RU2513327C1 - Способ переработки лопаритового концентрата - Google Patents

Способ переработки лопаритового концентрата Download PDF

Info

Publication number
RU2513327C1
RU2513327C1 RU2013115839/02A RU2013115839A RU2513327C1 RU 2513327 C1 RU2513327 C1 RU 2513327C1 RU 2013115839/02 A RU2013115839/02 A RU 2013115839/02A RU 2013115839 A RU2013115839 A RU 2013115839A RU 2513327 C1 RU2513327 C1 RU 2513327C1
Authority
RU
Russia
Prior art keywords
oxides
concentrate
ree
iron
carbides
Prior art date
Application number
RU2013115839/02A
Other languages
English (en)
Inventor
Андрей Анатольевич Николаев
Анатолий Владимирович Николаев
Дмитрий Евгеньевич Кирпичев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2013115839/02A priority Critical patent/RU2513327C1/ru
Application granted granted Critical
Publication of RU2513327C1 publication Critical patent/RU2513327C1/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при ограниченном количестве углерода в системе, благодаря чему восстанавливаются только тугоплавкие металлы (ТМ) до их карбидов и получается в итоге технологическая смесь оксидов редкоземельных элементов (РЗЭ) и карбидов ТМ. Второй - плавильный этап обеспечивает разделение оксидов РЗЭ и карбидов ТМ. Разделение РЗЭ и карбидов ТМ осуществляют путем растворения карбидов ТМ в жидком железе. В результате образуется чугун, содержащий ТМ, и шлак, представляющий собой целевой продукт - оксиды РЗЭ. На третьем - окислительном этапе чугун, содержащий ТМ, обрабатывают кислородом, в результате чего образуется сталь и шлак на основе целевого продукта - оксидов ТМ. Техническим результатом является получение двух целевых продуктов - оксидов РЗЭ и оксидов ТМ, которые используются для их переработки по известным технологиям.

