RU2514500C1 - Сплав на основе свинца - Google Patents

Сплав на основе свинца Download PDF

Info

Publication number
RU2514500C1
RU2514500C1 RU2013101317/02A RU2013101317A RU2514500C1 RU 2514500 C1 RU2514500 C1 RU 2514500C1 RU 2013101317/02 A RU2013101317/02 A RU 2013101317/02A RU 2013101317 A RU2013101317 A RU 2013101317A RU 2514500 C1 RU2514500 C1 RU 2514500C1
Authority
RU
Russia
Prior art keywords
calcium
alloy
lead
aluminum
down conductors
Prior art date
Application number
RU2013101317/02A
Other languages
English (en)
Inventor
Александр Васильевич Кореляков
Евгений Петрович Хорин
Сергей Николаевич Филинов
Original Assignee
Открытое акционерное общество "Тюменский аккумуляторный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Тюменский аккумуляторный завод" filed Critical Открытое акционерное общество "Тюменский аккумуляторный завод"
Priority to RU2013101317/02A priority Critical patent/RU2514500C1/ru
Application granted granted Critical
Publication of RU2514500C1 publication Critical patent/RU2514500C1/ru

Links

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Изобретение относится к области металлургии, в частности к получению свинцово-кальциевых сплавов, и может быть использовано при производстве свинцовых аккумуляторов. Сплав на основе свинца содержит, мас.%: кальций 0,06-0,1, алюминий более 0,01 - не более 0,019, свинец - остальное. Сплав на основе свинца характеризуется высоким пределом прочности при растяжении за счет уменьшения окисления кальция в процессе изготовления токоотводов аккумулятора. 2 табл., 7 пр.

