RU2525181C1 - Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций - Google Patents
Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций Download PDFInfo
- Publication number
- RU2525181C1 RU2525181C1 RU2013135289/15A RU2013135289A RU2525181C1 RU 2525181 C1 RU2525181 C1 RU 2525181C1 RU 2013135289/15 A RU2013135289/15 A RU 2013135289/15A RU 2013135289 A RU2013135289 A RU 2013135289A RU 2525181 C1 RU2525181 C1 RU 2525181C1
- Authority
- RU
- Russia
- Prior art keywords
- membranes
- membrane
- biologically active
- poly
- adhesions
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Polymers & Plastics (AREA)
Abstract
Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано для профилактики развития спаечной болезни после операций на открытом сердце. Описан состав полимерной композиции на основе сополимера полигидроксибутирата/гидроксивалерата (ПГБВ), в который дополнительно вводят поли(D,L-лактид) в соотношении сухих веществ 3:1 и растворяют в хлороформе до концентрации 6-9%, с последующим перемешиванием в течение 2-х часов и подогревом композиции до 35°C. Описана мембрана, которую изготавливают методом электростатического формирования (электроспининга), в процессе которого в структуру волокон включают биологически активные вещества из группы фибринолитических препаратов или препаратов из группы антикоагулянтов прямого действия. Мембраны обладают биосовместимыми свойствами, сроком биодеградации, не превышающим 60 суток, и позволяют эффективно предупреждать образование спаек в эксперименте. 1 з.п. ф-лы, 2 табл.
Description
Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, и может быть использовано для профилактики развития спаечной болезни после операций на открытом сердце.
Образование послеоперационных спаек является частым осложнением в сердечно-сосудистой хирургии, которое может приводить к значительным осложнениям при повторных операциях на сердце. Предотвращение образования послеоперационных спаек является одним из необходимых условий для решения этой проблемы, так как спаечный процесс удлиняет время операции, увеличивает частоту послеоперационных осложнений, является причиной массивного кровотечения. При этом госпитальная летальность при рестернотомии достигает 14-15%, а в ургентных случаях 43%, фатальная геморрагия встречается в 2-6% случаев. Для профилактики образования спаек используют средства, различающиеся по механизму действия, способу применения и эффективности. Наиболее оптимальным для кардиохирургии является использование мембран, которые служат временным барьером, разобщающим раневые поверхности между перикардом и грудиной.
Использование мембран на основе биодеградируемых природных полимеров позволяет эффективно разделять раневые поверхности до их заживления с последующей биодеградацией мембраны с образованием нетоксичных продуктов.
Известны противоспаечные мембраны, изготовленные с использованием карбоксиметилцеллюлозы и гиалуронатата натрия «Seprafilm» (A novel adhesion barrier facilitates reoperations in complex congenital cardiac surgery / Walther T, Rastan A // The Journal of Thoracic and Cardiovascular Surgery. 2005. Vol.129, Is.2. - P.359-363).
Использование подобных мембран уменьшает частоту образования спаек после операций более чем у 50% пациентов. К недостаткам известных мембран можно отнести низкую эффективность в присутствии крови, которая всегда сопровождает операции на сердце и крупных кровеносных сосудах.
Кроме того, в литературе имеются сведения о воспалительной реакции при применение пленок «Seprafilm» (Seprafilm-induced peritoneal inflammation: a previously unknown complication / Klingler P.J., Floch N.R., Seelig M.H. et al. / Report of a case // Dis Colon Rectum - 1999. - V.42. - N.12. - P.1639-1643).
Известна биодеградируемая мембрана Repel-CV, в состав которой входит полимолочная кислота и полиэтиленгликоль (Andrew J.L. et al. A Novel bioresorbable film reduces postoperative adhesions after infant cardiac surgery // The Annals Thorac Surg, 2008; V.86 (2): P.614-621). Эти полимеры широко используются в имплантируемых и биорезорбируемых медицинских средствах. Однако результаты рандомизированного клинического исследования по применению Repel-CV показали, что у 21% пациентов мембрана оказалась несостоятельна в виду образования спаечного процесса, отмечены случаи медиастинита. Кроме того, при гидролизе полимерной цепи полимолочной кислоты in vivo происходит высвобождение молочной кислоты, сопровождающееся существенным закислением тканей (сдвиг pH до 3,2-3,4) и усилением воспалительной реакцией тканей.