Description

Изобретение относится к переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата. Лопаритовый концентрат является комплексным сырьем, содержащим оксиды большого количества химических элементов. Используемый для переработки лопаритовый концентрат в среднем содержит: оксидов редкоземельных элементов (РЗЭ) 32-34%, оксидов тугоплавких металлов (ТМ) 48-52%. Доля оксидов остальных элементов - Na2O, CaO, SiO2 и др. составляет около 20%. В наибольшем количестве в концентрате содержатся РЗЭ цериевой группы, примерное содержание которых составляет: оксиды лантана (Lа2О3) - 9,7%, церия (CeO2) - 19,9%, празеодима (Рr2О3) - 1,3% и неодима (Nd2O3) - 3,0%. Основными оксидами ТМ, содержащимися в концентрате в наибольшем количестве, являются TiO2 39-40% и Nb2O5 7,5-9,4%. Содержание оксида Та2О3 составляет 0,5-0,6%. При переработке лопаритового концентрата извлекают наиболее ценные элементы - РЗЭ и ТМ. В предлагаемом изобретении предложен способ разделения оксидов ценных элементов, содержащихся в концентрате в наибольшем количестве, а именно предлагается способ отделение оксидов РЗЭ - La, Се, Pr, Nd от оксидов ТМ - Nb и Ti.
Известны и применялись два способа переработки лопаритового концентрата, именуемые хлорной и серно-кислотной технологиями. Переработка лопаритового концентрата способом хлорирования является более простой с технологической точки зрения (А.Н. Зеликман и др. "Металлургия редких металлов", М., Металлургия, 1978, 560 с.). Его сущность состоит в том, что лопаритовый концентрат предварительно подвергают сухому помолу и шихтовке с коксом. Шихту подвергают воздействию 100% осушенным газообразным хлором при температуре 750-850°С. Различия в летучести образующихся хлоридов компонентов лопаритового концентрата позволяют разделить его основные ценные составляющие. Хлорная технология переработки лопарита обеспечивает извлечение 93-94% ниобия и 86-88% тантала в технические оксиды, 96,5-97% титана в технический тетрахлорид, извлечение 95,5-96% РЗЭ в плав хлоридов. Однако хлорная технология очень опасна и вредна для обслуживающего персонала, а также окружающей среды из-за применяемого в больших количествах хлора, и поэтому в настоящее время она не применяется.
Более безопасным является способ переработки лопаритового концентрата с использованием концентрированной серной кислоты (А.Н. Зеликман и др. "Металлургия редких металлов", М., Металлургия, 1978, 560 с.). Серно-кислотный способ основан на разложении лопаритового концентрата серной кислотой и разделении ценных составляющих с использованием различий в растворимости двойных сульфатов титана, ниобия, тантала и редкоземельных элементов. Исходный концентрат лопарита измельчают до крупности 0,075 мм. Вскрытие концентрата осуществляют с помощью 85% серной кислоты. В результате вскрытия, протекающего при температуре 150-250°C, ниобий, тантал и титан образуют хорошо растворимые сульфаты, а редкоземельные элементы образуют малорастворимые двойные сульфаты. Продукт сульфатизации подвергают водному выщелачиванию. В результате этого в твердой фазе остаются сульфаты РЗЭ, а жидкая фаза представляет собой сернокислый раствор титана, ниобия и тантала. Титан из данного раствора в виде малорастворимой соли сложного состава осаждают сульфатом аммония. Термическим воздействием на данную соль получают технический диоксид титана. Остающийся после выделения титана раствор содержит тантал и ниобий, извлекаемые экстракцией с применением плавиковой кислоты. Для извлечения РЗЭ осуществляют дополнительный самостоятельный технологический цикл конверсии сульфатов РЗЭ в карбонаты.
Данный способ переработки лопаритового концентрата обеспечивает извлечение РЗМ и ТМ в примерно такие же конечные продукты, как и при хлорной технологии. В нем для вскрытия концентрата используется более безопасный для окружающей среды химический реагент - серная кислота. Однако данный способ обладает рядом существенных недостатков. Основным из них является то, что сразу же на первом этапе переработки тантал и ниобий не полностью переходят в раствор и частично остаются в твердой фазе, содержащей РЗЭ. В результате этого ниобий и тантал приходится отделять от сульфатов РЗЭ, с которыми уходит в различных формах до 25-30% тантала и ниобия. Для возвращения ниобия и тантала приходится осуществлять дополнительную переработку отвального продукта, остающегося после переработки сульфатов РЗЭ. Кроме того, происходят безвозвратные потери ниобия и тантала при извлечении титана из вышеупомянутого сернокислого раствора ниобия, тантала и титана.
Известен способ переработки лопаритового концентрата, в котором для вскрытия используют азотную кислоту с концентрацией 650-700 г/л (Н.В Зоц, С.В Шестаков. Патент РФ №2145980, 27.02.2000 г.). Процесс ведут при температуре 115-118°С при непрерывном перемещении пульпы через ряд последовательно соединенных реакторных объемов. Оксиды ТМ не растворяются азотной кислотой и поэтому сохраняются в твердой части, выделяемой в виде кека окисидов ТМ. Кек отмывается водой от нитратов РЗЭ, переходящих в азотнокислый раствор. Отмытый кек с окислами ТМ является исходным продуктом для последующего извлечения тугоплавких металлов.
Таким образом, хлорный и кислотные способы являются экологически опасными, многостадийными, состоящими из отдельных периодических этапов, которые невозможно объединить в единую автоматизированную систему. Все это делает способы сложными, наносящими урон окружающей среде и дорогостоящими.
Более безопасным и наиболее близким аналогом заявляемого изобретения является способ пирогидрометаллургической обработки лопаритовых руд и концентратов, позволяющий разделить РЗЭ и ТМ (А.Н. Кузнецов и А.А. Калинина, Способ обработки лопаритовых руд и концентратов, авторское свидетельство, заявлено 28 декабря 1940 г. в Наркомцветмет за №39488 (341885), опубликовано 31 марта 1946 г.). Для отделения соединений РЗЭ от соединений ТМ концентрат смешивают с углеродным восстановителем - древесным углем или коксом в количестве, достаточном для восстановления всех оксидов, содержащихся в лопаритовом концентрате, и образования из них соответствующих карбидов как РЗЭ, так и ТМ. Шихту проплавляют в обычной шахтной электрической печи. По окончании плавки сплав обрабатывают вначале водой, при этом карбиды РЗЭ разлагаются с выделением ацетилена. По окончании водяной обработки оставшуюся массу обрабатывают соляной кислотой. В результате этой обработки получают раствор, содержащий РЗЭ в виде хлоридов, и твердую фазу, содержащую карбиды ТМ. Раствор используют для получения известным способом РЗЭ, а из твердой фазы получают кристаллический порошок карбидов ТМ, из которого производят абразивные изделия.
