RU2519550C1 - Способ получения ванилина - Google Patents
Способ получения ванилина Download PDFInfo
- Publication number
- RU2519550C1 RU2519550C1 RU2013109671/04A RU2013109671A RU2519550C1 RU 2519550 C1 RU2519550 C1 RU 2519550C1 RU 2013109671/04 A RU2013109671/04 A RU 2013109671/04A RU 2013109671 A RU2013109671 A RU 2013109671A RU 2519550 C1 RU2519550 C1 RU 2519550C1
- Authority
- RU
- Russia
- Prior art keywords
- vanillin
- reactor
- alkali
- lignin
- wood
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении. При этом процесс проводят в присутствии катализаторов на основе гидроксида меди при непрерывной подаче раствора щелочи в реактор в течение 5-150 минут. Способ позволяет сократить расход щелочи в расчете на килограмм полученного ванилина, а также расход ферментативного лигнина, что сокращает количество органических веществ, образующихся в качестве побочных продуктов, в сточных водах и улучшает экологичность процесса. 10 пр.
Description
Заявляемое изобретение относится к способам получения ванилина из лигнинсодержащего сырья и предназначено для усовершенствования процессов каталитического окисления лигнинов. Ванилин (В, 4-гидрокси-3-метоксибензальдегид) широко используется в пищевой, парфюмерно-косметической и фармацевтической отраслях промышленности.
Известен способ получения ванилина путем окисления водного раствора лигносульфонатов в щелочной среде под давлением воздуха при температуре 160-170°C (433-443 К) [Камалдина О.Д., Массов Я.А. Получение ванилина из лигносульфонатов. // М.: ЦБТИ ЦИНИС. 1959. 38 с]. Согласно известному способу реакционная смесь содержит 300 г на литр сухих веществ щелока и 100 г/л натриевой щелочи. Окисление при 160°C в течение 3 ч дает раствор с содержанием ванилина 7-8 г/л (2,3-2,7 маc.% в расчете на субстрат или 6-7 мас.% в расчете на лигнин лигносульфонатов).
Недостатки известного способа заключаются в высоком расходе реагентов, щелочи (12-14 кг на кг ванилина) и лигносульфонатов (35-40 кг на кг ванилина). Названные недостатки обусловлены природой лигносульфонатов, их конденсированной структурой, обусловленной жесткими условиями делигнификации древесины.
Известен способ получения ванилина из опилок хвойных пород древесины путем их каталитического окисления в щелочной среде кислородом [Эпштейн Р.Б. Получение ванилина из древесины. // Сб. тр. Укр. НИИ пищевой промышленности. 1959. Т.2. С.201-213].
Недостатком известного способа является невысокий выход целевого продукта в расчете на сырье, 1-3 мас.%. Низкий выход ванилина по известному способу обусловлен невысоким содержанием лигнина в древесине - около 20-28%.
Наиболее близким по существу к заявляемому способу является способ получения ванилина (RU 2059599, опубл. 10.05.1996) путем некаталитического окисления кислородом воздуха при повышенных температурах и давлении в водно-щелочном растворе лигнина, полученном ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.%. Согласно известному способу вся щелочь вводится в реактор до начала эксперимента.
Недостатки известного способа заключаются в высоком расходе реагентов, щелочи (23-24 кг на кг ванилина) и ферментативного лигнина (11-15 кг на кг ванилина). Названные недостатки обусловлены тем, что процесс протекает в значительной степени в диффузионной области и поэтому выход ванилина мал по сравнению с максимально возможным в кинетической области, и следовательно, расходы щелочи и лигнина оказываются большими по сравнению с минимально возможными. Еще одна причина, обусловливающая эти недостатки, состоит в отсутствии катализаторов окисления, которые позволяют в полтора-два раза увеличить выход ванилина в расчете на лигнин и, следовательно, снизить расход щелочи в расчете на получаемый ванилин [Тарабанько В.Е., Коропачинская Н.В. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. // Химия растительного сырья. 2003. №1. С.5-25.].
Задачей заявляемого изобретения является удешевление продукта за счет сокращения расхода щелочи и улучшение экологичности процесса за счет применения ферментативного лигнина в процессе окисления последнего в ванилин.
