RU2519550C1 - Способ получения ванилина - Google Patents

Способ получения ванилина Download PDF

Info

Publication number
RU2519550C1
RU2519550C1 RU2013109671/04A RU2013109671A RU2519550C1 RU 2519550 C1 RU2519550 C1 RU 2519550C1 RU 2013109671/04 A RU2013109671/04 A RU 2013109671/04A RU 2013109671 A RU2013109671 A RU 2013109671A RU 2519550 C1 RU2519550 C1 RU 2519550C1
Authority
RU
Russia
Prior art keywords
vanillin
reactor
alkali
lignin
wood
Prior art date
Application number
RU2013109671/04A
Other languages
English (en)
Inventor
Валерий Евгеньевич Тарабанько
Константин Леонидович Кайгородов
Юлия Вячеславовна Челбина
Александр Анатольевич Ильин
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority to RU2013109671/04A priority Critical patent/RU2519550C1/ru
Application granted granted Critical
Publication of RU2519550C1 publication Critical patent/RU2519550C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении. При этом процесс проводят в присутствии катализаторов на основе гидроксида меди при непрерывной подаче раствора щелочи в реактор в течение 5-150 минут. Способ позволяет сократить расход щелочи в расчете на килограмм полученного ванилина, а также расход ферментативного лигнина, что сокращает количество органических веществ, образующихся в качестве побочных продуктов, в сточных водах и улучшает экологичность процесса. 10 пр.