В рассмотренном способе обработки лопаритового концентрата помимо пирометаллургического воздействия на концентрат для обработки последнего так же, как и в предыдущих способах - хлорном и кислотных, для разделения соединений РЗЭ и ТМ в значительных количествах используют воду и соляную кислоту, что приводит к загрязнению окружающей среды, усложнению и удорожанию технологии обработки концентрата.
Задача, на решение которой направлено наше изобретение, заключается в создании способа переработки лопаритового концентрата, в котором для отделения РЗЭ от ТМ используют только пирометаллургические технологии без применения вредных реагентов, обеспечивающие на начальном этапе вскрытия концентрата полное отделение оксидов РЗЭ от оксидов ТМ, удобных для последующей переработки по известным технологиям, благодаря чему улучшаются экологические показатели процесса в целом, улучшаются условия труда, упрощается способ переработки концентрата, повышается степень извлечения РЗЭ и ТМ и улучшается экономичность процесса.
Техническим результатом изобретения является разделение оксидов РЗЭ и оксидов ТМ, содержащихся в концентрате, при углетермическом восстановлении концентрата в условиях ограниченного содержания углерода в системе и отделение оксидов РЗЭ от карбидов ТМ, образующихся при восстановлении концентрата, путем растворения последних в железе.
Технический результат достигается тем, что в способе переработки лопаритового концентрата, включающем измельчение концентрата, пирометаллургическое вскрытие концентрата, углетермическое восстановление компонентов концентрата, а также последующее разделение извлекаемых ингредиентов, согласно изобретению углетермическое восстановление концентрата происходит при температуре 1700°C и при содержании углерода относительно концентрата 30 масс.%, при этом РЗЭ не восстанавливаются, а ТМ восстанавливаются до их карбидов, образуя смесь оксидов РЗЭ и карбидов ТМ, которые разделяются посредством растворения карбидов ТМ в расплавленном железе, взятом в массовом соотношении со смесью РЗЭ и карбидов ТМ 2,3:1, что соответствует массовому соотношению железа и карбидов ТМ 4:1, в результате чего формируются шлак, состоящий из оксидов РЗЭ (целевой продукт), и расплав на основе железа, содержащий титан, ниобий и углерод, который после отделения от него шлака, содержащего оксиды РЗЭ, подвергается окислению при массовом расходе кислорода 16% от массы расплава с получением шлака, состоящего из оксидов ТМ (целевой продукт).
Сущность изобретения.
В заявленном способе переработки лопаритового концентрата осуществляется пирометаллургическое отделение оксидов РЗЭ от оксидов ТМ на начальном этапе вскрытия концентрата без использования хлорной и кислотных технологий. В процессе вскрытия обеспечивается полное отделение оксидов РЗЭ от оксидов ТМ, удобных для последующей их переработки по известным технологиям, благодаря чему улучшаются экологические, экономические и эксплуатационные показатели процесса.
Заявляемый способ переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. На первом этапе при температуре 1700°C и содержании углерода относительно концентрата 30 масс.% осуществляют карботермическое восстановление концентрата. При этом в результате большой разницы сродства к кислороду РЗЭ и ТМ (соответственно 607-614 и 230-359 кДж/моль), а также ограниченному количеству углерода в системе РЗЭ не восстанавливаются, а ТМ восстанавливаются до их карбидов, образуя в итоге технологическую смесь оксидов РЗЭ и карбидов ТМ. При содержании углерода меньше 30 масс.% ТМ восстанавливаются не полностью, а при большем содержании углерода будут восстанавливаться и РЗЭ, что не позволит разделить РЗЭ и ТМ. Что касается указанной температуры, то при температуре восстановления ниже 1700°C процесс восстановления ТМ происходит не в полной мере, а при температуре более 1700°C будут иметь место неоправданные повышенные тепловые потери и восстановление РЗЭ.
На втором этапе оксиды РЗЭ и карбиды ТМ разделяются посредством помещения их смеси в расплавленное железо при температуре 1700°C, взятое в массовом соотношении со смесью оксидов РЗЭ и карбидов ТМ 2, 3:1, что соответствует соотношению железа и карбидной фазы 4:1. При меньшем содержании железа температура затвердевания расплава в результате присутствия в нем карбидов ТМ будет возрастать, что приведет к увеличению рабочей температуры процесса, восстановлению РЗЭ и переходу их в расплав, а также к интенсивному испарению РЗЭ. При большем содержании железа будет излишний его расход, и возрастут энергозатраты. Процесс сплавления смеси оксидов РЗЭ и карбидов ТМ с железом ведется при температуре расплава 1700°C. При температуре ниже 1700°C расплав железа, содержащий ниобий и титан, перейдет в твердое состояние, а при температуре выше 1700°C - начнут восстанавливаться и растворяться в железе РЗЭ, а также интенсивно испаряться компоненты расплава и возрастут тепловые потери. В результате помещения технологической смеси оксидов РЗЭ и карбидов ТМ в жидкое железо образуется расплав, на поверхности которого формируется шлак, представляющий целевой продукт - оксиды РЗЭ, который извлекается и используется как сырье для дальнейшей переработки. Образовавшийся металлический расплав, состоящий из железа, ниобия, титана и углеродом, поступает на дальнейшую пирометаллургическую переработку на третьем этапе.
На третьем окислительном этапе расплав железа, содержащий ниобий, титан и углерод, при температуре 1700°C обрабатывают кислородом при расходе 16% от массы расплава с получением шлака - целевого продукта, содержащего оксиды ТМ и незначительное количество оксидов железа, который используется как сырье для дальнейшей переработки, и сталь. Полученный целевой продукт - оксиды ТМ и железа перерабатывается по известным технологиям, например, на феррониобий. Полученная сталь возвращается в технологический цикл на второй этап переработки концентрата или используется как конструкционный материал.
Таким образом, заявляемый способ переработки лопаритового концентрата позволяет получить два целевых продукта - оксиды РЗЭ и оксиды ТМ, которые используются для их переработки по известным технологиям с получением РЗЭ, феррониобия и титана.
