RU2514153C2 - Низкопрофильный ультразвуковой контрольный сканер - Google Patents

Низкопрофильный ультразвуковой контрольный сканер Download PDF

Info

Publication number
RU2514153C2
RU2514153C2 RU2011140323/28A RU2011140323A RU2514153C2 RU 2514153 C2 RU2514153 C2 RU 2514153C2 RU 2011140323/28 A RU2011140323/28 A RU 2011140323/28A RU 2011140323 A RU2011140323 A RU 2011140323A RU 2514153 C2 RU2514153 C2 RU 2514153C2
Authority
RU
Russia
Prior art keywords
control
ultrasonic
scanner
control scanner
wheels
Prior art date
Application number
RU2011140323/28A
Other languages
English (en)
Other versions
RU2011140323A (ru
Inventor
Жак Л. БРИНЬЯК
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Publication of RU2011140323A publication Critical patent/RU2011140323A/ru
Application granted granted Critical
Publication of RU2514153C2 publication Critical patent/RU2514153C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Использование: для контроля конструкций с использованием ультразвука в пространствах с малым зазором. Сущность: заключается в том, что контрольный сканер [1000] имеет низкопрофильное строение, предназначенное для вхождения в узкие пространства и контроля конструкций [10], например сварных соединений [13]. Узлы колесной рамы [1100, 1200] перемещают держатель зонда в сборе [1110] с ультразвуковой (US) решеткой [1400], которая испускает ультразвуковые лучи через конструкцию [10] и принимает отраженные звуковые волны. Держатель зонда в сборе [1110] вытягивается, и ультразвуковой луч отклоняется для контроля в узких местоположениях. Узлы колесной рамы [1100, 1200] катятся на колесах [1140, 1240], которые приводит в движение блок кодирования [1250]. Блок кодирования [1250] обеспечивает определенные местоположения для принятых звуковых волн относительно сварного шва. Местоположения и принятые звуковые волны используются для восстановления сигнала, показывающего дефекты внутри конструкции [10]. Колеса [1140, 1240] могут быть магнитными, чтобы удерживаться на контролируемой конструкции [10]. Тормозная система [1600] может применяться для удержания контрольного сканера [1000] в заданном местоположении. Технический результат: обеспечение возможности контроля узких пространств. 2 н. и 12 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к устройству для контроля конструкций с использованием ультразвука, а точнее говоря, к низкопрофильному устройству для контроля конструкций с использованием ультразвука в пространствах с малым зазором.
УРОВЕНЬ ТЕХНИКИ
Проверка частей, находящихся под давлением, и различных конструкций с использованием неразрушающих методик проверки является трудной задачей, особенно при проверке роликовых швов. Например, систему котлов, имеющую несколько компонентов в постоянном, ограниченном объеме пространства, может быть сложно контролировать с точностью. Как правило, с использованием ультразвуковых методик (UT) оператор вручную сканирует нужную область конструкции с помощью ручного UT-зонда, который пропускает сигналы (звуковые волны) через конструкцию и сварной шов и принимает измерения обратной связи в результате сканирования. Очевидно, что такой ручной процесс восприимчив к неточностям, поскольку мелкая моторика оператора при прохождении конструкции может быть не полностью устойчива или последовательна, что превращается в не особо оптимальные замеры (например, пропущенные трещины или уменьшения стенок, ложные срабатывания и другие подобные ошибки).
Поскольку такое повреждение и неисправность обычно начинаются на сварном шве этих компонентов, важно периодически контролировать швы. Поскольку контролируемые компоненты являются частью функционирующей системы, лучше всего контролировать их без необходимости удалять компонент или разбирать систему.
Широко применяемые устройства контроля применили ультразвуковые сканеры, которые перемещались с места на место вручную. Результирующие замеры изображаются в виде диаграммы или иным образом показываются оператору, чтобы указать местоположение дефектов. Сканер, который предоставляет зонд, который может быстро и без разрушений оценить состояние сварного шва, уменьшает время обслуживания и является полезным.
Универсальные механические сканеры использовались для контроля состояния швов на объектах различной формы. Из-за их универсального характера они были большими и громоздкими.
