RU2514641C1 - Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления - Google Patents

Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления Download PDF

Info

Publication number
RU2514641C1
RU2514641C1 RU2012149738/13A RU2012149738A RU2514641C1 RU 2514641 C1 RU2514641 C1 RU 2514641C1 RU 2012149738/13 A RU2012149738/13 A RU 2012149738/13A RU 2012149738 A RU2012149738 A RU 2012149738A RU 2514641 C1 RU2514641 C1 RU 2514641C1
Authority
RU
Russia
Prior art keywords
plants
genes
transcription
chloride
rapeseed
Prior art date
Application number
RU2012149738/13A
Other languages
English (en)
Inventor
Марина Васильевна Ефимова
Виктор Васильевич Кузнецов
Владимир Васильевич Кузнецов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority to RU2012149738/13A priority Critical patent/RU2514641C1/ru
Application granted granted Critical
Publication of RU2514641C1 publication Critical patent/RU2514641C1/ru

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Изобретение относится к области биотехнологии и сельского хозяйства. В способе растения обрабатывают раствором биологически активного вещества, в качестве которого используют 24-эпибрассинолид. При этом через 3 недели культивирования растений рапса на жидкой питательной среде последующие две недели растения подвергают хлоридному засолению 125 мМ с однократным внесением в раствор 24-эпибрассинолида в концентрации 10-8 М в начале засоления. Способ позволяет повысить устойчивость растений рапса к повреждающему действию интенсивного хлоридного засоления и экологическую безопасность производимой продукции. 4 ил., 1 табл., 1 пр.

