RU2523160C1 - Устройство для управления подводным роботом - Google Patents

Устройство для управления подводным роботом Download PDF

Info

Publication number
RU2523160C1
RU2523160C1 RU2013105293/02A RU2013105293A RU2523160C1 RU 2523160 C1 RU2523160 C1 RU 2523160C1 RU 2013105293/02 A RU2013105293/02 A RU 2013105293/02A RU 2013105293 A RU2013105293 A RU 2013105293A RU 2523160 C1 RU2523160 C1 RU 2523160C1
Authority
RU
Russia
Prior art keywords
input
adder
output
underwater robot
multiplication unit
Prior art date
Application number
RU2013105293/02A
Other languages
English (en)
Inventor
Владимир Федорович Филаретов
Александр Васильевич Лебедев
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority to RU2013105293/02A priority Critical patent/RU2523160C1/ru
Application granted granted Critical
Publication of RU2523160C1 publication Critical patent/RU2523160C1/ru

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение относится к робототехнике и может быть использовано для создания систем управления подводными роботами. Для формирования необходимых корректирующих сигналов и обеспечения полной компенсации эффектов взаимовлияния между степенями подвижности подводного робота и вязкого трения со стороны жидкости устройство для управления подводным роботом дополнительно снабжено третьим блоком умножения, четвертым сумматором, вторым усилителем, вторым движителем, третьим задатчиком сигнала, пятым сумматором, третьим усилителем, третьим движителем, первым, вторым и третьим датчиками положения, вторым и третьим датчиками скорости, четвертым блоком умножения, синусным и косинусным функциональными преобразователями. Изобретение позволяет обеспечить высокая точность управления подводным роботом в условиях существенного влияния вязкой окружающей среды. 1 ил.