Известна противоспаечная мембрана, изготовленная из полимера бактериального происхождения класса полигидроксиалканоатов - поли-4-гидроксибутирата (ПГБ), растворенного в 1,4 диоксане, либо тетрагидрофуране (Patent US №7943683, МПК C08G 63/06, B29C 47/00, опубл. 17.05.2011). Высокая биосовместимость полиоксиалканоатов базируется на том, что 3-гидроксимасляная кислота является естественным метаболитом клеток и тканей животных и человека. Благодаря высокой биосовместимости ПГБ применяют в качестве сырья для производства рассасывающихся нитей, остеопротезов, хирургических пластин, противоспаечных мембран.
К недостаткам мембран на основе монополимера ПГБ относится недостаточная эластичность и излишняя ломкость, которая препятствует оптимальному расположению мембраны в операционной ране и может способствовать несостоятельности швов при фиксации мембраны. Кроме того, применяемые растворители монополимера, являются высокотоксичными веществами и при смешивании с кислородом образуют взрывоопасную смесь.
Наиболее близким к заявленному техническому решению является мембрана, изготовленная из полимерной композиции 3-гидроксибутирата и 3-гидроксивалерата (3-ПГБ/3-ПГВ), растворенной в хлороформе с добавлением антибиотиков либо лекарственных веществ из группы нестероидных противовоспалительных препаратов (Патент RU №2447902, МПК A61L 31/08, A61L 31/10, A61L 31/16). Использование сополимера полигидроксибутирата-гидроксивалерата позволяет увеличить эластичность мембран, по сравнению с использованием монополимера - полигидроксибутирата. Применение в качестве растворителя хлороформа позволяет минимизировать токсический эффект, оказываемый растворителем. Мембраны изготавливаются методом полива.
К недостаткам данных мембран можно отнести длительный срок биодеградации - более трех месяцев. В то время как для предупреждения спаек данный временной интервал не должен превышать 60 суток, поскольку согласно фазам адгезиогенеза формирование спаек между травмированными поверхностями заканчивается к 30 дню после оперативного вмешательства. Более длительное размещение мембраны в зоне оперативного вмешательства нежелательно в виду того, что может вызвать защитную реакцию организма, как на инородное тело.
Техническим результатом изобретения является создание биологически активной биодеградируемой мембраны для предотвращения спаечного процесса у пациентов после кардиохирургических операций, обладающей повышенной гемо- и биосовместимостью, улучшенными физико-химическими свойствами, а так же оптимальными сроками биодеградации в присутствии крови.
Технический результат достигается тем, что в состав полимерной композиции на основе сополимера полигидроксибутирата/гидроксивалерата (ПГБВ), дополнительно вводят поли(D,L-лактид), который способствует уменьшению сроков биодеградации. Кроме того, способ изготовления мембраны с использованием метода электростатического формирования (электроспининга) позволяет получить мембрану с микроволокнистой структурой, что так же уменьшает период биодеградации полимеров. Помимо этого в процессе электростатического формования мембраны в структуру волокон включают биологически активные вещества из группы фибринолитических препаратов или препаратов из группы антикоагулянтов прямого действия, таким образом, по мере биодеструкции мембраны выделение БАВ происходит равномерно, и тем самым оказывается пролонгированное локальное лекарственное воздействие.
Предложен способ изготовления противоспаечных биодеградируемых мембран для предотвращения спаечного процесса после кардиохирургических операций, включающий растворение сополимера полигидроксибутирата/гидроксивалерата (ПГБВ) в растворителе с последующим добавлением биологически активных веществ.
Отличием является то, что в состав биополимерной композиции дополнительно вводят и поли(D,L-лактида) в соотношении 3:1.