Description

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве при химической защите растений рапса на открытом грунте или в сооружениях защищенного грунта.
Рапс (Brassica napus L.) является важным источником для получения растительного масла и кормового белка, в последнее время растение активно используют для получения биотоплива. По пищевым и кормовым достоинствам рапс превосходит многие сельскохозяйственные культуры. Рапс является одной из перспективных масличных культур, которую можно возделывать практически во всем мире. Значительные экономические потери могут вызывать абиотические стрессоры, особое место среди них занимает засоление. Общая площадь засоленных территорий в мире, по данным Всемирной организации продовольствия и сельского хозяйства OOH, превышает 800 миллионов гектаров (2005 г.). Засоление почв приводит к снижению продуктивности агро- и биоценозов, падению биоразнообразия и, как следствие, к значительным экономическим потерям.
С целью сохранения продуктивности агроценозов в аридных регионах важное значение имеет повышение устойчивости растений к повреждающему действию интенсивного засоления, что является одной из фундаментальных проблем современной биологии. Решение этой проблемы необходимо для разработки технологии защиты растений от повреждающего действия неблагоприятных факторов среды (Kuznetsov V1.V., Shevyakova N.I., 2011).
Известно, что тяжелые металлы (кадмий, медь и никель) вызывают дифференциальную регуляцию скорости транскрипции пластидных генов проростков ячменя (Зарипова Н.Р., Зубо Я.О., Кравцов Я.К. и др. Доклады АН. Общая биология. 2008. Т.423. №1. С.124-128). Показано, что скорость транскрипции генов рибосомных белков (rp216 и rpl23-rpl2) и гена, кодирующего субъединицу 1 пластохинонредуктазы (ndhA) увеличивалась в присутствии анализируемых тяжелых металлов. Транскрипционная активность ряда других генов (psaB, atpH и rrn16) снижалась. Длительное воздействие тяжелых металлов снижало накопление хлорофилла в проростках ячменя, что могло быть косвенной причиной повреждающего стрессорного воздействия металлов на фотосинтез.
Недостатком способа-аналога является невозможность предотвращения негативного влияния тяжелых металлов на пластидный геном растений.
Известны способы повышения солеустойчивости растений окисленным крахмалсодержащим продуктом. Семена свеклы, рапса, сафлоры и сорго замачивали в водном растворе пероксида водорода в концентрации 5·10-4-1·10-3 М (1,7·10-2-3,4·10-1 г/л) с последующим подсушиванием, затем семена обрабатывали полусухим методом 10-20%-ным водным раствором окисленного крахмалсодержащего продукта (ОКР), полученного окислением крахмалсодержащего сырья в щелочном растворе в присутствии медного катализатора, и подсушивали до сыпучего состояния (Пат. RU 2445759. Способ повышения солеустойчивости растений (варианты), 2012, принято за прототип).
Среди недостатков способа-прототипа можно отметить то, что используемая концентрация действующего вещества - окисленного крахмалсодержащего продукта - очень высока - 10-20%, что экономически не выгодно. Анализируемая концентрация NaCl мала (от 85 мМ до 120 мМ). В случае с семенами рапса хлоридное засоление составляло 100 мМ, данная концентрация обычно не вызывает выраженного повреждения и, соответственно, не может вызывать значительные экономические потери. Кроме того, способ-прототип учитывает только процент выживших растений, не принимая в расчет физиологическое состояние растений.
Задачей изобретения является разработка экономичного способа повышения устойчивости растений рапса к повреждающему действию интенсивного хлоридного засоления.
Поставленная задача решается тем, что растения рапса культивируют на жидкой питательной среде в течение трех недель, последующие две недели растения подвергают хлоридному засолению 125 мМ с однократным внесением в раствор в начале засоления 24-эпибрассинолида в концентрации 10-8 М.
Сущность изобретения состоит в стабилизации транскрипции хлоропластных генов у растений рапса в условиях хлоридного засоления экологически чистым фитогормоном - 24-эпибрассинолидом. После трехнедельного культивирования растений рапса на жидкой питательной среде Хогланда-Снайдер в раствор вносят хлоридную соль и последующие две недели выращивают растения в условиях хлоридного засолении, причем в начале хлоридного засоления растения подвергают обработке 24-эпибрассинолидом (10-8 М). Протекторное действие гормона выражается в снижении отрицательного воздействия засоления на фотосинтетический аппарат растений.