Description

Изобретение относится к робототехнике и может быть использовано при создании систем управления подводными роботами.
Известно устройство для управления движителем подводного робота, содержащее три сумматора, два из которых по входам соединены с задатчиками, последовательно соединенные блок умножения, первый сумматор, усилитель и двигатель, соединенный непосредственно с датчиком скорости, а также блок деления и блок вычисления модуля, причем выход второго сумматора соединен с первым входом блока деления, а его второй вход - с выходом блока умножения, выход датчика скорости соединен с первым входом блока умножения, входом блока вычисления модуля и вторым входом первого сумматора, выход блока вычисления модуля соединен со вторым входом блока умножения и вторым входом третьего сумматора, выход которого соединен со вторым входом блока деления, выход которого соединен с третьим входом первого сумматора (см. пат. РФ №2147001, БИ №9, 2000 г.).
Недостатком данного устройства является то, что оно, будучи предназначенным только для отдельного движителя подводного робота (ПР), не обеспечивает качественное управление ПР в целом во многих практически важных режимах его эксплуатации.
Известно также устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по входам соединены с первым и вторым задатчиками соответственно, последовательно соединенные первый блок умножения и первый сумматор, последовательно соединенные усилитель и движитель, соединенный непосредственно с датчиком скорости, а также первый блок вычисления модуля, причем выход датчика скорости соединен с первым входом первого блока умножения, входом первого блока вычисления модуля и вторым входом первого сумматора, выход первого блока вычисления модуля соединен со вторым входом первого блока умножения, последовательно соединенные интегратор, четвертый сумматор, первый релейный элемент и второй блок умножения, второй вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, последовательно соединенные второй блок вычисления модуля, блок извлечения квадратного корня и третий блок умножения, своим выходом соединенный со входом усилителя, а вторым входом через второй релейный элемент подключенный ко входу второго блока вычисления модуля и к выходу первого сумматора, четвертый вход которого соединен с выходом первого задатчика, причем второй вход третьего сумматора через квадратор подключен к выходу датчика скорости и второму входу четвертого сумматора, а его третий вход через третий блок вычисления модуля подключен ко входу интегратора и к выходу второго сумматора, своим вторым входом соединенного с выходом интегратора (см. пат. РФ №2230654, БИ №17, 2004 г.).
Данное устройство по своей технической сущности является наиболее близким к предлагаемому изобретению.
Недостатком данного устройства является то, что оно предназначено только для отдельного канала управления движением ПР по одной из пространственных координат. При выполнении подводным роботом сложных маневров в водной среде качество управления существенно снижается из-за сильного взаимовлияния между степенями подвижности ПР и значительных внешних воздействий (сил и моментов вязкого трения). Прототип не обеспечивает требуемую точность при отслеживании сложных траекторий, так как не учитывает совокупное влияние перечисленных отрицательных факторов на динамические свойства ПР.
Задачей, на решение которой направлено заявляемое техническое решение, является обеспечение высокой точности управления подводным роботом за счет компенсации нелинейных взаимосвязей в каналах управления и внешних воздействий, возникающих при быстром движении ПР в вязкой среде, когда одновременно изменяются несколько его пространственных координат.
Технический результат, который может быть получен при реализации заявляемого технического решения, выражается в формировании дополнительных управляющих сигналов, подаваемых на входы движителей каждого канала управления подводного робота, которые обеспечивают компенсацию отрицательного влияния на точность работы всей системы управления нелинейных взаимосвязей и внешних воздействий, возникающих при быстром движении ПР в вязкой среде по сложной траектории.
Поставленная задача решается тем, что в устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по первым входам соединены с первым и вторым задатчиками сигнала, соответственно, последовательно соединенные первый блок умножения, первый сумматор, второй вход которого соединен с выходом первого датчика скорости, первый усилитель и первый движитель, а также второй блок умножения, первый вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, дополнительно вводятся последовательно соединенные третий блок умножения, четвертый сумматор, второй усилитель и второй движитель, последовательно соединенные третий задатчик сигнала, пятый сумматор, третий усилитель и третий движитель, первый, второй и третий датчики положения, выходы которых соединены со вторыми входами второго, третьего и пятого сумматоров, соответственно, второй и третий датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора, третий вход которого через четвертый блок умножения подключен к выходу второго сумматора и первому входу первого блока умножения, и с третьим входом пятого сумматора, а также синусный функциональный преобразователь, выход которого подключен ко вторым входам второго и четвертого блоков умножения, а вход - к выходу третьего датчика положения и входу косинусного функционального преобразователя, выходом соединенного со вторым входом первого блока умножения и с первым входом третьего блока умножения, второй вход которого подключен к выходу третьего сумматора.
Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналога и прототипа свидетельствует о его соответствии критерию «новизна».
При этом отличительные признаки формулы изобретения позволяют обеспечить неизменно высокую точность работы системы управления ПР в условиях сильного взаимовлияния между его степенями подвижности при учете дополнительных воздействий со стороны вязкой среды.
На фиг.1 представлена блок-схема предлагаемого устройства для управления подводным роботом.