Отличием является то, что в состав мембраны входят биологически активные вещества из группы фибринолитических препаратов или прямых антикоагулянтов, состоящей из фибринолизина, стрептокиназы, стрептодеказы и альтеплазы или из группы антикоагулянтов прямого действия, состоящей из нефракционированного гепарина, эноксапарина натрия, дальтепарина и надропарина.
Отличием является то, что мембрана изготавливается методом электростатического формования, которое позволяет создавать мембрану в виде нетканого полотна, состоящего из микроволокон в составе которых содержится биологически активное вещество. Применение метода электростатического формования придает мембране микроразмерную структуру, которая быстрее подвергается биодеструкции, чем пленочные мембраны.
Метод электростатического формования позволяет помещать внутрь полимерного микроволокна биологически активное вещество, которое выделяется в процессе деструкции мембраны и оказывает локальное терапевтическое пролонгированное действие. Поскольку формирование спаек является следствием снижения фибринолитической активности организма, либо следствием отложения фибрина в операционной ране, то использование биологически активных веществ из группы фибринолитических препаратов будет оказывать локальный фибринолитический эффект. Применение антикоагулянтов прямого действия будет препятствовать образованию фибрина и дополнительно оказывать противоспалительное действие, что в целом будет препятствовать образованию спаек. Таким образом, полимерная мембрана, изготовленная из биодеградируемых полимеров (ПГБВ + поли(D,L-лактид)), будет механически разделять травмированные поверхности после операции на срок не более 60 суток, а выделяющееся по мере деградации мембраны биологически активное вещество будет оказывать дополнительное терапевтическое направленное действие.
В результате проведенных сравнительных исследований доказано, что прочность образцов - пленок, изготовленных из ПГБВ + поли(D,L-лактид) методом электроспиннинга, близка к прочности нативного перикарда, к которому фиксируется мембрана во время операции, а эластичность мембран, изготовленных электроспиннингом, на 20% выше, чем у мембран, изготовленных методом полива. Результаты полученных результатов представлены в таблице 1.
Таблица 1 | |||
Физико-механические характеристики мембран | |||
Состав мембраны | Толщина мембраны, мм | Прочность (MPa) | Относительное удлинение (%) |
ПГБВ, изготовленная методом полива | 0,1 | 19,31±4,85 | 501,5±58,78 |
ПГБВ, изготовленная методом электроспиннинга | 0,05 | 6,79±3,54 | 612,7±42,64 |
ПГБВ + поли(D,L-лактид), изготовленная методом электроспиннинга | 0,05 | 16,25±5,64 | 604,98±29,79 |
О гемосовместимости полученных мембран судили по величине гемолиза, индуцированного водным экстрактом, из полимерных мембран. Выявлено, что мембраны на основе сополимера ПГБВ, изготовленные как методом полива, так и с помощью электроспиннинга, не оказывают негативного воздействия на эритроциты, гемолиз не был зафиксирован ни в одном образце.
Методом сканирующей электронной микроскопии оценивали структуру мембраны ПГБВ + поли(D,L-лактид). Мембраны, изготовленные методом электроспиннинга, состоят из хаотично расположенных волокон размером 3,2-3,6 мкм. Включение в состав биологически активных веществ способствует уменьшению толщины волокна до 1,7-1,9 мкм.
Была изучена тканевая реакция на мембраны при подкожной имплантации образцов биополимера лабораторным крысам. После имплантации вокруг мембраны формируется тонкая соединительно-тканная капсула, что согласуется с литературными данными (Gogolewski et al., 1993, Chaput et al., 1995, Qu et al., 2006). Для всех образцов характерно отсутствие признаков воспалительного процесса. Изучение биодеградации экспериментальных пленок in vivo показало, что мембраны, изготовленные методом полива, полностью деградируют лишь к концу шестого месяца после подкожной имплантации лабораторным крысам. В то же время, мембраны, изготовленные методом электроспиннинга, полностью деградируют через 60 суток после имплантации без признаков лимфоцитарной инфильтрации. Включение в состав мембран поли(D,L-лактида) позволило на 30% сократить время биодеструкции - через 45 дней после имплантации визуализировались лишь пустые камеры, остатков мембраны не обнаружено.