Способ по изобретению допускает более высокую засоленность на растениях рапса. Использованная в опытах концентрация NaCl на 25% выше концентрации по способу-прототипу, в то время как концентрация вещества с выраженным протекторным действием (эпибрассинолида) мала и составляет 10-8 М, что отражает преимущества и экономическую выгоду предложенного способа.
Эпибрассинолид является одним из брассиностероидов, обладающих высокой биологической активностью. Активное использование брассиностероидов в качестве принципиально новых препаратов сельскохозяйственного назначения обусловлено их экологической безопасностью и способностью снижать накопление нитратов, тяжелых металлов и радионуклидов. Как показано нашими предварительными исследованиями, на уровне целого растения брассиностероиды способствуют повышению фотосинтетического потенциала, усилению роста и урожайности сельскохозяйственных культур (Khripach V.A., Zhabinskii V.N., Karnachuk R.A., 2004; Efimova M.V. et al., 2012a; Efimova M.V. et al., 2012b). В отличие от абсцизовой кислоты и этилена механизмы стресс-протекторного действия стероидных фитогормонов остаются в настоящее время практически неисследованными (Gomes М.М.А., 2011).
Активность транскрипции пластидных генов в растениях рапса иллюстрируется рисунками.
На фиг.1 показана радиограмма радиоавтографа эксперимента с хлоропластами растений рапса и схема нанесения ДНК-зондов исследованных генов на мембрану.
На фиг.2-4 показаны гистограммы, полученные при обработке данных радиоавтографов.
Реализация способа показана на примере, иллюстрирующем способность фитогормона эпибрассинолида (ЭБЛ) снимать негативное воздействие засоления на физиологические показатели рапса и транскрипцию ключевых генов фотосинтеза.
Пример. Опыты проведены на листьях 3-5 яруса Brassica napus L. сорта Вестар. Растения рапса в возрасте 20 дней подвергали 2-недельному хлоридному засолению (125 мМ NaCl). Как показал анализ результатов (опыт и контроль), обработка растений рапса раствором ЭБЛ (10-8 М) способствовала стабилизации транскрипций некоторых пластидных генов. Данные изменения на молекулярном уровне способствуют снижению отрицательного влияния засоления на фотосинтетический аппарат растений и в конечном итоге повышению продуктивности растений.
С помощью run-on анализа была изучена скорость транскрипции ключевых фотосинтетических генов рапса при хлоридном засолении и под действием экзогенного эпибрассинолида (на фиг.2-4 обозначены как NaCl и ЭБЛ соответственно). Основой транскрипционной системы служили лизированные хлоропласты, выделенные из листьев 3-5 ярусов растений рапса. В ходе реакции транскрипции во вновь синтезированные молекулы РНК включали радиоактивно-меченый уридин-5'-монофосфат (α32Р-уридин-5'-трифосфат использовали в ходе реакции синтеза РНК), что позволило в дальнейшем анализировать только вновь синтезированные транскрипты. Синтез меченных транскриптов в хлоропластном лизате, ДНК-РНК гибридизацию и экспозицию нейлоновой мембраны с рентгеновской пленкой проводили согласно методике, предложенной Зубо и Кузнецовым (Зубо Я.О., Кузнецов В.В., 2008). После гибридизации радиоактивные сигналы сканировали и оцифровывали, используя Phosphorimager Typhoon Trio (сканер Typhoon TRIO+Variable Mode Imager с пакетом Typhoon Scaner Control) и ImagerQuant TL Control Centre («GE Healthcare)), США).
Типичные радиоавтографы опыта, полученные в ходе run-on эксперимента с хлоропластами листьев рапса, и схема нанесения фрагментов выбранных генов на мембрану показаны на фиг.1.
В ходе исследования была проанализирована транскрипция 12 хлоропластных генов, относящихся к функционально-различным группам генов пластома (см. таблицу). Прежде всего - это гены белков фотосинтетического аппарата, продукты которых выполняют первостепенную роль для реализации фотосинтеза - гены фотосистемы I - psa (psaA и psaB), фотосистемы II - psb (psbA, psbD и psbK), ген большой субъединицы РБФК (rbcL), АТФ синтетазного комплекса - atp (atpB) и субъединица F НАДФН пластохиноноксидоредуктазы - ndhF. Среди генов т.н. «домашнего хозяйства» была изучена транскрипция гена, кодирующего β субъединицу РНК-полимеразы бактериального типа (rpoB), гены 16S и 23S рибосомной РНК (rrn16 и rrn23) и гены тРНК-Глу и тРНК-Тир (trnE-Y).
На фиг.2 показано отношение интенсивности транскрипции пластидных генов листьев рапса, обработанных NaCl, к интенсивности транскрипции генов контрольных листьев. Засоление изменяло экспрессию функционально-различных групп пластидных генов. Активность транскрипции ряда фотосинтетических (psaA и psbD) и рибосомных генов (rrn16, rrn23 и trnEY) увеличивалась. Транскрипция других генов (psaB, psbA, psbK и atpB), выполняющих первостепенную роль для реализации фотосинтеза, снижалась.