Description

Изобретение относится к области цветной металлургии, в частности к получению свинцово-кальциевых сплавов, и может быть использовано при производстве свинцовых аккумуляторов.
Известен сплав для изготовления токоотводов свинцового аккумулятора, включающий кальций, алюминий, при этом содержащий кобальт, олово, хром и медь при следующем соотношении компонентов, мас.%: кальций 0,05-0,1; алюминий 0,01-0,05; кобальт 0,1-0,5; олово 0,2-0,5; хром 0,1-0,14; медь 0,03-0,05; свинец - остальное (патент RU 2012623, публ.15.05.1994).
Недостатком известного сплава является произвольное, не строго определенное, отношение содержаний алюминия и кальция в сплаве, приводящее в процессе плавления сплава и литья токоотводов к следующим негативным последствиям:
- при минимальных содержаниях в сплаве алюминия (0,01-0,012%) и максимальных содержаниях кальция (0,09-0,1%) кальций частично осаждается в виде интерметаллида Pb3Ca, а частично - окисляется, что увеличивает долю оксидов кальция, суспензированного в литых токоотводах, и, в конечном итоге, оба этих фактора снижают прочностные свойства решеток токоотводов аккумулятора;
- при максимальных содержаниях в сплаве алюминия (0,03-0,05%) и минимальных содержаниях кальция (0,05-0,06%) снижается эффективность использования алюминия, при этом избыток алюминия может кристаллизоваться в трубопроводах, подающих сплав в зону литья токоотводов.
Другим недостатком известного сплава является усложнение технологии нагрева и плавления как из-за дополнительного использования нескольких добавок (кобальта, хрома, меди, олова), так и вследствие необходимости предотвращения окисления кальция путем применения расплава солей или плавки в атмосфере инертных газов, что существенно удорожает стоимость токоотводов аккумулятора.
Из предшествующего уровня техники известен также сплав (R.D. Prengaman. J. of Power Sources, 53, 1995, 207-214 - ближайший аналог) для изготовления токоотводов свинцового аккумулятора, содержащий кальций при следующем соотношении компонентов, мас.%: кальций 0,025-0,14; свинец - остальное.
Недостатком известного сплава является пониженное значение предела прочности при растяжении, обусловленное образованием больших зерен в структуре токоотводов при незначительных (менее 0,05%) содержаниях кальция в сплаве.
Другой недостаток известного сплава состоит в увеличении линейных размеров решеток токоотводов в циклических процессах разряда и заряда аккумуляторов при значительных (более 0,1%) содержаниях кальция в сплаве, что снижает механические свойства токоотводов.
Кроме того, недостатком известного сплава являются осаждение кальция в виде интерметаллида Pb3Ca и окисление кальция в процессе плавления сплава и литья токоотводов, что увеличивает долю оксидов кальция, суспензированного в литых токоотводах, и, в конечном итоге, оба отрицательных фактора снижают прочностные свойства решеток токоотводов аккумулятора.
Заявляемый сплав на основе свинца позволяет повысить предел прочности при растяжении за счет уменьшения окисления кальция в процессе изготовления токоотводов и увеличить ресурс аккумулятора.
Указанный технический результат достигается тем, что в известном сплаве на основе свинца, включающем кальций, согласно предлагаемому изобретению дополнительно содержится алюминий, доля которого составляет 0,17-0,19 от содержания кальция, при следующем соотношении компонентов, мас.%:
Кальций 0,06-0,1
Алюминий более 0,01 - не более 0,019
Свинец остальное
Изобретение, за счет добавки в сплав алюминия в строго определенном соотношении с содержанием кальция, позволяет минимизировать потери кальция в процессе плавления сплава и литья токоотводов, уменьшить образование интерметаллида Pb3Ca и окисление кальция, то есть увеличить долю кальция, доступного в металлической форме в свинцово-кальциевых сплавах, и улучшить их механические свойства.
Содержание в сплаве кальция является базовым показателем для определения величины добавки алюминия, равной 0,17-0,19 от количества кальция. Содержание кальция в сплаве должно располагаться в диапазоне от 0,06 до 0,1%, обеспечивающем необходимую для эксплуатации токоотводов аккумулятора величину предела прочности при растяжении. При содержании кальция в сплаве меньше чем 0,06% механические свойства токоотводов становятся недостаточными для эффективной эксплуатации аккумулятора, а содержание кальция в сплаве свыше 0,1% приводит к разрастанию решеток токоотводов в циклическом режиме работы аккумулятора и, как следствие, к нарушению электрических контактов с активной массой и к локальным разрушениям токоотводов.
Для повышения прочностных характеристик токоотводов добавка алюминия в сплав должна составлять 0,17-0,19 от заданной величины содержания кальция (например, 0,08%) из заявляемого диапазона (0,06-0,1%). Использование алюминия в соответствии с заявляемой величиной его доли от содержания кальция в сплаве стабилизирует оптимальную дисперсность зерен объемной структуры токоотводов (заданного химического состава) благодаря снижению содержания оксидов кальция путем его защиты от окисления в процессах плавления и литья. При доле алюминия меньше чем 0,17 от содержания кальция в сплаве происходят осаждение кальция в виде нерастворимого интерметаллида Pb3Ca и окисление до оксида, что приводит к снижению содержания кальция в токоотводах и ухудшению их прочности. При доле алюминия больше чем 0,19 от содержания кальция в сплаве заметного улучшения качества токоотводов не наблюдается. Более того, излишний алюминий может кристаллизоваться в трубопроводах, подающих сплав в зону литья токоотводов.