Используемые термины и определения. Оксиды редкоземельных элементов, РЗЭ - смесь оксидов La, Ce, Nd, Pr. Оксиды тугоплавких металлов, ТМ - смесь оксидов Nb, Ti.
Заявляемый способ иллюстрируется примером его осуществления. Для реализации первого - восстановительного этапа используется сыпучая шихта из частиц размером 0,1-1 мм, образованная из лопаритового концентрата и углеродного восстановителя. Использование углерода в качестве восстановителя обусловлено его высокой химической активностью, малой ценой и относительно безопасным применением. Кроме того, продукты восстановления (СО и СО2) самопроизвольно удаляются из рабочего объема и не загрязняют целевые продукты.
Из расчета по Программной системе ТЕРРА следует, что восстановление только ТМ происходит при температуре 1700°C и содержании углерода относительно массы концентрата 30%. При меньшем содержании углерода ТМ восстанавливаются не полностью, а при большем содержании углерода будут восстанавливаться и РЗЭ, что не позволит разделить РЗЭ и ТМ. Что касается указанной температуры, то при температуре восстановления ниже 1700°C процесс восстановления ТМ происходит не в полной мере, а при температуре более 1700°C будут восстанавливаться и РЗЭ. Кроме того, будет иметь место интенсивное испарение элементов концентрата и неоправданно увеличатся тепловые потери. Процесс восстановления осуществляется в стандартных электропечах, например в индукционной печи, плазменной печи, печи Кульмана, в шахтной или трубчатой печи с электродуговым нагревом. Продуктом восстановления является технологическая смесь - 45% оксидов РЗЭ и 55% карбидов ТМ. Выход смеси составляет 40% от массы лопаритового концентрата. Карбидная фаза включает: С 26%, Nb 18%, Ti 56%. Расход энергии при тепловом кпд печи 50% составляет 11,4 ГДж/т концентрата.
Второй - плавильный этап осуществляется также в стандартной электродуговой печи, например в трехфазной печи переменного тока, в печи постоянного тока или в плазменной печи. В печь загружается шихта из железа и смеси оксидов РЗЭ и карбидов ТМ (продукта первого этапа). Массовое отношение железа и смеси составляет 2,3:1, что соответствует соотношению железа и карбидной фазы 4:1. Процесс плавления шихты ведется при температуре расплава 1700°C.
При меньшем расходе железа температура затвердевания расплава, содержащего ТМ, будет возрастать, что потребует увеличения рабочей температуры процесса и приведет к восстановлению РЗЭ и переходу их в расплав, а также к их интенсивному испарению. При большем расходе железа будет иметь место излишний его расход и повышенные энергетические потери. При температуре ниже 1700°C расплав, содержащий ниобий, титан и железо, будет переходить в твердое состояние, что будет препятствовать разделению РЗЭ и ТМ. При температуре более 1700°C - будут иметь место восстановление РЗЭ, переход их в расплав и интенсивное испарение РЗЭ и других компонентов расплава, а также неоправданно возрастут тепловые потери.
На втором этапе обработки концентрата будут получены два продукта: целевой продукт оксиды РЗЭ - основа шлака, который поступит на дальнейшую переработку по известным технологиям, и расплав железа, содержащий ниобий, титан и углерод, который подвергнется дальнейшей обработке на третьем этапе. В полученном расплаве железа - чугуне содержание Nb - 3,5%, Ti - 11%, С - 5%. Выход расплава, содержащего ТМ, составляет 87% от массы исходных материалов, выход шлака - целевого продукта, состоящего из оксиды РЗЭ, составляет 13%. Расход энергии при тепловом кпд печи 50% составляет 3,3 ГДж/т первоначальной шихты - смеси оксидов РЗЭ, кабидов ТМ и железа.
Третий - окислительный этап проводится в печи, в которой производилось плавление шихты на втором этапе. Расплав - чугун, полученный на втором этапе, содержащий ниобий и титан, после удаления шлака, содержащего целевой продукт второго этапа - оксиды РЗЭ, обрабатывается кислородом. При этом печь снабжается фурмой или кислородным копьем для обработки чугуна кислородом. Расход кислорода составляет 16% от массы чугуна. Чугун в печи продувается кислородом при отключенной дуге и при жидкой ванне. В результате продувки чугуна кислородом образуется сталь с содержанием углерода 0,2% и шлак - целевой продукт третьего этапа, содержащий 80% оксидов ТМ и 20% оксидов железа. Масса шлака относительно образовавшейся стали составляет 36%, а относительно первоначального чугуна - 28%. Энергия, выделяющаяся при окислении углерода и железа, составляет 2,3 ГДж/т чугуна. Полученный целевой продукт - оксиды ТМ перерабатывается по известным технологиям, а сталь используется в последующем цикле во втором этапе переработки или как конструкционный материал в виде дополнительного продукта.
Сквозной расчетный выход РЗЭ составляет 99,9%, ТМ соответственно - Nb 99,6%, Ti 99,3%. Сквозной расход электроэнергии при переработке лопаритового концентрата в оксиды РЗЭ и ТМ при использовании электропечей с тепловым кпд 50% равен 17,3 ГДж/т лопаритового концентрата, что составляет примерно 50% от стоимости концентрата.
При использовании заявленного способа переработки лопаритового концентрата улучшаются экологические показатели процесса, улучшаются условии труда, упрощается переработка концентрата, повышаются степень извлечения ценных компонентов и экономичность переработки концентрата.
Экологические показатели процесса улучшаются в результате отсутствия или сокращения процессов, использующих для переработки концентрата хлорную и кислотные технологии, основанные на применении реагентов, загрязняющих окружающую среду - воздух, воду и почву вредными веществами - хлором, фтором, серой и их соединениями.
Условия труда улучшаются благодаря сокращению использования в технологических процессах вредных и опасных веществ, содержащих хлор, фтор, оксиды серы и азота, применяемых при хлорном методе и кислотных технологиях переработки концентрата.
Степень извлечения ценных компонентов увеличивается благодаря сокращению звеньев переработки концентрата и упрощению технологической схемы в результате электрификации и автоматизации процесса, при этом потери ценных компонентов будут также уменьшены за счет использования герметичного электрооборудования.
Экономические показатели улучшаются в результате упрощения технологической схемы, улучшения экологии процесса и условий труда и повышения его производительности благодаря автоматизации электротехнологических операций, а также повышения степени извлечения ценных компонентов концентрата.