Инкубация на растворе с ЭБЛ вызывала достоверное (в 2-4 раза) увеличение транскрипции 10 исследуемых пластидных генов (см. фиг.3). Среди них гены белков фотосинтетического аппарата - А1 и А2 апопротеины фотосистемы I (psaA и psaB), полипептид реакционного центра (psbD) и К апопротеин (psbK) фотосистемы II, ген, кодирующий большую субъединицу РБФК (rbcL), F субъединицу НАДН-пластохинон оксидоредуктазы (ndhF) и β-субъединицу АТФ синтазы (atpB). Транскрипция рибосомных генов, кодирующих 16S рРНК, 23S рРНК и тРНК-Глу/тРНК-Тир - rrn16, rrn23 и trnE/trnY соответственно, также увеличивалась под влиянием экзогенного эпибрассинолида.
На фиг.4 показана интенсивность транскрипции генов при одновременном воздействии на растения рапса хлоридного засоления и эпибрассинолида. Отмечена способность гормона снижать негативный эффект хлоридного засоления на транскрипцию пластидного генома. Влияние выражается в стабилизации транскрипции шести генов (2/3 от общего числа дестабилизированных хлоридным засолением генов) - psaA, psbB, psbD, psbK, atpB и trnEY.
Таким образом, экспериментально показано, что экзогенный эпибрассинолид не только повышает активность транскрипции некоторых хлоропластных генов, но и способствует стабилизации транскрипции пластидных генов при засолении. На основе этих результатов предложен способ стабилизации транскрипции генов рапса при хлоридном засолении согласно заявленной формуле изобретения.
Техническим результатом изобретения является повышение устойчивости растений рапса к повреждающему действию интенсивного хлоридного засоления.
Использованные источники
1. Kuznetsov V1.V., Shevyakova N.I. Polyamines and plant adaptation to saline environments / Desert Plants. 2010. Heidelberg, Dordrecht, London, New York: Springer-Verlag. - P.261-298.
2. Зарипова H.P., Зубо Я.О., Кравцов Я.К., Холодова В.П., Кузнецов В.В., Кузнецов Вл.В. Тяжелые металлы вызывают дифференциальную регуляцию транскрипции пластидных генов и блокирование сплайсинга мРНК. Доклады АН. Общая биология. 2008. Т.423. №1. С.124-128.
3. Пат. RU 2445759, Способ повышения солеустойчивости растений (варианты), Апашева Л.М., Комиссаров Г.Г., Сахаров A.M., Сахаров П.А. Опубликовано: 27.03.2012.
4. Khripach V.A., Zhabinskii V.N., Karnachuk R.A. Chemical probes in biology / Science at the interface of brassinosteroids: a new role of steroids as biosignaling molecules. 2004. M.P.Schneider. Ed. Netherlands: Kluwer Academic Publishers. - Vol.129. - P.153-167.- NATO Science Series. 391 p.
5. Efimova M.V., Kusnetsov V.V., Kravtsov A.K., Bartashevich D.A., Karnachuk R.A., Kovtun I.S., Kuznetsov V.V. Expression of plastid genome and development of Arabidopsis thaliana with disturbed synthesis of brassinosteroids // Russian Journal of Plant Physiology. - 2012a. - Vol.59 (1). P.28-34.
6. Efimova M.V., Kusnetsov V.V., Kravtsov A.K., Karnachuk R.A., Khripach V.A., Kuznetsov V.V. Regulation of the transcription of plastid genes in plants by brassinosteroids // Doklady Biological Sciences. - 2012b. - Vol.445 (1). P.272-275.
7. Gomes M.M.A. Physiological effects related to brassinosteroid application in plants / Brassinosteroids: A Class of Plant Hormone. 2011. S. Hayat, A. Ahmad. Eds. Springer Science+Business Media B.V. - P.193-242. p.462.
8. Зубо Я.О., Кузнецов В.В. Применение метода run-on транскрипции для изучения регуляции экспрессии пластидного генома // Физиология растений. - 2008. - Т.55. С.114-122.
9. Bock R. Structure, function, and inheritance of plastid genomes / Cell and Molecular Biology of Plastids. 2007. Bock R. Ed. Springer. - P.29-64.
Способ стабилизации транскрипции пластидных генов…
Характеристика генов (9. Bock R., 2007).
Ген Продукт гена Функции
Гены белков фотосинтетического аппарата
psaA А1 апопротеин ФСI Реакционный центр фотосистемы I
psaB А2 апопротеин ФСI
psbA Полипептид реакционного центра D1 Реакционный центр фотосистемы II
psbD Полипептид реакционного центра D2
psbK К апопротеин ФСII Малый апопротеин, ассоциированный с СР43, участвует в сборке и стабилизации фотосистемы
rbcL Большая субъединица РБФК Фиксация CO2
atpB β-субъединица АТФ синтазы CF1, каталитический сайт
ndhF F-субъединица НАДН-пластохинон оксидоредуктазы Циклический перенос электронов
Гены «домашнего хозяйства»
rrn16 16S pPHK Трансляция, малая рибосомная субъединица
rrn23 23S рРНК Трансляция, большая рибосомная субъединица
trnE/trnY тРНК-Глу и тРНК-Тир Трансляция, биосинтез тетрапирролов
rpoB β-субъединица РНК-полимеразы Транскрипция, пластидная РНК-полимераза (PEP)