В системах парообразования обычно имеются сварные трубы, которые переносят пар под давлением. Эти трубы применяют швы, которые нужно периодически наблюдать. Из-за узких зазоров традиционные устройства контроля не подойдут, и они не приспособлены к такой форме.
Поэтому необходимо низкопрофильное устройство контроля, которое сможет вместиться в узкие пространства, чтобы контролировать швы компонентов, требующих частого контроля.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В соответствии с проиллюстрированными в этом документе особенностями предоставляется носитель ультразвукового зонда, который включает в себя контрольный сканер [1000], имеющий меньший профиль, чем проекты известного уровня техники, для передачи и приема ультразвуковых лучей для контроля объема конструкции [10], содержащий:
по меньшей мере одну колесную раму [1100];
ультразвуковую (US) решетку [1400], приспособленную для сканирования упомянутого объема упомянутой конструкции [10] с помощью ультразвуковых лучей, отклоненных от упомянутой колесной рамы [1100], и приема ультразвуковых сигналов, отраженных обратно к решетке [1400], причем решетка [1400] прикреплена и перемещается с помощью колесной рамы [1100];
колеса [1140], прикрепленные к колесной раме [1100] для перемещения колесной рамы [1100], причем колесам [1140] разрешено вращаться, перемещая раму в прямом направлении или обратном направлении вдоль поверхности упомянутой конструкции [10];
блок кодирования [1250], приспособленный для контроля вращения колес [1140] и местоположения на упомянутой конструкции [10] и приспособленный для отправки сигнала кодера, соответствующего принятым ультразвуковым сигналам, так что каждый принятый ультразвуковой сигнал отождествляется с местоположением упомянутой ультразвуковой решетки [1400] на упомянутой конструкции [10].
ЦЕЛИ ИЗОБРЕТЕНИЯ
Цель настоящего изобретения - предоставить ультразвуковой контрольный сканер, который специально приспособлен для оборудования производства электроэнергии.
Другая цель настоящего изобретения - предоставить ультразвуковой контрольный сканер и систему сбора, которая может наблюдать различные части сварного шва из заданного местоположения.
Другая цель настоящего изобретения - предоставить ультразвуковой контрольный сканер, который является портативным.
Другая цель настоящего изобретения - предоставить ультразвуковой контрольный сканер, который специально спроектирован для контроля швов на искривленной поверхности, имеющей различные диаметры.
Другая цель настоящего изобретения - предоставить ультразвуковой контрольный сканер, который специально спроектирован для контроля швов на плоских поверхностях.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Ссылаясь теперь на фигуры, которые являются типовыми вариантами осуществления и на которых одинаковые элементы пронумерованы одинаково:
фиг.1 - иллюстрация геометрии формирования изображений, применяемой настоящим изобретением;
фиг.2 - вид в перспективе низкопрофильного ультразвукового устройства контроля в соответствии с одним вариантом осуществления настоящего изобретения;
фиг.3 - частичный вид сбоку в вертикальном разрезе варианта осуществления контрольного сканера из фиг.2;
фиг.4 - вертикальная проекция задней части варианта осуществления контрольного сканера из фиг.2 и 3;
фиг.5 - горизонтальная проекция варианта осуществления контрольного сканера из фиг.2, 3 и 4, если смотреть сверху.
ПОДРОБНОЕ ОПИСАНИЕ
Предоставляется система ультразвукового контроля ("система") для обеспечения неразрушающей проверки трубы и трубопроводных швов, имеющих ограниченное пространство между ними.
Система включает в себя носитель ультразвукового зонда, имеющий низкий профиль, который дает системе возможность получить доступ к трубам и швам, имеющим ограниченное пространство между ними.
ТЕОРИЯ
Непрочности в металлических конструкциях могут быть вызваны в результате повторяющихся механических сил, действующих на конструкцию, из-за ухудшения от ржавчины и коррозии или из-за неверной изначальной постройки. Это особенно касается сварных швов металлических конструкций, которые имеют склонность разрушаться первыми.
Эти непрочности в конечном счете могут вызвать повреждение компонента. В случае компонентов, находящихся под высоким давлением, повреждения могут привести к катастрофическим последствиям.