Поставленная задача достигается тем, что в способе получения ванилина каталитическим окислением ферментативных лигнинов хвойных пород в водно-щелочной среде при повышенных температурах и давлении согласно изобретению процесс проводят при непрерывной подаче щелочи в реактор в течение 5-150 мин в присутствии катализаторов на основе гидроксида меди.
Общие признаки заявляемого изобретения и прототипа - получение ванилина окислением кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.%, в водно-щелочной среде при повышенных температурах и давлении.
Отличительные признаки заявляемого изобретения состоят в проведении процесса окисления при непрерывной подаче щелочи в реактор в течение 5-150 мин в присутствии катализаторов на основе гидроксида меди. В прототипе же щелочь подается в начальный момент времени, а процесс проводят без катализатора.
Основной технический результат заявляемого изобретения заключается в сокращении расхода щелочи в расчете на килограмм полученного ванилина с 12-23 кг в известных способах до 7-9 кг в заявляемом способе. Этот технический результат принципиально улучшает экономику процесса получения ванилина из лигнинов.
Второй технический результат заявляемого изобретения заключается в сокращении расхода ферментативного лигнина в расчете на килограмм полученного ванилина с 11-15 кг до 6-10 кг. Этот технический результат сокращает количество органических веществ, образующихся в качестве побочных продуктов, в сточных водах и улучшает экологичность процесса.
Названные отличительные признаки обуславливают достижение технических результатов заявляемого изобретения по следующим причинам. При полной загрузке щелочи в реактор перед началом процесса окисления щелочь в реакционной массе оказывается в большом избытке по сравнению с необходимой для окисления. Концентрация щелочи в растворе - фактор, сильно ускоряющий окисление лигнинов, т.к. диссоциированные под действием щелочи фенольные группы (фенолят-анионы) окисляются намного быстрее недиссоциированных фенолов. В результате при высокой концентрации щелочи в растворе окисление протекает в диффузионном режиме, т.е. скорость окисления определяется интенсивностью перемешивания. Известно, что в диффузионном режиме выход ванилина оказывается ниже по сравнению с процессом, протекающим в кинетическом режиме [Тарабанько В.Е., Коропачинская Н.В. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. // Химия растительного сырья. 2003. №1. С.5-25]. При непрерывной подаче щелочи в раствор скорость реакции окисления определяется скоростью подачи щелочи, таким образом, снижая скорость подачи щелочи, можно перевести процесс из диффузионного режима в кинетический.
Таким образом, переход от загрузки всей щелочи в реактор к режиму ее непрерывной подачи переводит процесс из диффузионного режима в кинетический и, следовательно, увеличивает выход ванилина в расчете на загруженные лигнин и щелочь, т.е. снижает расходы этих реагентов в процессе.
Второй отличительный признак заявляемого изобретения - применение катализаторов на основе гидроксида меди - также связан с техническим результатом, ростом выхода ванилина в расчете на лигнин. Известно, что такие катализаторы увеличивают выход ванилина в полтора-два раза в условиях полной загрузки щелочи в реактор перед началом окисления, поэтому наблюдаемый рост выхода в условиях непрерывной подачи щелочи частично обусловлен добавками катализатора.
Следовательно, технические результаты и отличительные признаки заявляемого способа находятся в причинно-следственной связи друг с другом. Способ подтверждается конкретными примерами.
Пример 1. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 65 мас.%.
В реактор объемом 1 литр с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 20 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 12,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 10,8 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 12,2 кг.
Пример 2 (прототип). Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 65 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды и 100 мл 40%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин поддерживали рабочую температуру в реакторе 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 8,2 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 7,0 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 24,4 кг.
Пример 3. Для проведения эксперимента использовали сгнившую пестрой гнилью сосновую древесину с содержанием лигнина в субстрате 40 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 150 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 20 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 6,8 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 5,8 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 14,7 кг.
Пример 4. Для проведения эксперимента использовали сгнившую еловую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины. Содержание лигнина в субстрате 85 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 3,13 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 10,9 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 14,5 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 6,4 кг.
Пример 5. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины, с содержанием лигнина 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 23,3 г субстрата, 100 мл воды, 0,63 г пятиводного сульфата меди и 20 мл 20%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 5 мин дозирующим насосом подавали 80 мл 20% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 25 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Концентрация B в реакционной массе составила 7,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 6,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 13,0 кг.