Технические решения, совпадающие с существенными признаками изобретения, не выявлены, что позволяет сделать вывод о соответствии изобретения критерию «новизна».
Заявляемые существенные признаки изобретения, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии изобретения критерию «изобретательский уровень».
Поскольку заявляемое изобретение обеспечивает технический результат, выражающийся в повышении предела прочности при растяжении за счет уменьшения окисления кальция в процессе изготовления токоотводов аккумулятора, то можно сделать вывод, что изобретение соответствует критерию «промышленная применимость».
Подтверждение возможности осуществления заявляемого изобретения изложено в нижеследующем подробном описании примеров испытания образцов сплава для производства свинцовых аккумуляторов.
Пример 1. Сплав на основе свинца готовят следующим образом.
Для приготовления сплава применяют рафинированный свинец марки не ниже С1 по ГОСТ 3779-98 и лигатуры: основной - кальций-алюминий с содержанием 75% кальция и 25% алюминия и корректировочный - с содержанием 85% кальция и 15% алюминия. Лигатуры поступают в герметичных металлических бочках в виде кусков сплава разной величины.
Приготовление сплава Pb-Ca-Al осуществляют следующим образом.
В котел загружают свинец марки не ниже С1. Свинец расплавляют и доводят его температуру до 560-580°C.
Производят расчет основной лигатуры Ca-Al для получения сплава заданного состава и навеску лигатуры вручную измельчают до максимальной крупности 5 мм. Измельченную лигатуру засыпают в мешок из хлопчатобумажной ткани и помещают в дырчатую корзину. Корзину реечным механизмом опускают в расплав (на дно котла), включают мешалку на режим перемешивания внутри котла до полного расплавления лигатуры (~ 40 минут).
Затем отбирают пробу сплава и проводят спектральный анализ на содержание кальция и алюминия.
При необходимости по результатам анализа производят корректировку состава сплава добавлением корректировочной лигатуры Ca-Al, включают мешалку на режим перемешивания внутри котла до полного расплавления лигатуры, затем снова отбирают пробу и проводят спектральный анализ на содержание кальция и алюминия.
Когда требуемый состав сплава получен, открывают люк, и с поверхности расплава в котле вручную шумовкой снимают дроссы в изложницу. Включают насос в режим перекачки и готовый сплав из котла поступает в нагретый раздаточный котел.
С поверхности расплава раздаточного котла вручную снимают дроссы в изложницу и свинцово-кальциевый сплав с температурой 450-490°C подают системой насосов и трубопроводов на непрерывно вращающийся литейный барабан. На барабане выгравирован рисунок, соответствующий профилю токоотводов, имеющих толщину от 0,8 до 1,5 мм.
Сплав, подаваемый на барабан, застывает практически мгновенно за счет того, что температуру барабана поддерживают в пределах 82±2°C. Таким образом достигается мелкозернистая однородная структура токоотводов аккумулятора.
Примеры 2-7. Сплавы на основе свинца изготавливают аналогично примеру 1, но при других соотношениях компонентов, как указанных в формуле изобретения (примеры 3-6), так и выходящих за ее пределы (примеры 1, 2 и 7). Исследованные составы сплавов приведены в табл.1, в которой также приведен состав сплава-прототипа, примерно соответствующий средним значениям диапазона содержаний его компонентов.
Для определения механических свойств образцов из литых решеток токоотводов заданных составов сплавов вырезают ребра длиной 100 мм с поперечными сечениями 3×1,3 мм. Затем определяют величины усилия на разрыв каждого образца и рассчитывают значения предела прочности при растяжении.
Таблица 1
Компоненты сплава Состав, %
исследованных сплавов прототипа
1 2 3 4 5 6 7 8
Кальций 0,043 0,057 0,079 0,09 0,1 0,06 0,11 0,075
Доля алюминия от содержания кальция 0,163 0,158 0,19 0,178 0,19 0,17 0,2 -
Алюминий 0,007 0,009 0,015 0,016 0,019 0,0102 0,022 -
Свинец 99,95 99,934 99,91 99,894 99,881 99,93 99,87 99.925
Полученные данные по значениям усилия на разрыв каждого образца и предела прочности при растяжении решеток токоотводов, изготовленных из заявляемого сплава согласно примерам 1-7 и из сплава - прототипа, приведены в табл.2.
Содержание примесей, влияющих на механические свойства исследованных сплавов, составляют:
1. S <0,0002%;
2. Se <0,0005%;
3. Te <0,0005%;
4. Fe <0,0001%;
5. Mn <0,0005%;
6. Ni <0,0003%;
7. Sb <0,0001%.
Таблица 2
Наименование характеристики Значения характеристик
исследованных сплавов прототипа
1 2 3 4 5 6 7 8
Усилие на разрыв, Н 113 124 139 142 144 139 145 122
Предел прочности при растяжении, МПа 29 31,8 35,6 36,5 36,9 35,6 37,2 31,2
Доля алюминия от содержания кальция 0,163 0,158 0,19 0,178 0,19 0,17 0,2 -
Как следует из данных табл.2, заявляемый сплав, по сравнению с прототипом, отличается повышенной прочностью на разрыв, примерно на 4 МПа или на 12%.