Claims (1)

  1. Способ переработки лопаритового концентрата, включающий измельчение концентрата, пирометаллургическое вскрытие концентрата, углетермическое восстановление компонентов концентрата и последующее разделение извлекаемых ингредиентов, отличающийся тем, что углетермическое восстановление концентрата проводят при температуре 1700°C, при содержании углерода относительно концентрата 30 мас.% и без восстановления РЗЭ, при этом титан и ниобий (ТМ) восстанавливаются до их карбидов, образуя смесь оксидов РЗЭ и карбидов ТМ, которые разделяют путем растворения карбидов ТМ в расплавленном железе, взятом в массовом соотношении со смесью РЗЭ и карбидов ТМ 2,3:1, причем массовое соотношение железа и карбидов ТМ соответствует 4:1, при этом формируют шлак, состоящий из оксидов РЗЭ в качестве целевого продукта, и расплав на основе железа, содержащий титан, ниобий и углерод, который после отделения от него шлака, содержащего оксиды РЗЭ, подвергают окислению при массовом расходе кислорода 16% от массы расплава с получением шлака, состоящего из оксидов ТМ, в качестве целевого продукта.
RU2013115839/02A 2013-04-09 2013-04-09 Способ переработки лопаритового концентрата RU2513327C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013115839/02A RU2513327C1 (ru) 2013-04-09 2013-04-09 Способ переработки лопаритового концентрата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013115839/02A RU2513327C1 (ru) 2013-04-09 2013-04-09 Способ переработки лопаритового концентрата