Эффективность разработанных мембран оценивали в условиях развития спаечного процесса у лабораторных животных. Спаечную болезнь моделировали у крыс-самцов линии Wistar, весом 250-300 г, так как крысы из всех лабораторных животных обладают максимальной фибринолитической активностью. Через 28 суток после операции оценивали наличие и тяжесть образованных спаек (см. таб.2).
Как видно из таблицы 2, мембраны, изготовленные при помощи электроспиннинга, эффективно предупреждают образование спаек в 65% случае, и лишь у 5% животных наблюдали обширные, плотные спайки. При включении в состав мембран биологически активных веществ способствует более эффективному предупреждению образованию спаек - у 85% крыс спаек не обнаружено, у 15% животных наблюдали слабые спайки.
Таблица 2 | |||||
Противоспаечная эффективность мембран в зависимости от технологии изготовления | |||||
Технология изготовления мембраны | Кол-во прооперированных животных | Кол-во случаев образования спаек | % | В т.ч. обширные плотные спайки | % |
Мембрана, изготовленная методом полива | 20 | 10 | 50 | 6 | 30 |
Мембрана, изготовленная методом электроспиннинга | 20 | 7 | 35 | 1 | 5 |
Мембрана, изготовленная методом электроспиннинга + биологически активные вещества | 20 | 3 | 15 | 0 | 0 |
Ниже приведен пример осуществления предлагаемого способа изготовления биодеградируемой мембраны.
Навеску порошка сополимера 3-ПГБ/3-ПГВ и поли(D,L-лактида) в соотношении (3:1) растворяют в хлороформе до концентрации 6-9% и тщательно перемешивают в течение 2-х часов на магнитной мешалке с подогревом до 30-35°C. Полученный раствор полимера помещают в шприцевой дозатор, который устанавливают в установку для электростатического формования. Во второй шприцевой дозатор помещается биологически активное вещество. Формирование волокна происходит при помощи коаксиальной насадки, которая позволяет формовать полимерное волокно, во внутрь которого заключается биологически активное вещество. Процесс формования волокна происходит при напряжении 18-23 кВ, скорость подачи полимера и биологически активного вещества от 0,4 мл/ч до 1 мл/ч. Размер мембран составляет от 13×13 см до 15×18 см, толщина - от 150 до 500 мкм. Пленки стерилизуются этиленоксидом при комнатной температуре.
Таким образом, биодеградируемые мембраны на основе сополимера полигидроксибутирата/гидроксивалерата и поли(D,L-лактида), изготовленные методом электростатического формования, с включенными в структуру микроволокон биологически активных веществами из группы фибринолитических препаратов или антикоагулянтов прямого действия, обладают удовлетворительными биосовместимыми свойствами, сроком биодеградации не превышающим 60 суток и позволяют эффективно предупреждать образование спаек в эксперименте.