Claims (1)

  1. Сплав на основе свинца, содержащий кальций, отличающийся тем, что он дополнительно содержит алюминий при следующем соотношении компонентов, мас.%:
    Кальций 0,06 - 0,1 Алюминий более 0,01 - не более 0,019 Свинец остальное
RU2013101317/02A 2013-01-10 2013-01-10 Сплав на основе свинца RU2514500C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013101317/02A RU2514500C1 (ru) 2013-01-10 2013-01-10 Сплав на основе свинца

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013101317/02A RU2514500C1 (ru) 2013-01-10 2013-01-10 Сплав на основе свинца

Publications (1)

Publication Number Publication Date
RU2514500C1 true RU2514500C1 (ru) 2014-04-27

Family

ID=50515733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013101317/02A RU2514500C1 (ru) 2013-01-10 2013-01-10 Сплав на основе свинца

Country Status (1)

Country Link
RU (1) RU2514500C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE381527C (de) * 1916-09-14 1923-09-21 Metallbank Verfahren zur Herstellung von Bleilegierungen
GB1458016A (en) * 1973-06-06 1976-12-08 Lucas Batteries Ltd Manufacture of ternary alloys of lead calcium and aluminium
US4125690A (en) * 1976-03-05 1978-11-14 Chloride Group Limited Battery electrode structure
US4439398A (en) * 1981-11-13 1984-03-27 Rsr Corporation Method of alloying calcium and aluminum into lead
SU1144399A1 (ru) * 1983-07-01 1999-07-27 Всесоюзный научно-исследовательский горно-металлургический институт цветных металлов Сплав на основе свинца

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE381527C (de) * 1916-09-14 1923-09-21 Metallbank Verfahren zur Herstellung von Bleilegierungen
GB1458016A (en) * 1973-06-06 1976-12-08 Lucas Batteries Ltd Manufacture of ternary alloys of lead calcium and aluminium
US4125690A (en) * 1976-03-05 1978-11-14 Chloride Group Limited Battery electrode structure
US4439398A (en) * 1981-11-13 1984-03-27 Rsr Corporation Method of alloying calcium and aluminum into lead
SU1144399A1 (ru) * 1983-07-01 1999-07-27 Всесоюзный научно-исследовательский горно-металлургический институт цветных металлов Сплав на основе свинца

Similar Documents

Publication Publication Date Title
KR101641842B1 (ko) 고강도 고도전성 구리 합금
JP5725344B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5275446B2 (ja) 集電体用アルミニウム合金箔およびその製造方法
JP5539055B2 (ja) 電気・電子部品用銅合金材、及びその製造方法
Zhong et al. Evaluation of lead—calcium—tin—aluminium grid alloys for valve-regulated lead/acid batteries
JP6693092B2 (ja) 銅合金素材
EP2835436A1 (en) Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability
JP2012097327A (ja) 熱間及び冷間加工性を向上させた銅合金とその製造方法及び該銅合金から得られる銅合金条又は合金箔
JP5725345B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP2011219865A (ja) 電池集電体用純アルミニウム硬質箔
KR101402897B1 (ko) 합금제조방법 및 이에 의해 제조된 합금
JP2014173145A (ja) 電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、及び、端子
WO2017081969A1 (ja) 銅合金素材
JP2007039793A (ja) 高強度および優れた曲げ加工性を備えた銅合金および銅合金板の製造方法
JP2012001780A (ja) 電気・電子部品用銅合金材、及びその製造方法
RU2514500C1 (ru) Сплав на основе свинца
JP4601755B2 (ja) 水素吸蔵合金の製造方法
US20100166595A1 (en) Phosphor-bronze alloy as raw materials for semi solid metal casting
CN109536770B (zh) 一种半导体器件用金铍合金材料及制备方法
JP5088385B2 (ja) 高強度高導電性銅合金
JP3306585B2 (ja) 晶出物および析出物が微細で、その分布割合が低いCu合金圧延薄板
CN106795588A (zh) 含有Cu和C的Al合金及其制造方法
JP5088384B2 (ja) 高強度高導電性銅合金
JP2016216794A (ja) 銅合金板および銅合金板の製造方法
JP2794745B2 (ja) 鉛蓄電池用格子体の製造方法