Claims (1)

  1. Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления, включающий обработку растений раствором биологически активного вещества, отличающийся тем, что через 3 недели культивирования растений рапса на жидкой питательной среде последующие две недели растения подвергают хлоридному засолению 125 мМ с однократным внесением в раствор 24-эпибрассинолида в концентрации 10-8 М в начале засоления.
RU2012149738/13A 2012-11-21 2012-11-21 Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления RU2514641C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012149738/13A RU2514641C1 (ru) 2012-11-21 2012-11-21 Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012149738/13A RU2514641C1 (ru) 2012-11-21 2012-11-21 Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления

Publications (1)

Publication Number Publication Date
RU2514641C1 true RU2514641C1 (ru) 2014-04-27

Family

ID=50515815

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012149738/13A RU2514641C1 (ru) 2012-11-21 2012-11-21 Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления

Country Status (1)

Country Link
RU (1) RU2514641C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603091C2 (ru) * 2015-03-20 2016-11-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ повышения устойчивости растений рапса к интенсивному хлоридному засолению

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936002A (zh) * 2005-09-19 2007-03-28 中国农业大学 一种分离双向启动子的方法及其应用
RU2445759C1 (ru) * 2010-11-24 2012-03-27 Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН) Способ повышения солеустойчивости растений (варианты)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936002A (zh) * 2005-09-19 2007-03-28 中国农业大学 一种分离双向启动子的方法及其应用
RU2445759C1 (ru) * 2010-11-24 2012-03-27 Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН) Способ повышения солеустойчивости растений (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕФИМОВА М.В. и др. АНАЛИЗ ТРАНСКРИПЦИИ ПЛАСТИДНЫХ ГЕНОВ Hordeum vulgare В ТЕМНОТЕ //Вестник Томского государственного университета. Биология. 2012. N 2 (18). С. 166"170. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603091C2 (ru) * 2015-03-20 2016-11-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ повышения устойчивости растений рапса к интенсивному хлоридному засолению

Similar Documents

Publication Publication Date Title
Zhao et al. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction
Tahiri et al. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances
Liu et al. Functional aspects of early light-induced protein (ELIP) genes from the desiccation-tolerant moss Syntrichia caninervis
CN110004154B (zh) 茶树CsJAZ1基因的应用
JP2018104441A (ja) 寄生性、病原性又は雑草生物系の核酸を含む、前記系の増殖を阻害及び/又は制御するための組成物
Jain et al. Response of foliar application of nitrogen compounds on sugarcane grown under waterlogging stress
CN103014035B (zh) 茎瘤芥抗逆基因及其植物表达载体和构建方法及应用
RU2514641C1 (ru) Способ стабилизации транскрипции хлоропластных генов рапса в условиях хлоридного засоления
CN104818284A (zh) 利用拟南芥的抗逆基因AtGST提高植物的抗逆性
CN105274101B (zh) 马铃薯甲虫TOR基因的RNAi表达载体及其构建方法和应用
CN104328127B (zh) 茎瘤芥抗逆基因BjEFh1及其植物表达载体及应用
CN112175058B (zh) 耐盐相关基因剪切体的克隆、鉴定及其应用
CN105777882B (zh) 一种植物耐逆相关蛋白TaWRKY35及其编码基因与应用
Vimal et al. Plant genotype-microbiome engineering as nature-based solution (NbS) for regeneration of stressed agriculture: A review
RU2515726C1 (ru) Способ повышения устойчивости растений рапса к хлоридному засолению
Kawaguchi et al. Fungal elicitor-induced retardation and its restoration of root growth in tobacco seedlings
CN103243108B (zh) 一种茎瘤芥来源的钙离子结合蛋白及其编码基因与应用
CN107325161A (zh) 一种与耐低氮胁迫和高盐胁迫相关的蛋白及其编码基因与应用
CN104450708B (zh) 一个受高盐和水杨酸诱导的逆转录转座子启动子及其应用
CN103525825B (zh) 一种植物耐锰毒害重要基因ShMDH1的克隆及其应用
RU2460279C1 (ru) Способ регуляции транскрипции хлоропластных генов ячменя (hordeum vulgare)
JP5552706B2 (ja) 藻類由来のマンニトール合成関連遺伝子
CN103468655B (zh) 一种制备转gapdh基因棉花的方法
Azeez et al. Effects of pre-sowing seed treatment on the growth rate of seedlings and the activity of the excretory system of the wheat root in aquatic culture
CN1995358B (zh) 植物种子转化方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181122