11 京东方科技集团股份有限公司 脉搏周期检测设备和方法和可穿戴电子设备
KR102501837B1 (ko) * 2015-11-09 2023-02-21 삼성전자주식회사 신호 특징 추출 방법 및 장치
KR20170054030A (ko) * 2015-11-09 2017-05-17 삼성전자주식회사 생체 신호의 특징을 추출하는 방법 및 장치
KR102655669B1 (ko) * 2016-07-20 2024-04-05 삼성전자주식회사 생체신호의 특징 추출 장치 및 방법과, 생체정보 검출 장치
JP6706996B2 (ja) * 2016-08-05 2020-06-10 日本電信電話株式会社 生体信号処理装置、異常判別方法およびプログラム
CN110477889B (zh) * 2018-10-08 2021-11-02 合肥伊阳健康科技有限公司 识别桡动脉压力波形反射点的方法和装置
CN110693474B (zh) * 2018-10-08 2022-02-15 合肥伊阳健康科技有限公司 识别桡动脉压力波形重搏波特征点的方法和装置
CN110292369A (zh) * 2019-07-03 2019-10-01 浙江大学 基于脉搏波传导时间的胸口无创血压检测探头及其装置
KR102567952B1 (ko) * 2019-09-11 2023-08-16 삼성전자주식회사 생체정보 추정 장치 및 방법
CN111358498B (zh) * 2020-03-23 2021-08-24 贵州民族大学 去除超声脉搏波上冲段反射波和量化噪声的方法及系统
CN113100727B (zh) * 2021-05-12 2023-09-19 深圳市通久电子有限公司 实时分析识别脉搏波峰的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127999C1 (ru) * 1997-01-24 1999-03-27 Лузянин Андрей Геннадьевич Неинвазивный способ определения параметров гемодинамики в биообъектах и устройство для его осуществления

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149131A (ja) * 1984-12-25 1986-07-07 株式会社東芝 超音波診断装置
US5265011A (en) * 1989-04-03 1993-11-23 Eastern Medical Testing Services, Inc. Method for ascertaining the pressure pulse and related parameters in the ascending aorta from the contour of the pressure pulse in the peripheral arteries
EP1372473A4 (en) * 2001-03-09 2009-06-03 Auckland Uniservices Ltd APPARATUS AND METHOD FOR DETECTING AND QUANTIFYING OSCILLATORY SIGNALS
JP3643567B2 (ja) * 2002-04-17 2005-04-27 コーリンメディカルテクノロジー株式会社 振幅増加指数測定装置
JP3632014B2 (ja) * 2002-05-14 2005-03-23 コーリンメディカルテクノロジー株式会社 血管内皮機能評価装置
JP4517619B2 (ja) * 2002-12-05 2010-08-04 オムロンヘルスケア株式会社 脈波測定装置
JP2004313468A (ja) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd 脈波測定装置および生体波解析プログラム
JP4581496B2 (ja) * 2004-06-14 2010-11-17 オムロンヘルスケア株式会社 脈波解析装置および脈波解析プログラム
US20090312653A1 (en) * 2008-06-16 2009-12-17 Sharrock Nigel E Method and apparatus for determining cardiac medical parameters from supra-systolic signals obtained from an oscillometric blood pressure system
JP5200968B2 (ja) * 2009-02-03 2013-06-05 オムロンヘルスケア株式会社 脈波解析装置、脈波解析方法、および脈波解析プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127999C1 (ru) * 1997-01-24 1999-03-27 Лузянин Андрей Геннадьевич Неинвазивный способ определения параметров гемодинамики в биообъектах и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TREO E.F. et al. Algorithm for identifying and separating beats from arterial pulse records. 2005, BioMedical Engineering Online, 4, art. no. 48, 9 p. (реферат на сайте www.scopus.com) *

Also Published As

Publication number Publication date
US20110282224A1 (en) 2011-11-17
CN102307520A (zh) 2012-01-04
JP2010178801A (ja) 2010-08-19
DE112010000746T5 (de) 2013-01-17
KR101654390B1 (ko) 2016-09-05
WO2010090122A1 (ja) 2010-08-12
JP5200968B2 (ja) 2013-06-05
KR20110123727A (ko) 2011-11-15
CN102307520B (zh) 2014-04-23
RU2011136627A (ru) 2013-03-10

Similar Documents

Publication Publication Date Title
RU2526450C2 (ru) Анализатор пульсовой волны и способ анализа пульсовой волны
EP1757225B1 (en) Apparataus and method for measuring pulse rate
US7291113B2 (en) Pulse wave measuring apparatus that can calculate early systolic component and late systolic component properly from original waveform
US7074193B2 (en) Pulse wave analysis apparatus and pulse wave analysis program product for automatically extracting characteristic points of pulse wave
KR101145646B1 (ko) 비접촉식 생체 신호 측정 장치 및 그 장치에서의 비접촉식 생체 신호 측정 방법
US6477405B2 (en) Heart-sound detecting apparatus, system for measuring pre-ejection period by using heart-sound detecting apparatus, and system for obtaining pulse-wave-propagation-velocity-relating information by using heart-sound detecting apparatus
US20030004425A1 (en) Heart-sound detecting apparatus
JP2798721B2 (ja) 圧脈波検出装置
JP2004154231A (ja) 血圧測定装置及び血圧測定方法
KR101593412B1 (ko) 파형종류 도수분포를 이용한 가속도맥파 분석 장치 및 분석 방법
US20210369235A1 (en) Method for determining pulse transmission time, arteriosclerosis detection apparatus and system
US20150327779A1 (en) System and method for monitoring blood flow condition in region of interest in patient's body
JP2008061824A (ja) 医療用測定器、生体信号波形抽出方法、および生体信号波形抽出プログラム
KR20080030189A (ko) 혈관의 건강 상태를 감시하는 방법 및 장치
KR102403349B1 (ko) 인공지능 기반의 심박출량 관련데이터 분석 방법, 프로그램 및 시스템
KR101453644B1 (ko) 피크 검출 방법, 피크 검출 장치 및 태아 심박 검출 장치
KR20050067923A (ko) 동맥혈관 분석시스템
Tao et al. An ultrawideband radar based pulse sensor for arterial stiffness measurement
JP5206872B2 (ja) 血管年齢推定装置
KR20140102489A (ko) 오실로매트릭 동맥 혈압 측정에 기반한 혈관 경화 측정 장치 및 방법
KR101504547B1 (ko) 맥진을 이용한 동맥폐쇄증 측정방법
JP6394902B2 (ja) 脈波検出装置
JP2002224061A (ja) 電子血圧計
CN118512163A (zh) 血压估算方法、装置、系统及智能穿戴设备