Контроль и наблюдение могут выявить эти непрочности до того, как они могут вызвать проблему. Как только выявляются разупрочненные компоненты, они могут быть заменены до того, как они приведут к проблемам техники безопасности и/или дополнительному повреждению.
Одним характерным использованием был бы сварной шов с подготовкой кромок для корпуса турбины. Используя традиционные инструменты, очень сложно, трудоемко и неточно наблюдать этот важный сварной шов.
Поскольку это важный сварной шов и корпус турбины испытывает влияние значительных сил, он должен часто контролироваться. Как указано выше, традиционные устройства контроля сложно использовать для этой специфической геометрии и узких пространств.
Когда эти турбины не функционируют по причине технического обслуживания, имеются значительные издержки из-за потери продукции. Например, если турбина использовалась для выработки электрической энергии для коммунального предприятия, то коммунальному предприятию пришлось бы покупать энергию из энергосистемы во время технического обслуживания корпуса турбины. Электричество, приобретенное в энергосистеме, гораздо дороже, чем произведенное турбиной, и может стать достаточно дорогим в более длительных периодах обслуживания. Поэтому устройство, специально созданное для точного и быстрого контроля швов трубопровода турбины, привело бы к значительному снижению себестоимости для коммунальных предприятий.
Аналогичные швы существуют на многих турбинах, и многие имеют аналогичные формы. Все они испытывают значительные воздействующие силы, и каждый требует частых осмотров. Поэтому низкопрофильное устройство контроля, спроектированное для эффективного и точного контроля швов в узких пространствах, было бы очень полезно для тех, кто контролирует эти турбины.
Существует много швов, которые важны и которые нужно периодически контролировать. Некоторые из них располагаются в тесных местоположениях с небольшим открытым пространством. Очень сложно использовать традиционные устройства контроля на основе их размера, а также способа, которым они получают изображение.
Поскольку многие из этих устройств известного уровня техники контролируют непосредственно под устройством, они не могут соответствовать ему и не могут использоваться.
НАКЛОННЫЙ ЛУЧ
Настоящее изобретение специально приспособлено для контроля сварного соединения в тесных и узких местоположениях. Это достигается путем применения низкопрофильного исполнения, имеющего регулируемый зонд и обладающего возможностью контролировать объемы, которые удалены от него. Оно применяет луч, отклоненный от устройства, для получения данных контроля. Это устройство применяет геометрию наклонного внутреннего отражения для получения данных. Поэтому устройство не должно находиться непосредственно над контролируемой частью, а всего лишь рядом с ней. Это значительно облегчает сбор данных в узких пространствах.
Фиг.1 показывает геометрию наклонного луча, применяемую в настоящем изобретении. Ультразвуковые (US) лучи, проиллюстрированные стрелками, расходящимися из ультразвуковой решетки 1400, передаются из множества передатчиков 1410 в ультразвуковой решетке 1400. Ультразвуковая решетка 1400 применяет технологию фазированной антенной решетки, так что направление ультразвукового луча может быть изменено путем изменения относительной мощности передачи у передатчиков 1410. Для простоты это показано на фиг.1 в виде множества одиночных лучей от одного передатчика 1410.
Ультразвуковые лучи проходят через конструкцию 10 на первый пограничный слой 15. Этот пограничный слой является внутренней поверхностью конструкции и внутренним пространством. Этот пограничный слой может быть границей металл/газ или металл/жидкость, которая отражает ультразвуковой луч. Большинство ультразвуковых лучей затем проходят через металлический сварной шов 13 ко второму пограничному слою 17. Второй пограничный слой находится между наружной поверхностью конструкции 10 и пространством над конструкцией 10.
Части падающего ультразвукового луча попадают на объект 19, который может быть щелью в сварном шве, или другой материал, который обладает ультразвуковой проводимостью, значительно отличающейся от таковой у чистого металла. Части ультразвукового луча отражаются обратно, как указано стрелками, помеченными буквой "А". Эти отраженные ультразвуковые лучи отражаются от пограничного слоя 15 и возвращаются в приемник 1450 ультразвуковой решетки 1400.