Description

Заявляемое изобретение относится к способам получения ванилина из лигнинсодержащего сырья и предназначено для усовершенствования процессов каталитического окисления лигнинов. Ванилин (В, 4-гидрокси-3-метоксибензальдегид) широко используется в пищевой, парфюмерно-косметической и фармацевтической отраслях промышленности.
Известен способ получения ванилина путем окисления водного раствора лигносульфонатов в щелочной среде под давлением воздуха при температуре 160-170°C (433-443 К) [Камалдина О.Д., Массов Я.А. Получение ванилина из лигносульфонатов. // М.: ЦБТИ ЦИНИС. 1959. 38 с]. Согласно известному способу реакционная смесь содержит 300 г на литр сухих веществ щелока и 100 г/л натриевой щелочи. Окисление при 160°C в течение 3 ч дает раствор с содержанием ванилина 7-8 г/л (2,3-2,7 маc.% в расчете на субстрат или 6-7 мас.% в расчете на лигнин лигносульфонатов).
Недостатки известного способа заключаются в высоком расходе реагентов, щелочи (12-14 кг на кг ванилина) и лигносульфонатов (35-40 кг на кг ванилина). Названные недостатки обусловлены природой лигносульфонатов, их конденсированной структурой, обусловленной жесткими условиями делигнификации древесины.
Известен способ получения ванилина из опилок хвойных пород древесины путем их каталитического окисления в щелочной среде кислородом [Эпштейн Р.Б. Получение ванилина из древесины. // Сб. тр. Укр. НИИ пищевой промышленности. 1959. Т.2. С.201-213].
Недостатком известного способа является невысокий выход целевого продукта в расчете на сырье, 1-3 мас.%. Низкий выход ванилина по известному способу обусловлен невысоким содержанием лигнина в древесине - около 20-28%.
Наиболее близким по существу к заявляемому способу является способ получения ванилина (RU 2059599, опубл. 10.05.1996) путем некаталитического окисления кислородом воздуха при повышенных температурах и давлении в водно-щелочном растворе лигнина, полученном ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.%. Согласно известному способу вся щелочь вводится в реактор до начала эксперимента.
Недостатки известного способа заключаются в высоком расходе реагентов, щелочи (23-24 кг на кг ванилина) и ферментативного лигнина (11-15 кг на кг ванилина). Названные недостатки обусловлены тем, что процесс протекает в значительной степени в диффузионной области и поэтому выход ванилина мал по сравнению с максимально возможным в кинетической области, и следовательно, расходы щелочи и лигнина оказываются большими по сравнению с минимально возможными. Еще одна причина, обусловливающая эти недостатки, состоит в отсутствии катализаторов окисления, которые позволяют в полтора-два раза увеличить выход ванилина в расчете на лигнин и, следовательно, снизить расход щелочи в расчете на получаемый ванилин [Тарабанько В.Е., Коропачинская Н.В. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. // Химия растительного сырья. 2003. №1. С.5-25.].
Задачей заявляемого изобретения является удешевление продукта за счет сокращения расхода щелочи и улучшение экологичности процесса за счет применения ферментативного лигнина в процессе окисления последнего в ванилин.
Поставленная задача достигается тем, что в способе получения ванилина каталитическим окислением ферментативных лигнинов хвойных пород в водно-щелочной среде при повышенных температурах и давлении согласно изобретению процесс проводят при непрерывной подаче щелочи в реактор в течение 5-150 мин в присутствии катализаторов на основе гидроксида меди.
Общие признаки заявляемого изобретения и прототипа - получение ванилина окислением кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.%, в водно-щелочной среде при повышенных температурах и давлении.
Отличительные признаки заявляемого изобретения состоят в проведении процесса окисления при непрерывной подаче щелочи в реактор в течение 5-150 мин в присутствии катализаторов на основе гидроксида меди. В прототипе же щелочь подается в начальный момент времени, а процесс проводят без катализатора.
Основной технический результат заявляемого изобретения заключается в сокращении расхода щелочи в расчете на килограмм полученного ванилина с 12-23 кг в известных способах до 7-9 кг в заявляемом способе. Этот технический результат принципиально улучшает экономику процесса получения ванилина из лигнинов.
Второй технический результат заявляемого изобретения заключается в сокращении расхода ферментативного лигнина в расчете на килограмм полученного ванилина с 11-15 кг до 6-10 кг. Этот технический результат сокращает количество органических веществ, образующихся в качестве побочных продуктов, в сточных водах и улучшает экологичность процесса.
Названные отличительные признаки обуславливают достижение технических результатов заявляемого изобретения по следующим причинам. При полной загрузке щелочи в реактор перед началом процесса окисления щелочь в реакционной массе оказывается в большом избытке по сравнению с необходимой для окисления. Концентрация щелочи в растворе - фактор, сильно ускоряющий окисление лигнинов, т.к. диссоциированные под действием щелочи фенольные группы (фенолят-анионы) окисляются намного быстрее недиссоциированных фенолов. В результате при высокой концентрации щелочи в растворе окисление протекает в диффузионном режиме, т.е. скорость окисления определяется интенсивностью перемешивания. Известно, что в диффузионном режиме выход ванилина оказывается ниже по сравнению с процессом, протекающим в кинетическом режиме [Тарабанько В.Е., Коропачинская Н.В. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. // Химия растительного сырья. 2003. №1. С.5-25]. При непрерывной подаче щелочи в раствор скорость реакции окисления определяется скоростью подачи щелочи, таким образом, снижая скорость подачи щелочи, можно перевести процесс из диффузионного режима в кинетический.
Таким образом, переход от загрузки всей щелочи в реактор к режиму ее непрерывной подачи переводит процесс из диффузионного режима в кинетический и, следовательно, увеличивает выход ванилина в расчете на загруженные лигнин и щелочь, т.е. снижает расходы этих реагентов в процессе.
Второй отличительный признак заявляемого изобретения - применение катализаторов на основе гидроксида меди - также связан с техническим результатом, ростом выхода ванилина в расчете на лигнин. Известно, что такие катализаторы увеличивают выход ванилина в полтора-два раза в условиях полной загрузки щелочи в реактор перед началом окисления, поэтому наблюдаемый рост выхода в условиях непрерывной подачи щелочи частично обусловлен добавками катализатора.
Следовательно, технические результаты и отличительные признаки заявляемого способа находятся в причинно-следственной связи друг с другом. Способ подтверждается конкретными примерами.
Пример 1. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 65 мас.%.
В реактор объемом 1 литр с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 20 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 12,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 10,8 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 12,2 кг.
Пример 2 (прототип). Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 65 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды и 100 мл 40%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин поддерживали рабочую температуру в реакторе 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 8,2 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 7,0 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 24,4 кг.
Пример 3. Для проведения эксперимента использовали сгнившую пестрой гнилью сосновую древесину с содержанием лигнина в субстрате 40 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 150 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 20 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 6,8 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 5,8 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 14,7 кг.
Пример 4. Для проведения эксперимента использовали сгнившую еловую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 85 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 10,9 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 14,5 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 6,4 кг.
Пример 5. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины, с содержанием лигнина 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 0,63 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 5 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 25 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Концентрация B в реакционной массе составила 7,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 6,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 13,0 кг.
Пример 6. Для проведения эксперимента использовали пихтовую древесину, гидролизованную ферментативным препаратом Целлолюкс-F (Сиббиофарм, г.Бердск) с содержанием лигнина в субстрате 70 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 8,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 11,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 8,1 кг.
Пример 7. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «Целлолюкс-А» (Сиббиофарм, г.Бердск), «BrewZyme BGX» ("Polfa Tarchomin Pharmaceutical Works S.A.", Польша) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 5,4%, 47,3% и 47,3%. Содержание лигнина в субстрате 70 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 8,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 11,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 7,9 кг.
Пример 8. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины, с содержанием лигнина 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 8,0 г субстрата, 100 мл воды, 12,52 г пятиводного сульфата меди и 20 мл 8%-ного раствора NaOH. Реактор нагревали до 110°C, подавали воздух до рабочего давления 0,2 МПа и в течение 120 мин дозирующим насосом подавали 80 мл 8% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 60 мин, поддерживая рабочую температуру 110°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 4,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 11,7 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 8,5 кг.
Пример 9. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «Целлолюкс-А» (Сиббиофарм, г.Бердск) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 10,3% и 89,7%. Содержание лигнина в субстрате 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 8%-ного раствора NaOH. Реактор нагревали до 180°C, подавали воздух до рабочего давления 3,0 МПа и в течение 10 мин дозирующим насосом подавали 80 мл 8% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 5 мин, поддерживая рабочую температуру 180°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 6,78 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 9,0 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 5,9 кг.
Пример 10. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «BrewZyme BGX» ("Polfa Tarchomin Pharmaceutical Works S.A.", Польша) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 50% и 50%. Содержание лигнина в субстрате 67 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 40,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 30%-ного раствора NaOH. Реактор нагревали до 130°C, подавали воздух до рабочего давления 2,0 МПа и в течение 90 мин дозирующим насосом подавали 80 мл 30% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 30 мин, поддерживая рабочую температуру 130°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 10,9 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 5,45 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 13,7 кг.