Устройство для управления подводным роботом содержит три сумматора 1, 2 и 3, причем второй 2 и третий 3 сумматоры по первым входам соединены с первым 4 и вторым 5 задатчиками сигнала, соответственно, последовательно соединенные первый блок 6 умножения, первый сумматор 1, второй вход которого соединен с выходом первого датчика 7 скорости, первый усилитель 8 и первый движитель 9, а также второй блок 10 умножения, первый вход которого подключен к выходу третьего сумматора 3, а выход - к третьему входу первого сумматора 1, последовательно соединенные третий блок 11 умножения, четвертый сумматор 12, второй усилитель 13 и второй движитель 14, последовательно соединенные третий задатчик 15 сигнала, пятый сумматор 16, третий усилитель 17 и третий движитель 18, первый 19, второй 20 и третий 21 датчики положения, выходы которых соединены со вторыми входами второго 2, третьего 3 и пятого 16 сумматоров, соответственно, второй 22 и третий 23 датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора 12, третий вход которого через четвертый блок 24 умножения подключен к выходу второго сумматора 2 и первому входу первого блока 6 умножения, и с третьим входом пятого сумматора 16, а также синусный функциональный преобразователь 25, выход которого подключен ко вторым входам второго 10 и четвертого 24 блоков умножения, а вход - к выходу третьего датчика 21 положения и входу косинусного функционального преобразователя 26, выходом соединенного со вторым входом первого блока 6 умножения и с первым входом третьего блока 11 умножения, второй вход которого подключен к выходу третьего сумматора 3, объект управления 27.
На чертеже введены следующие обозначения: xвх, yвх, φвх - входные сигналы, задающие траекторию движения подводного робота и угол курса; X, Y, φ - линейные и угловая координаты ПР; εX, εY - ошибки (величины рассогласований) по координатам x и y, соответственно; υx, υy - проекции линейной скорости поступательного движения ПР на оси связанной с ним системы координат (СК); ω - угловая скорость вращательного движения ПР;
Figure 00000001
- усиливаемые сигналы в каждом канале управления ПР; ux, uy, uφ -сигналы управления движителями 9, 14 и 18, соответственно.
Устройство работает следующим образом.
Сигналы ошибок εx и εy с сумматоров 2 и 3, а также задающий входной сигнал φвх с задатчика 15, после коррекции в сумматорах и блоках 1, 6, 11, 12 и 16, усиливаясь, поступают на движители 9, 14 и 18, соответственно, приводя во вращение гребные винты и осуществляя в результате движение подводного робота в заданной плоскости с соответствующим изменением линейных x, y и угловой φ координат в абсолютной СК. При этом проекции υx и υy линейной скорости движения ПР на оси связанной СК, а также его угловая скорость ω зависят от величин поступающих сигналов ux, uy, uφ, от сил и моментов вязкого трения, возникающих при движении ПР в жидкости, и от взаимовлияния между каналами управления по отдельным координатам.
Наличие указанных факторов приводит к снижению точности работы традиционных систем управления в большинстве режимов эксплуатации подводного робота.
При наличии динамического взаимовлияния между указанными тремя каналами управления и нейтральной плавучести ПР, динамика его движения в заданной плоскости описывается нелинейной системой, состоящей из трех дифференциальных уравнений второго порядка каждое:
Figure 00000002
где m, J - масса и момент инерции ПР (с учетом присоединенных массы и момента инерции жидкости), kf, km - коэффициенты вязкого трения при поступательном и вращательном движении ПР, ky1, ky2, ky3 - коэффициенты усиления усилителей мощности 8, 13 и 17, соответственно, kd1, kd2, kd3 - коэффициенты усиления движителей 9, 14 и 18, соответственно.
Очевидно, что качественно управлять всеми режимами работы нелинейной многосвязной системы (1) при использовании традиционной линейной коррекции невозможно.
В заявляемом устройстве первый и третий положительные входы сумматора 1 (со стороны блоков 6 и 10 умножения, соответственно) имеют коэффициенты усиления kum/(kykd1), а его второй положительный вход (со стороны датчика 7 скорости) - коэффициент усиления (kf-ku1m)/(ky1kd1). Первый положительный и третий отрицательный входы сумматора 12 (со стороны блоков 11 и 24 умножения, соответственно) имеют коэффициенты усиления kum/(ky2kd2), а его второй положительный вход (со стороны датчика 22 скорости) - коэффициент усиления (kf-ku1m)/(ky2kd2). Первый положительный и второй отрицательный входы сумматора 16 (со стороны задатчика 15 и датчика 21 положения, соответственно) имеют коэффициенты усиления kφJ/(ky3kd3), а его третий положительный вход (со стороны датчика 23 скорости) - коэффициент усиления (km-kφ1J)/(ky3kd3). Первый положительный (со стороны задатчика 4) и второй отрицательный (со стороны датчика 19 положения) входы сумматора 2, а также первый положительный (со стороны задатчика 5) и второй отрицательный (со стороны датчика 20 положения) входы сумматора 3 имеют единичные коэффициенты усиления.
Поскольку датчики 19 и 20 положения измеряют линейные координаты x и y подводного робота в абсолютной СК, соответственно, то на выходе сумматора 2 формируется сигнал εx=xвх-x, а на выходе сумматора 3 - сигнал ε=yвх-y. Поскольку датчик 21 положения измеряет угол φ курса ПР, то с учетом преобразования его выходного сигнала в блоках 25 и 26 на выходах блоков 6, 10, 11 и 24 умножения формируются сигналы εxcosφ, εysinφ, sxcosφ и εxsinφ, соответственно.
Датчики 7 и 22 скорости измеряют величины υх и υy, соответственно. Поэтому с учетом указанных выше коэффициентов усиления входов сумматоров 1 и 12 на их выходах, соответственно, будут сформированы сигналы:
Figure 00000003
Figure 00000004
Поскольку датчик 23 скорости измеряет угловую скорость со движения ПР, то на выходе сумматора 16 с учетом коэффициентов усиления всех его входов будет сформирован сигнал:
Figure 00000005
Подставив значения
Figure 00000006
из соотношений (2)-(4) в уравнения системы (1), после преобразований получим выражения, описывающие динамику движения ПР с учетом введенной коррекции:
Figure 00000007
,
Figure 00000008
,
Figure 00000009
,
где ku, ku1, kφ, kφ1 - постоянные желаемые параметры.
Таким образом, заявленное устройство обеспечивает полную компенсацию воздействий на ПР со стороны вязкой среды и эффектов взаимовлияния между каналами управления каждой его координатой. Система управления подводным роботом в целом в любых режимах работы будет иметь требуемые (желаемые) динамические свойства и показатели качества, определяемые только коэффициентами ku, ku1, kφ, kφ1, задаваемыми на этапе проектирования управляющего устройства.