ВОССТАНОВЛЕНИЕ ИЗОБРАЖЕНИЙ
Ультразвуковой луч принимается приемниками 1450 в ультразвуковой решетке 1400, а затем отправляется в контроллер для обработки. Контроллер предварительно обновлен геометрией анализируемой конструкции 10. Он собирает отраженные ультразвуковые сигналы от приемников 1450 и восстанавливает изображение объектов, внутренних по отношению к конструкции 10. Поскольку пограничные слои между сплошным металлом и другими менее плотными объектами создают изображения, пузырьки воздуха, коррозию и другие особенности можно без труда определить в восстановленном изображении. Это восстановление изображений может выполняться традиционными известными методами изображений.
Фиг.2 - вид в перспективе контрольного сканера 1000 в соответствии с одним вариантом осуществления настоящего изобретения. Этот сканер применяет низкий профиль. Чем меньше профиль, тем лучше при выполнении осмотров в узких местах. Однако устройство контроля должно быть достаточно большим, чтобы им было просто управлять. Было обнаружено, что большинство сварных швов турбины имели зазоры в областях, которые нужно осмотреть, около 3 дюймов. Поэтому было бы полезно устройство, имеющее профиль менее 3 дюймов.
Узлы 1100, 1200 колесной рамы катятся на колесах (1140, 1240 на фиг.3). Узлы 1100, 1200 колесной рамы соединяются держателем 1110 зонда в сборе.
Держатель 1110 зонда в сборе имеет салазки 1111 и 1211, которые движутся в пазах 1112, 1212 салазок в узлах 1100, 1200 колесной рамы соответственно.
По меньшей мере одна стопорная ручка 1130 может затягиваться для прикрепления салазок 1211 к держателю зонда в регулируемом положении относительно узла 1200 колесной рамы. Аналогичная компоновка находится в узле 1100 колесной рамы, который не показан из этой проекции.
Необязательная кнопка 1610 тормоза применяется для остановки колес (1240 на фиг.3), чтобы удерживать устройство в его текущем местоположении.
Держатель 1110 зонда в сборе перемещает ультразвуковую решетку 1400. Ультразвуковая решетка 1400 является фазированной решеткой ультразвуковых преобразователей, которые могут направлять ультразвуковой луч под различными углами на основе относительной мощности каждого из их передатчиков (1410 на фиг.1). Это позволяет ультразвуковым лучам сканировать объем конструкции 10, предназначенной для контроля. Ультразвуковая решетка 1400 также содержит приемники (1450 на фиг.1), которые принимают отраженные ультразвуковые сигналы.
Способ сканирования предусматривает всесторонний контроль конструкции по всему ее объему до отдаленных поверхностей. Этот способ обнаружил бы не только дефекты в объеме конструкции 10, также обнаружит коррозию рядом с поверхностями.
Сигналы, принятые ультразвуковой решеткой 1400, проходят по сигнальному кабелю 1570 в устройство обработки, которое восстанавливает изображения из считанных сигналов.
Фиг.3 - частичный вид в вертикальном разрезе задней части варианта осуществления контрольного сканера из фиг.2. Здесь можно увидеть, что узлы 1100, 1200 колесной рамы катятся на колесах 1140, 1240 по поверхности конструкции 10. Конструкция 10 является металлической конструкцией, которая содержит сварной шов 13, который нужно осмотреть.
Предпочтительно, чтобы колеса 1140, 1240 могли намагничиваться, чтобы удерживать узлы 1100, 1200 колесной рамы на конструкции 10, пока контролируется сварной шов (13 на фиг.4). В качестве альтернативы может присутствовать магнитное устройство 1300, применяемое в контрольном сканере 1000. В еще одном альтернативном варианте осуществления пользователь может просто удерживать настоящее изобретение на конструкции 10 для контроля сварного шва 13.
Ультразвуковая решетка 1400 перемещается с помощью рычагов держателя зонда (1115 на фиг.5). Рычаги держателя зонда являются частью держателя 1110 зонда в сборе. Рычаги 1115 держателя зонда позволяют ультразвуковой решетке 1400 опускаться и двигаться по наружной поверхности конструкции 10.
Держатель 1110 зонда в сборе имеет салазки 1111, 1211, которые скользят по пазам 1112, 1212 салазок соответственно, чтобы позволить ультразвуковой решетке 1400 вытягиваться в сторону центра контрольного сканера 1000. При установке стопорная ручка 1230, которая может быть винтом, затягивается, чтобы прижать боковую прижимную подушку 1233 к салазкам 1211, чтобы зафиксировать положение узла 1200 колесной рамы относительно держателя 1110 зонда в сборе и ультразвуковой решетки 1400.