Пример 6. Для проведения эксперимента использовали пихтовую древесину, гидролизованную ферментативным препаратом Целлолюкс-F (Сиббиофарм, г.Бердск) с содержанием лигнина в субстрате 70 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 8,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 11,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 8,1 кг.
Пример 7. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «Целлолюкс-А» (Сиббиофарм, г.Бердск), «BrewZyme BGX» ("Polfa Tarchomin Pharmaceutical Works S.A.", Польша) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 5,4%, 47,3% и 47,3%. Содержание лигнина в субстрате 70 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 14%-ного раствора NaOH. Реактор нагревали до 160°C, подавали воздух до рабочего давления 2,0 МПа и в течение 30 мин дозирующим насосом подавали 80 мл 14% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 10 мин, поддерживая рабочую температуру 160°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 8,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 11,6 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 7,9 кг.
Пример 8. Для проведения эксперимента использовали сгнившую сосновую древесину темно-бурого цвета, легко разминающуюся пальцами, сохранившую видимую структуру древесины, с содержанием лигнина 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 8,0 г субстрата, 100 мл воды, 12,52 г пятиводного сульфата меди и 20 мл 8%-ного раствора NaOH. Реактор нагревали до 110°C, подавали воздух до рабочего давления 0,2 МПа и в течение 120 мин дозирующим насосом подавали 80 мл 8% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 60 мин, поддерживая рабочую температуру 110°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 4,7 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу сгнившей сосновой древесины - 11,7 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 8,5 кг.
Пример 9. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «Целлолюкс-А» (Сиббиофарм, г.Бердск) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 10,3% и 89,7%. Содержание лигнина в субстрате 90 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 15,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 8%-ного раствора NaOH. Реактор нагревали до 180°C, подавали воздух до рабочего давления 3,0 МПа и в течение 10 мин дозирующим насосом подавали 80 мл 8% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 5 мин, поддерживая рабочую температуру 180°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация B в реакционной массе составила 6,78 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 9,0 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 5,9 кг.
Пример 10. Для проведения эксперимента использовали сосновую древесину, гидролизованную мультиэнзимной композицией из препаратов «BrewZyme BGX» ("Polfa Tarchomin Pharmaceutical Works S.A.", Польша) и «Rapidase CR» («DSM Food Specialties Beverage Ingredients», Нидерланды) в весовом соотношении 50% и 50%. Содержание лигнина в субстрате 67 мас.%.
В реактор с вращающейся магнитной мешалкой загружали 40,0 г субстрата, 100 мл воды, 6,26 г пятиводного сульфата меди и 20 мл 30%-ного раствора NaOH. Реактор нагревали до 130°C, подавали воздух до рабочего давления 2,0 МПа и в течение 90 мин дозирующим насосом подавали 80 мл 30% раствора щелочи. Реактор продолжали нагревать с перемешиванием еще 30 мин, поддерживая рабочую температуру 130°C. Затем реактор охлаждали, содержимое нейтрализовали 30%-ной серной кислотой до pH 3-4.
Ванилин определяли исчерпывающей экстракцией хлороформом с последующим анализом методом ГЖХ. Концентрация В в реакционной массе составила 10,9 г/л в пересчете на конечный объем реакционной массы. Выход ванилина в расчете на массу лигниносодержащего субстрата - 5,45 мас.%, расход щелочи в расчете на килограмм образовавшегося ванилина - 13,7 кг.