Claims (1)

  1. Способ получения ванилина окислением кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении, отличающийся тем, что процесс проводят в присутствии катализаторов на основе гидроксида меди при непрерывной подаче раствора щелочи в реактор в течение 5-150 минут.
RU2013109671/04A 2013-03-04 2013-03-04 Способ получения ванилина RU2519550C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013109671/04A RU2519550C1 (ru) 2013-03-04 2013-03-04 Способ получения ванилина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013109671/04A RU2519550C1 (ru) 2013-03-04 2013-03-04 Способ получения ванилина

Publications (1)

Publication Number Publication Date
RU2519550C1 true RU2519550C1 (ru) 2014-06-10

Family

ID=51216753

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013109671/04A RU2519550C1 (ru) 2013-03-04 2013-03-04 Способ получения ванилина

Country Status (1)

Country Link
RU (1) RU2519550C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671161C1 (ru) * 2017-11-27 2018-10-29 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ химической переработки древесины

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578246B1 (fr) * 1985-03-01 1989-07-21 Yhtyneet Paperitehtaat Oy Procede de preparation de la vanilline
RU2059599C1 (ru) * 1993-05-25 1996-05-10 Институт химии природного органического сырья СО РАН Способ получения ванилина из лигнинсодержащего сырья

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578246B1 (fr) * 1985-03-01 1989-07-21 Yhtyneet Paperitehtaat Oy Procede de preparation de la vanilline
RU2059599C1 (ru) * 1993-05-25 1996-05-10 Институт химии природного органического сырья СО РАН Способ получения ванилина из лигнинсодержащего сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Н.В. Коропачинская и др. Каталитическое окисление березовой древесины (Betula Pendula Roth.) кислородом в сиреневый альдегид и ванилин. Химия растительного сырья, 2003, N2, 9-13. В.Е. Тарабанько и др. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. Химия растительного сырья, 2003, N1, 5-25. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671161C1 (ru) * 2017-11-27 2018-10-29 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ химической переработки древесины

Similar Documents

Publication Publication Date Title
Yan et al. Hydrothermal conversion of carbohydrate biomass to lactic acid
CO5880297A1 (es) Proceso para la produccion de etanol a partir de materias lignocelulosicas por via enzimatica
KR20150116429A (ko) 버섯재배 후의 폐배지 또는 폐목재를 활용한 연료용 펠릿 제조방법
KR20150023187A (ko) 버섯재배 후의 폐배지 또는 폐목재를 활용한 연료용 펠릿 제조방법
JP2013014737A (ja) バイオマスから高発熱燃料と高性能生物育成剤を得る方法
Alunga et al. Catalytic oxidation of lignin–acetoderivatives: a potential new recovery route for value-added aromatic aldehydes from acetoderivatives
Wang et al. Ca (OH) 2 induced a controlled-release catalytic system for the efficient conversion of high-concentration glucose to lactic acid
Pleissner et al. Green chemistry and its contribution to industrial biotechnology
Baig et al. Novel ozonation technique to delignify wheat straw for biofuel production
RU2519550C1 (ru) Способ получения ванилина
ZA202307576B (en) Method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid
CN108947783B (zh) 一种钼催化木质素氧化降解为芳香单体的方法
Cui et al. Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals
Fiorani et al. Advancements and complexities in the conversion of lignocellulose into chemicals and materials
CN104045545A (zh) 一种负载型催化剂催化甘油生产乳酸的方法
CN106573884B (zh) 处理生物质以生产用于生物燃料的物质的改进方法
CN104311405A (zh) 一种苯甲醛的制备方法
RU2631508C1 (ru) Способ получения ванилина окислением лигнинсодержащего древесного сырья
RU2515319C2 (ru) Способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты)
CN205361271U (zh) 一种催化剂加料系统
RU2488445C1 (ru) Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты)
RU2466989C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА n-ЦИМОЛА
CN101792371A (zh) 一种催化合成对乙基苯酚的方法
CN105693469A (zh) 利用金属钠制备甲醇钠的生产工艺
CN113519556B (zh) 一种木质素过硫酸盐氧化制备植物生长促进剂的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150305