Стопорная ручка 1130 выполняет такую же функцию относительно узла 1100 колесной рамы. Кнопка 1610 тормоза приводит в действие тормоз, который останавливает колеса 1240, заставляя контрольный сканер 1000 оставаться в текущем местоположении на конструкции 10 при работе.
Фиг.4 - вертикальная проекция варианта осуществления контрольного сканера из фиг.2 и 3, если смотреть сзади. Препятствие 21 затрудняет контроль сварного шва 13 на конструкции 10 для традиционного устройства контроля. Обычно они (устройства) значительно выше, чем настоящее изобретение. Также устройства известного уровня техники должны были находиться над частью, предназначенной для осмотра, поскольку они направляли свой контрольный луч вниз. Устройства известного уровня техники также не применяли регулируемую конструкцию, позволяющую преобразователям перемещаться ближе к области, которую нужно осмотреть, чем перемещающее устройство.
Можно увидеть, как низкопрофильное исполнение (малая высота) настоящего изобретения заходит под препятствие 21. К тому же ультразвуковая решетка 1400 на этой фигуре показана вытянутой к сварному шву 13. Стопорная ручка 1230 прижимается к салазкам 1211, будучи завинченной, чтобы удержать решетку 1400 в заданном положении.
Также ультразвуковая решетка 1400 передает лучи во внешнем наклонном направлении к сварному шву 13, как показано стрелками, помеченными буквой "В". Это дополнительно расширяет зону досягаемости настоящего изобретения в узких пространствах.
Показан тормозной элемент 1600, который прижимается к колесу 1240, чтобы удержать контрольный сканер 1000 на месте, когда нажимается кнопка 1610 тормоза.
Фиг.5 - горизонтальная проекция варианта осуществления контрольного сканера из фиг.2, 3 и 4, если смотреть сверху. Фиг.5 показывает ультразвуковую решетку 1400, переносимую парой рычагов 1115 держателя зонда. Эти рычаги шарнирно прикреплены в несущей оси 1117 к держателю 1110 зонда в сборе. Пружина 1119 заставляет ультразвуковую решетку 1400 контактировать с конструкцией 10.
В этом варианте осуществления держателю 1110 зонда в сборе разрешается скользить относительно узлов 1100, 1200 колесной рамы в направлении, перпендикулярном направлению, в котором колеса 1140, 1240 везут устройство. На этой фигуре держатель 1110 зонда в сборе вытянут к левой стороне рамы 1100. Это позволяет ультразвуковой решетке 1400 вытягиваться в меньшие, более узкие пространства. Также из-за геометрии пропускания в ультразвуковой решетке 1400 ультразвуковой луч направляется еще левее ультразвуковой решетки 1400, дальше в узкие пространства.
В альтернативных применениях контрольный сканер может входить в местоположения, предназначенные для сканирования, однако пользователь не может физически протянуть свою руку, чтобы дотянуться до контрольного сканера 1000. В этом случае и альтернативный вариант осуществления был бы полезен. Если бы контрольный сканер 1000 имел колесный двигатель (показанный в полуразрезе на фиг.3 как 1143), то он мог бы прикрепляться к конструкции 10, а затем катиться сам вокруг конструкции, удерживаемый магнитными колесами 1140, 1240. Все, что было бы необходимо для управления колесным двигателем, - это переданный ему сигнал, по возможности по линии радиосвязи, от управляемого пользователем контроллера.
Также другой альтернативный вариант осуществления включал бы в себя двигатель салазок (показанный в полуразрезе как 1215 на фиг.4). Двигатель 1215 салазок приводился бы в движение на салазках 1211, чтобы вытягивать или втягивать держатель зонда в сборе (1010 на фиг.5) и ультразвуковую решетку 1400. Двигатель салазок может управляться посредством линии радиосвязи к контроллеру, управляемому пользователем.
Хотя изобретение описано и проиллюстрировано относительно его типовых вариантов осуществления, специалистам в данной области техники следует понимать, что к нему могут быть сделаны вышеупомянутые и различные другие изменения, пропуски и добавления без отклонения от сущности и объема настоящего изобретения. Соответственно, другие варианты осуществления входят в объем нижеследующей формулы изобретения.