Claims (1)

  1. Устройство для управления подводным роботом, содержащее три сумматора, причем второй и третий сумматоры по первым входам соединены с первым и вторым задатчиками сигнала, соответственно, последовательно соединенные первый блок умножения, первый сумматор, второй вход которого соединен с выходом первого датчика скорости, первый усилитель и первый движитель, а также второй блок умножения, первый вход которого подключен к выходу третьего сумматора, а выход - к третьему входу первого сумматора, отличающееся тем, что в него дополнительно введены последовательно соединенные третий блок умножения, четвертый сумматор, второй усилитель и второй движитель, последовательно соединенные третий задатчик сигнала, пятый сумматор, третий усилитель и третий движитель, а также первый, второй и третий датчики положения, выходы которых соединены со вторыми входами второго, третьего и пятого сумматоров, соответственно, второй и третий датчики скорости, выходы которых, соответственно, соединены со вторым входом четвертого сумматора, третий вход которого через четвертый блок умножения подключен к выходу второго сумматора и первому входу первого блока умножения, и с третьим входом пятого сумматора, а также синусный функциональный преобразователь, выход которого подключен ко вторым входам второго и четвертого блоков умножения, а вход - к выходу третьего датчика положения и входу косинусного функционального преобразователя, выходом соединенного со вторым входом первого блока умножения и с первым входом третьего блока умножения, второй вход которого подключен к выходу третьего сумматора.
RU2013105293/02A 2013-02-07 2013-02-07 Устройство для управления подводным роботом RU2523160C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013105293/02A RU2523160C1 (ru) 2013-02-07 2013-02-07 Устройство для управления подводным роботом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013105293/02A RU2523160C1 (ru) 2013-02-07 2013-02-07 Устройство для управления подводным роботом

Publications (1)

Publication Number Publication Date
RU2523160C1 true RU2523160C1 (ru) 2014-07-20

Family

ID=51217628

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013105293/02A RU2523160C1 (ru) 2013-02-07 2013-02-07 Устройство для управления подводным роботом

Country Status (1)

Country Link
RU (1) RU2523160C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789510C1 (ru) * 2022-11-09 2023-02-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий им. академика М.Д. Агеева Дальневосточного отделения Российской академии наук Способ позиционно-силового управления подводным аппаратом с многозвенным манипулятором для выполнения контактных манипуляционных операций с подводными объектами