Claims (2)
1. Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций, включающий растворение в хлороформе сополимера полигидроксибутирата/гидроксивалериата (ПГБВ) и включением в состав композиции, по меньшей мере, одного биологически активного вещества, с последующим перемешиванием в течение 2-х часов на магнитной мешалке и подогревом до 35°C, отличающийся тем, что в состав полимерной композиции дополнительно вводят поли(D, L-лактид), а растворение смеси в хлороформе осуществляют до концентрации 6-9%, при этом соотношение сухих веществ сополимера ПГБВ и поли(D, L-лактида) в композиции составляет 3:1, а изготовление мембраны выполняют методом электростатического формирования;
2. Способ изготовления биодеградируемых мембран по п.1, отличающийся тем, что в качестве биологически активного вещества выбраны препараты из группы фибринолических препаратов или антикоагулянтов прямого действия.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013135289/15A RU2525181C1 (ru) | 2013-07-26 | 2013-07-26 | Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций |
PCT/RU2014/000533 WO2015012730A1 (ru) | 2013-07-26 | 2014-07-21 | Способ изготовления биодеградируемых противоспаечных мембран для кардиохирургии |
EP14829254.3A EP3025736B1 (en) | 2013-07-26 | 2014-07-21 | Method for making biodegradable anti-adhesion membranes for cardiac surgery |
US14/926,470 US9415141B2 (en) | 2013-07-26 | 2015-10-29 | Method for making biodegradable anti-adhesion membranes for cardiac surgery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013135289/15A RU2525181C1 (ru) | 2013-07-26 | 2013-07-26 | Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2525181C1 true RU2525181C1 (ru) | 2014-08-10 |
Family
ID=51355254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013135289/15A RU2525181C1 (ru) | 2013-07-26 | 2013-07-26 | Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций |
Country Status (4)
Country | Link |
---|---|
US (1) | US9415141B2 (ru) |
EP (1) | EP3025736B1 (ru) |
RU (1) | RU2525181C1 (ru) |
WO (1) | WO2015012730A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2627666C1 (ru) * | 2016-08-12 | 2017-08-09 | Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН) | Способ получения хирургического барьерного материала на основе полисахаридов |
RU2629842C1 (ru) * | 2016-07-26 | 2017-09-04 | Общество с ограниченной ответственностью "Линтекс" | Способ получения противоспаечного пленочного материала на основе карбоксиметилцеллюлозы |
RU2823644C1 (ru) * | 2023-10-09 | 2024-07-26 | Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний" (НИИ КПССЗ) | Способ изготовления противоспаечных полимерных мембран с противовоспалительными и антибактериальными свойствами для сердечно-сосудистой и абдоминальной хирургии |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107596456A (zh) * | 2017-10-11 | 2018-01-19 | 广州新诚生物科技有限公司 | 一种具有止血功能的生物医用膜及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2177332C2 (ru) * | 1995-08-29 | 2001-12-27 | Фидиа Адвансд Биополимерз, С.Р.Л. | Биоматериал для предотвращения послеоперационных спаек, включающий производные гиалуроновой кислоты (варианты) и способ предотвращения послеоперационных спаек ткани |
RU2242974C2 (ru) * | 1996-12-02 | 2004-12-27 | Энджиотек Фармасьютикалз, Инк. | Композиции и способы лечения или предупреждения воспалительных заболеваний |
RU2447902C2 (ru) * | 2010-07-21 | 2012-04-20 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Биологически активная полимерная медицинская композиция (варианты) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7943683B2 (en) | 2006-12-01 | 2011-05-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
KR101005079B1 (ko) * | 2008-10-23 | 2010-12-30 | 금오공과대학교 산학협력단 | 유착방지막 용도의 생분해성 나노섬유시트 및 그 제조방법 |
AU2010349618A1 (en) * | 2010-03-31 | 2012-10-25 | Hogy Medical Co., Ltd. | Adhesion-preventing material |
CA2802212C (en) * | 2010-06-15 | 2015-03-24 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers |
-
2013
- 2013-07-26 RU RU2013135289/15A patent/RU2525181C1/ru active
-
2014
- 2014-07-21 EP EP14829254.3A patent/EP3025736B1/en not_active Not-in-force