Claims (14)

1. Контрольный сканер [1000], имеющий меньший профиль, чем конструкции известного уровня техники, для передачи и приема ультразвуковых лучей для контроля объема конструкции [10], содержащий:
переднюю колесную раму [1100];
заднюю колесную раму [1200];
ультразвуковую (US) фазированную решетку [1400], приспособленную для последовательного сканирования множества местоположений в упомянутом объеме упомянутой конструкции [10] с помощью ультразвуковых лучей, отклоненных от упомянутой колесной рамы [1100], и для приема ультразвуковых сигналов, отраженных обратно к фазированной решетке [1400];
колеса [1140], прикрепленные к колесным рамам [1100, 1200] для перемещения колесных рам [1100, 1200], причем колесам [1140] разрешено вращаться, перемещая раму в первом направлении или втором направлении вдоль наружной поверхности упомянутой конструкции [10];
блок кодирования [1250], приспособленный для контроля вращения колес [1140] и местоположения на упомянутой конструкции [10] и приспособленный для отправки сигнала кодера, соответствующего принятым ультразвуковым сигналам, так что каждый принятый ультразвуковой сигнал отождествляется с местоположением упомянутой ультразвуковой решетки [1400] на упомянутой конструкции [10];
низкопрофильный держатель зонда в сборе [1110], присоединенный между колесными рамами [1100, 1200], приспособленный для перемещения ультразвуковой решетки [1400], причем держатель зонда в сборе [1110] расположен между колесными рамами [1100, 1200], причем низкопрофильный держатель зонда в сборе [1110] является раздвижным для перемещения ультразвуковой фазированной решетки [1400] в различные местоположения к одной стороне колесных рам [1100, 1200], не требуя перемещения колесных рам [1100, 1200], посредством этого позволяя контролировать части конструкции [10] на некотором расстоянии от колесной рамы [1100], которые в противном случае были бы недоступны без раздвижного низкопрофильного держателя зонда в сборе [1110].
2. Контрольный сканер [1000] по п.1, в котором колеса [1140] намагничиваются, чтобы удержать контрольный сканер [1000] на упомянутой конструкции [10].
3. Контрольный сканер [1000] по п.1, дополнительно содержащий магнитное устройство [1300] для удержания контрольного сканера [1000] на упомянутой конструкции [10].
4. Контрольный сканер [1000] по п.1, в котором ультразвуковая решетка [1400] имеет множество передатчиков [1410], приспособленных для передачи регулируемой величины ультразвуковой энергии для направления ультразвукового луча в нужном направлении, чтобы сканировать сварной шов [13].
5. Контрольный сканер [1000] по п.1, в котором:
контрольный сканер имеет максимальную высоту в 3 дюйма.
6. Контрольный сканер [1000] по п.1, дополнительно содержащий:
колесный двигатель [1143], соединенный с колесами [1140] для приведения в движение колес [1140], перемещающих контрольный сканер [1000], когда принимается сигнал от удаленного контроллера.
7. Контрольный сканер [1000] по п.1, дополнительно содержащий:
двигатель салазок [1215], соединенный с держателем зонда в сборе [1110], заставляющий его поместить ультразвуковую решетку [1400] в другое местоположение, когда принимается сигнал от удаленного контроллера.
8. Контрольный сканер [1000], имеющий меньший профиль, чем сканеры известного уровня техники, для контроля объема конструкции [10], содержащий:
переднюю колесную раму [1100];
заднюю колесную раму [1200];
держатель зонда в сборе [1110], имеющий пару салазок [1111, 1211], тянущихся по его сторонам, причем каждые салазки [1111, 1211] принимаются пазами салазок [1112, 1212] передней колесной рамы [1100] и задней колесной рамы [1200] соответственно, при этом держателю зонда в сборе разрешено скользить вдоль колесных рам [1100, 1200], расширяя сторону сканера [1000];
ультразвуковую (US) решетку [1400], приспособленную для сканирования упомянутого объема упомянутой конструкции [10] с помощью ультразвуковых лучей, отклоненных от упомянутого держателя зонда в сборе [1110];
колеса [1140, 1240], прикрепленные к колесным рамам [1100, 1200], которым разрешено вращаться, перемещая контрольный сканер [1000] в прямом направлении или обратном направлении по упомянутой конструкции [10];
блок кодирования [1250], приспособленный для контроля вращения колес [1140, 1240] и местоположения на упомянутой конструкции [10] и приспособленный для отправки сигнала кодера, соответствующего принятым ультразвуковым сигналам, так что каждый принятый ультразвуковой сигнал отождествляется с местоположением упомянутой ультразвуковой решетки [1400] на упомянутой конструкции [10].
9. Контрольный сканер [1000] по п.8, в котором:
контрольный сканер имеет максимальную высоту в 3 дюйма.
10. Контрольный сканер [1000] по п.8, в котором ультразвуковая решетка [1400] шарнирно прикрепляется к держателю зонда в сборе [1110] и прижимается к упомянутой конструкции [10] прижимающим устройством.
11. Контрольный сканер [1000] по п.10, в котором прижимающее устройство является пружиной [1119].
12. Контрольный сканер [1000] по п.8, дополнительно содержащий:
колесный двигатель [1143], соединенный с колесами [1140, 1240] для приведения в движение колес [1140, 1240], перемещающих контрольный сканер [1000], когда принимается сигнал от удаленного контроллера.
13. Контрольный сканер [1000] по п.8, дополнительно содержащий:
двигатель салазок [1215], соединенный с держателем зонда в сборе [1110], заставляющий его поместить ультразвуковую решетку [1400] в другое местоположение, когда принимается сигнал от удаленного контроллера.
14. Контрольный сканер [1000] по п.8, в котором ультразвуковая решетка [1400] имеет множество передатчиков [1410], приспособленных для передачи регулируемой величины ультразвуковой энергии для направления ультразвукового луча в нужном направлении, чтобы сканировать упомянутый объем упомянутой конструкции [10].
RU2011140323/28A 2009-03-05 2010-01-14 Низкопрофильный ультразвуковой контрольный сканер RU2514153C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/398,704 2009-03-05
US12/398,704 US8347724B2 (en) 2009-03-05 2009-03-05 Low profile ultrasound inspection scanner
PCT/US2010/020960 WO2010101670A1 (en) 2009-03-05 2010-01-14 Low profile ultrasound inspection scanner