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120198A1 (de) * 1983-02-26 1984-10-03 Gesellschaft für digitale Automation mbH Verfahren zum Betreiben eines Industrieroboters in roboterkinematikfremden Koordinaten
JPH04108906A (ja) * 1990-08-30 1992-04-09 Mitsubishi Heavy Ind Ltd 水路清掃用水中ロボツトの制御装置
RU2066626C1 (ru) * 1994-04-18 1996-09-20 Дальневосточный государственный технический университет Устройство для управления приводом робота
RU2147001C1 (ru) * 1999-01-05 2000-03-27 Институт автоматики и процессов управления Дальневосточного отделения РАН Устройство для управления движителем подводного робота
RU2230654C1 (ru) * 2003-02-11 2004-06-20 Институт автоматики и процессов управления Дальневосточного отделения РАН Устройство для управления подводным роботом
CN102029611A (zh) * 2009-09-25 2011-04-27 中国科学院沈阳自动化研究所 一种微型水下机器人控制装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120198A1 (de) * 1983-02-26 1984-10-03 Gesellschaft für digitale Automation mbH Verfahren zum Betreiben eines Industrieroboters in roboterkinematikfremden Koordinaten
JPH04108906A (ja) * 1990-08-30 1992-04-09 Mitsubishi Heavy Ind Ltd 水路清掃用水中ロボツトの制御装置
RU2066626C1 (ru) * 1994-04-18 1996-09-20 Дальневосточный государственный технический университет Устройство для управления приводом робота
RU2147001C1 (ru) * 1999-01-05 2000-03-27 Институт автоматики и процессов управления Дальневосточного отделения РАН Устройство для управления движителем подводного робота
RU2230654C1 (ru) * 2003-02-11 2004-06-20 Институт автоматики и процессов управления Дальневосточного отделения РАН Устройство для управления подводным роботом
CN102029611A (zh) * 2009-09-25 2011-04-27 中国科学院沈阳自动化研究所 一种微型水下机器人控制装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789510C1 (ru) * 2022-11-09 2023-02-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий им. академика М.Д. Агеева Дальневосточного отделения Российской академии наук Способ позиционно-силового управления подводным аппаратом с многозвенным манипулятором для выполнения контактных манипуляционных операций с подводными объектами

Similar Documents

Publication Publication Date Title
Zhao et al. Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control
Shtessel et al. Smooth second-order sliding modes: Missile guidance application
Abdessameud et al. Global trajectory tracking control of VTOL-UAVs without linear velocity measurements
Jiang et al. Boundary control for a flexible manipulator based on infinite dimensional disturbance observer
CN108227485B (zh) 一种带有执行器饱和的空间机器人自抗扰控制方法
JP2017206154A (ja) 水中航走体制御装置、水中航走システム、水中航走体制御方法及びプログラム
Peng et al. Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach
CN106406337B (zh) 一种优化航天器姿态控制系统鲁棒性的方法及系统
KR20140094313A (ko) 마찰력 보상기 및 이를 이용한 마찰력 보상방법
RU2523160C1 (ru) Устройство для управления подводным роботом
Boehm et al. Feedback-linearizing control for velocity and attitude tracking of an ROV with thruster dynamics containing input dead zones
RU2372186C1 (ru) Самонастраивающийся электропривод манипуляционного робота
RU182886U1 (ru) Система угловой стабилизации
CN108037764B (zh) 一种无人直升机自抗扰飞行位置控制方法
KR101568143B1 (ko) 비행체 자세 제어 장치
RU2524034C1 (ru) Устройство для управления подводным роботом
RU76473U1 (ru) Система угловой стабилизации
US9199377B2 (en) Method and system for extracting intended torque for wearable robot
RU2562403C1 (ru) Самонастраивающийся электропривод манипулятора
RU186492U1 (ru) Система угловой стабилизации
RU2230654C1 (ru) Устройство для управления подводным роботом
RU2014140091A (ru) Способ грубого управления пространственным движением самолета и система его реализации
RU2478465C1 (ru) Электропривод манипулятора
RU2577204C2 (ru) Самонастраивающийся электропривод манипулятора
RU2380215C1 (ru) Самонастраивающийся электропривод робота

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20170531