Claims (1)
- Способ получения ванилина окислением кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины, пораженной бурыми или пестрыми гнилями, с содержанием лигнина 40-90 мас.% в водно-щелочной среде при повышенных температурах и давлении, отличающийся тем, что процесс проводят в присутствии катализаторов на основе гидроксида меди при непрерывной подаче раствора щелочи в реактор в течение 5-150 минут.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013109671/04A RU2519550C1 (ru) | 2013-03-04 | 2013-03-04 | Способ получения ванилина |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013109671/04A RU2519550C1 (ru) | 2013-03-04 | 2013-03-04 | Способ получения ванилина |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2519550C1 true RU2519550C1 (ru) | 2014-06-10 |
Family
ID=51216753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013109671/04A RU2519550C1 (ru) | 2013-03-04 | 2013-03-04 | Способ получения ванилина |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2519550C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2671161C1 (ru) * | 2017-11-27 | 2018-10-29 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) | Способ химической переработки древесины |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2578246B1 (fr) * | 1985-03-01 | 1989-07-21 | Yhtyneet Paperitehtaat Oy | Procede de preparation de la vanilline |
RU2059599C1 (ru) * | 1993-05-25 | 1996-05-10 | Институт химии природного органического сырья СО РАН | Способ получения ванилина из лигнинсодержащего сырья |
-
2013
- 2013-03-04 RU RU2013109671/04A patent/RU2519550C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2578246B1 (fr) * | 1985-03-01 | 1989-07-21 | Yhtyneet Paperitehtaat Oy | Procede de preparation de la vanilline |
RU2059599C1 (ru) * | 1993-05-25 | 1996-05-10 | Институт химии природного органического сырья СО РАН | Способ получения ванилина из лигнинсодержащего сырья |
Non-Patent Citations (1)
Title |
---|
Н.В. Коропачинская и др. Каталитическое окисление березовой древесины (Betula Pendula Roth.) кислородом в сиреневый альдегид и ванилин. Химия растительного сырья, 2003, N2, 9-13. В.Е. Тарабанько и др. Каталитические методы получения ароматических альдегидов из лигнинсодержащего сырья. Химия растительного сырья, 2003, N1, 5-25. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2671161C1 (ru) * | 2017-11-27 | 2018-10-29 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) | Способ химической переработки древесины |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Hydrothermal conversion of carbohydrate biomass to lactic acid | |
CO5880297A1 (es) | Proceso para la produccion de etanol a partir de materias lignocelulosicas por via enzimatica | |
KR20150116429A (ko) | 버섯재배 후의 폐배지 또는 폐목재를 활용한 연료용 펠릿 제조방법 | |
KR20150023187A (ko) | 버섯재배 후의 폐배지 또는 폐목재를 활용한 연료용 펠릿 제조방법 | |
JP2013014737A (ja) | バイオマスから高発熱燃料と高性能生物育成剤を得る方法 | |
Alunga et al. | Catalytic oxidation of lignin–acetoderivatives: a potential new recovery route for value-added aromatic aldehydes from acetoderivatives | |
Wang et al. | Ca (OH) 2 induced a controlled-release catalytic system for the efficient conversion of high-concentration glucose to lactic acid | |
Pleissner et al. | Green chemistry and its contribution to industrial biotechnology | |
Baig et al. | Novel ozonation technique to delignify wheat straw for biofuel production | |
RU2519550C1 (ru) | Способ получения ванилина | |
ZA202307576B (en) | Method for preparing glycolic acid and methyl glycolate through hydrolysis of methyl methoxyacetate and methoxyacetic acid | |
CN108947783B (zh) | 一种钼催化木质素氧化降解为芳香单体的方法 | |
Cui et al. | Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals | |
Fiorani et al. | Advancements and complexities in the conversion of lignocellulose into chemicals and materials | |
CN104045545A (zh) | 一种负载型催化剂催化甘油生产乳酸的方法 | |
CN106573884B (zh) | 处理生物质以生产用于生物燃料的物质的改进方法 | |
CN104311405A (zh) | 一种苯甲醛的制备方法 | |
RU2631508C1 (ru) | Способ получения ванилина окислением лигнинсодержащего древесного сырья | |
RU2515319C2 (ru) | Способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) | |
CN205361271U (zh) | 一种催化剂加料系统 | |
RU2488445C1 (ru) | Синтез многофункционального катализатора окислительного крекинга органического сырья и способ жидкофазного низкотемпературного окислительного крекинга органического сырья (варианты) | |
RU2466989C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ГИДРОПЕРОКСИДА n-ЦИМОЛА | |
CN101792371A (zh) | 一种催化合成对乙基苯酚的方法 | |
CN105693469A (zh) | 利用金属钠制备甲醇钠的生产工艺 | |
CN113519556B (zh) | 一种木质素过硫酸盐氧化制备植物生长促进剂的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150305 |