Publications (2)

Publication Number Publication Date
RU2011140323A RU2011140323A (ru) 2013-04-10
RU2514153C2 true RU2514153C2 (ru) 2014-04-27

Family

ID=42272693

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011140323/28A RU2514153C2 (ru) 2009-03-05 2010-01-14 Низкопрофильный ультразвуковой контрольный сканер

Country Status (9)

Country Link
US (2) US8347724B2 (ru)
EP (1) EP2404169A1 (ru)
JP (1) JP2012514757A (ru)
KR (1) KR101283735B1 (ru)
CN (1) CN102341700B (ru)
AU (1) AU2010221694B2 (ru)
CA (1) CA2744082C (ru)
RU (1) RU2514153C2 (ru)
WO (1) WO2010101670A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629687C1 (ru) * 2016-06-10 2017-08-31 Публичное акционерное общество "Газпром" Автоматизированная установка ультразвукового контроля
RU176447U1 (ru) * 2017-08-15 2018-01-18 Общество с ограниченной ответственностью "Центр Технологий и Инноваций" (ООО "ЦТИ") Магнитный дефектоскоп для контроля подводных переходов трубопроводов

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347724B2 (en) * 2009-03-05 2013-01-08 Alstom Technology Ltd Low profile ultrasound inspection scanner
US8087298B1 (en) * 2009-03-10 2012-01-03 Sandia Corporation Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections
US20120006132A1 (en) * 2010-07-09 2012-01-12 Denis Faucher Probe holder adjustable to conform to test surfaces
DE102010033302A1 (de) * 2010-08-04 2012-02-09 Alstom Technology Ltd. Verfahren zum Überprüfen der Mechanischen Integrität von Stabilisierungselementen an den Laufschaufeln einer Turbine sowie Abtastvorrichtung zur Durchführung des Verfahrens
CA3040602C (en) * 2011-03-31 2022-02-22 Atomic Energy Of Canada Limited Profiling tool for determining material thickness for inspection sites having complex topography
JP5649599B2 (ja) * 2012-02-27 2015-01-07 三菱重工業株式会社 超音波検査装置及びその検査方法
CN102628836B (zh) * 2012-04-28 2014-07-23 中国石油天然气集团公司 一种热煨弯管裂纹检测方法
FR3010526B1 (fr) * 2013-09-10 2016-03-18 Thales Sa Dispositif de controle de soudure metallique, systeme et procede associes
EP3074188B1 (en) * 2013-11-30 2020-07-01 Saudi Arabian Oil Company Modular mobile inspection vehicle
CN104049039B (zh) * 2014-06-16 2016-07-13 中国飞机强度研究所 128通道超声相控阵探头扫查装置
US9746447B2 (en) 2014-10-30 2017-08-29 The Boeing Company Apparatuses, systems, and methods for inspecting a component
US9664652B2 (en) * 2014-10-30 2017-05-30 The Boeing Company Non-destructive ultrasonic inspection apparatus, systems, and methods
US10252800B1 (en) * 2015-10-23 2019-04-09 ScanTech Industries, Inc. Aerial drone deployed non-destructive evaluation scanner
KR101736641B1 (ko) * 2015-12-24 2017-05-17 주식회사 포스코 균열 측정 장치 및 방법
CN105510448A (zh) * 2015-12-31 2016-04-20 湖北工业大学 变壁厚超声自动探伤系统及方法
WO2018119450A1 (en) 2016-12-23 2018-06-28 Gecko Robotics, Inc. Inspection robot
US11307063B2 (en) 2016-12-23 2022-04-19 Gtc Law Group Pc & Affiliates Inspection robot for horizontal tube inspection having vertically positionable sensor carriage
KR102011293B1 (ko) 2018-09-21 2019-08-16 대한민국 초음파탐상기 탐촉자용 고정장치
EP3934861A4 (en) 2019-03-08 2022-12-07 Gecko Robotics, Inc. INSPECTION ROBOT
EP4326493A1 (en) 2021-04-20 2024-02-28 Gecko Robotics, Inc. Flexible inspection robot
EP4327047A1 (en) 2021-04-22 2024-02-28 Gecko Robotics, Inc. Systems, methods, and apparatus for ultra-sonic inspection of a surface
US11885769B2 (en) 2021-08-18 2024-01-30 Saudi Arabian Oil Company UAV for continuous ultrasound testing (UT) scans
WO2024059948A1 (en) * 2022-09-23 2024-03-28 Evident Canada, Inc. Non-destructive test (ndt) scanner and operator interface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062301A (en) * 1987-12-10 1991-11-05 Aleshin Nikolai P Scanning device for ultrasonic quality control of articles
RU2204113C1 (ru) * 2002-03-28 2003-05-10 ЗАО "Нефтегазкомплектсервис" Носитель датчиков для внутритрубного инспекционного снаряда (варианты)
RU2312334C2 (ru) * 2003-07-09 2007-12-10 Пии Пайптроникс Гмбх Способ и устройство для контроля трубопроводов