- 2014-07-21 WO PCT/RU2014/000533 patent/WO2015012730A1/ru active Application Filing
-
2015
- 2015-10-29 US US14/926,470 patent/US9415141B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2177332C2 (ru) * | 1995-08-29 | 2001-12-27 | Фидиа Адвансд Биополимерз, С.Р.Л. | Биоматериал для предотвращения послеоперационных спаек, включающий производные гиалуроновой кислоты (варианты) и способ предотвращения послеоперационных спаек ткани |
RU2242974C2 (ru) * | 1996-12-02 | 2004-12-27 | Энджиотек Фармасьютикалз, Инк. | Композиции и способы лечения или предупреждения воспалительных заболеваний |
RU2447902C2 (ru) * | 2010-07-21 | 2012-04-20 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Биологически активная полимерная медицинская композиция (варианты) |
Non-Patent Citations (1)
Title |
---|
. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2629842C1 (ru) * | 2016-07-26 | 2017-09-04 | Общество с ограниченной ответственностью "Линтекс" | Способ получения противоспаечного пленочного материала на основе карбоксиметилцеллюлозы |
RU2627666C1 (ru) * | 2016-08-12 | 2017-08-09 | Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН) | Способ получения хирургического барьерного материала на основе полисахаридов |
RU2823644C1 (ru) * | 2023-10-09 | 2024-07-26 | Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний" (НИИ КПССЗ) | Способ изготовления противоспаечных полимерных мембран с противовоспалительными и антибактериальными свойствами для сердечно-сосудистой и абдоминальной хирургии |
Also Published As
Publication number | Publication date |
---|---|
WO2015012730A1 (ru) | 2015-01-29 |
EP3025736A1 (en) | 2016-06-01 |
EP3025736A4 (en) | 2016-06-01 |
US9415141B2 (en) | 2016-08-16 |
US20160045643A1 (en) | 2016-02-18 |
EP3025736B1 (en) | 2018-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ying et al. | Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response | |
US6685956B2 (en) | Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications | |
Li et al. | Antibacterial, hemostasis, adhesive, self-healing polysaccharides-based composite hydrogel wound dressing for the prevention and treatment of postoperative adhesion | |
ES2703735T3 (es) | Copolímeros de diglicolato de polietileno absorbibles para reducir la adhesión microbiana a dispositivos médicos e implantes | |
CN101623517A (zh) | 一种医用防粘连膜及其制备方法 | |
WO2018062464A1 (ja) | 癒着防止材 | |
Andrychowski et al. | Nanofiber nets in prevention of cicatrisation in spinal procedures. Experimental study | |
Aydemir Sezer et al. | A polypropylene-integrated bilayer composite mesh with bactericidal and antiadhesive efficiency for hernia operations | |
KR20140140212A (ko) | 친수성 천연고분자를 함유하는 다층구조의 나노섬유상 유착방지막 및 그 제조방법 | |
Ko et al. | Nanofiber mats composed of a chitosan‐poly (d, l‐lactic‐co‐glycolic acid)‐poly (ethylene oxide) blend as a postoperative anti‐adhesion agent | |
RU2525181C1 (ru) | Способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций | |
KR101180286B1 (ko) | 히알루론산 에폭사이드 유도체 하이드로겔을 포함하는 유착방지제 및 이의 제조 방법 | |
KR100464930B1 (ko) | 조직재생 유도용 차폐막 및 그의 제조방법 | |
JP5143396B2 (ja) | 癒着防止材 | |
Tang et al. | Agarose/collagen composite scaffold as an anti-adhesive sheet | |
KR101845885B1 (ko) | 입자형 무세포 진피 기반의 온도감응성 유착방지 조성물의 제조방법 | |
RU2823644C1 (ru) | Способ изготовления противоспаечных полимерных мембран с противовоспалительными и антибактериальными свойствами для сердечно-сосудистой и абдоминальной хирургии | |
Vert | Degradable, biodegradable, and bioresorbable polymers for time-limited therapy | |
CN108578788A (zh) | 一种可吸收生物膜 | |
CN111188102B (zh) | 一种抗肿瘤用的复合电纺组织工程支架材料的制备方法、工程支架材料及其应用 | |
RU2519103C2 (ru) | Биорезорбируемая гидрогелевая полимерная композиция с биологически активными веществами (варианты) | |
Cho et al. | Prevention of postsurgical tissue adhesion by a bi-layer membrane consisting of adhesion and lubrication layers | |
KR20100009944A (ko) | 유착방지필름 및 그의 제조방법 | |
Kivanany | Electrospun Biodegradable Polymeric Membranes For Post-surgery Anti-adhesion Applications | |
CN108452391A (zh) | 一种可吸收生物膜的制备方法 |