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844164A (en) 1973-10-03 1974-10-29 Amf Inc End area inspection tool for automated nondestructive inspection
JPS629268A (ja) * 1985-07-08 1987-01-17 Tokyo Gas Co Ltd 大型構造物の溶接部自動探傷装置
JPS62192655A (ja) * 1986-02-19 1987-08-24 Nippon Steel Corp 超音波探傷方法
JPH01119759A (ja) * 1987-11-02 1989-05-11 Toshiba Corp 超音波探傷装置
US5619423A (en) 1994-01-21 1997-04-08 Scrantz; Leonard System, method and apparatus for the ultrasonic inspection of liquid filled tubulars and vessels
KR100311773B1 (ko) 1998-11-27 2001-12-28 김형국 경사진용접부의초음파검사를위한스캐너
US6748808B2 (en) 2001-08-14 2004-06-15 Varco I/P, Inc. Flaw detection in tubular members
US6904818B2 (en) * 2002-04-05 2005-06-14 Vetco Gray Inc. Internal riser inspection device
AU2003902766A0 (en) * 2003-06-02 2003-06-19 Onesteel Manufacturing Pty Ltd Ultrasonic testing of pipe
CN200996956Y (zh) * 2007-01-22 2007-12-26 宝山钢铁股份有限公司 探头调节装置
CN101256173B (zh) * 2007-03-01 2011-01-12 中国石油天然气股份有限公司 螺旋焊缝手动扫查器
CN201016966Y (zh) * 2007-03-01 2008-02-06 中国石油天然气股份有限公司 螺旋焊缝手动扫查器
JP2008249510A (ja) * 2007-03-30 2008-10-16 Japan Construction Mechanization Association 移動型探傷具
US8347724B2 (en) * 2009-03-05 2013-01-08 Alstom Technology Ltd Low profile ultrasound inspection scanner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062301A (en) * 1987-12-10 1991-11-05 Aleshin Nikolai P Scanning device for ultrasonic quality control of articles
RU2204113C1 (ru) * 2002-03-28 2003-05-10 ЗАО "Нефтегазкомплектсервис" Носитель датчиков для внутритрубного инспекционного снаряда (варианты)
RU2312334C2 (ru) * 2003-07-09 2007-12-10 Пии Пайптроникс Гмбх Способ и устройство для контроля трубопроводов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629687C1 (ru) * 2016-06-10 2017-08-31 Публичное акционерное общество "Газпром" Автоматизированная установка ультразвукового контроля
RU176447U1 (ru) * 2017-08-15 2018-01-18 Общество с ограниченной ответственностью "Центр Технологий и Инноваций" (ООО "ЦТИ") Магнитный дефектоскоп для контроля подводных переходов трубопроводов

Also Published As

Publication number Publication date
US20130091951A1 (en) 2013-04-18
CA2744082C (en) 2014-03-25
JP2012514757A (ja) 2012-06-28
AU2010221694B2 (en) 2015-11-05
KR20110102877A (ko) 2011-09-19
KR101283735B1 (ko) 2013-07-08
EP2404169A1 (en) 2012-01-11
WO2010101670A1 (en) 2010-09-10
AU2010221694A1 (en) 2011-06-30
US20100224001A1 (en) 2010-09-09
CN102341700A (zh) 2012-02-01
CA2744082A1 (en) 2010-09-10
CN102341700B (zh) 2014-06-11
RU2011140323A (ru) 2013-04-10
US8347724B2 (en) 2013-01-08
US8813567B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
RU2514153C2 (ru) Низкопрофильный ультразвуковой контрольный сканер
US6945113B2 (en) End-to-end ultrasonic inspection of tubular goods
JP6114778B2 (ja) ボイラー管の低温側クラッキングを決定する方法およびその方法を達成するための装置
KR100884524B1 (ko) 자동 초음파 탐상장치
DK1930722T3 (en) Fremgangsmåde til ikke-destruktiv afprøvning af et arbejdsemne og ikke-destruktiv afprøvningsindretning
EP3108236B1 (en) Ultrasonic phased array transducer for the nondestructive evaluation (nde) inspection of jet pump riser welds and welded attachments
US20130028478A1 (en) Object inspection with referenced volumetric analysis sensor
JP2007187593A (ja) 配管検査装置及び配管検査方法
US7984650B2 (en) Portable ultrasonic scanner device for nondestructive testing
CN103977949A (zh) 一种柔性梳状导波相控阵换能器
CN103983699A (zh) 一种柔性梳状声表面波相控阵换能器
KR102644117B1 (ko) 피시험 구성요소의 비파괴 검사를 위한 초음파 위상 배열 트랜스듀서 장치
US9625421B2 (en) Manually operated small envelope scanner system
CN111007144A (zh) 一种铝套管的超声检测方法
Pugalendhi et al. Use of Phased Array Ultrasonic Testing (PAUT) & Time Of Flight Diffraction (TOFD) in Lieu of Radiography Testing on ASME U Stamp Pressure Vessel fabrication Projects
KR101513805B1 (ko) 소구경 배관용 초음파 검사장치
CN111354487A (zh) 一种反应堆压力容器下封头堆焊层检测工具及方法
CN110967400A (zh) 大型储罐底板缺陷的兰姆波层析成像方法
Kitazawa et al. A three-dimensional phased array ultrasonic testing technique
Borigo et al. Guided Wave Phased Array Technology for Rapid Inspection of Hanford Double Shell Tank Liners
JP2010190794A (ja) 減肉検出方法
Maes et al. Appendix VIII qualification of manual phased array UT for piping
Bu et al. Ultrasonic Phased Array Detection of Crack-Like Defects in Welds Based on Multi-Mode Total Focusing Method
WO2022109727A1 (en) Drift tracking for acoustic scan
CN112304923A (zh) 混凝土管道内壁检测系统

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190115