Publications (1)

Publication Number Publication Date
RU2513327C1 true RU2513327C1 (ru) 2014-04-20

Family

ID=50480799

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013115839/02A RU2513327C1 (ru) 2013-04-09 2013-04-09 Способ переработки лопаритового концентрата

Country Status (1)

Country Link
RU (1) RU2513327C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB932168A (en) * 1959-12-12 1963-07-24 Masashi Okage Method for the production of tungsten and molybdenum
SU660060A1 (ru) * 1976-12-03 1979-04-30 Всесоюзный научно-исследовательский институт противопожарной обороны МВД СССР Цифровое устройство дл обработки случайной информации
US4595412A (en) * 1985-07-22 1986-06-17 Gte Products Corporation Production of molybdenum metal
RU2060290C1 (ru) * 1994-01-04 1996-05-20 Сибирский химический комбинат Способ получения магнитных сплавов
RU2111833C1 (ru) * 1996-07-31 1998-05-27 Сибирский химический комбинат Способ переработки шлифотходов от производства постоянных магнитов
WO2001004366A1 (en) * 1999-07-09 2001-01-18 Cytec Technology Corp. Stripping lanthanide-loaded phosphonic/phosphinic extractant solutions in the presence of phosphine oxide
EP1162281A1 (en) * 2000-06-09 2001-12-12 Harper International Corp. Continous single stage process for the production of molybdenum metal
RU2201987C1 (ru) * 2001-11-29 2003-04-10 Закрытое акционерное общество "Росредмет" Способ вскрытия лопаритового концентрата

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB932168A (en) * 1959-12-12 1963-07-24 Masashi Okage Method for the production of tungsten and molybdenum
SU660060A1 (ru) * 1976-12-03 1979-04-30 Всесоюзный научно-исследовательский институт противопожарной обороны МВД СССР Цифровое устройство дл обработки случайной информации
US4595412A (en) * 1985-07-22 1986-06-17 Gte Products Corporation Production of molybdenum metal
RU2060290C1 (ru) * 1994-01-04 1996-05-20 Сибирский химический комбинат Способ получения магнитных сплавов
RU2111833C1 (ru) * 1996-07-31 1998-05-27 Сибирский химический комбинат Способ переработки шлифотходов от производства постоянных магнитов
WO2001004366A1 (en) * 1999-07-09 2001-01-18 Cytec Technology Corp. Stripping lanthanide-loaded phosphonic/phosphinic extractant solutions in the presence of phosphine oxide
EP1162281A1 (en) * 2000-06-09 2001-12-12 Harper International Corp. Continous single stage process for the production of molybdenum metal
RU2201987C1 (ru) * 2001-11-29 2003-04-10 Закрытое акционерное общество "Росредмет" Способ вскрытия лопаритового концентрата

Similar Documents

Publication Publication Date Title
RU2764728C1 (ru) Способ очистки, применяемый в металлургии молибдена
JP7376590B2 (ja) リチウムの回収のためのプロセス
Maweja et al. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals
CN103526042B (zh) 一种从金精矿中提取金、银的方法
TW200907072A (en) A method for recycling residues having an elevated content of zinc and sulfates
CN109207744B (zh) 一种多金属混合精矿的熔盐氯化提取方法
Zhang et al. A green approach for simultaneously preparing Ti5Si3 and Ti5Si4-TiAl3 alloys using spent SCR catalyst, Ti-bearing blast furnace slag, and Al alloy scrap
CN104164567A (zh) 一种从废旧高温合金中富集回收铌、钽的方法
Smorokov et al. Low-temperature desiliconization of activated zircon concentrate by NH4HF2 solution
Lei et al. Novel approach for clean utilization of complex low-grade metal resources using silicon as metal getter
Taninouchi et al. Reaction-mediator-based chlorination for the recycling of titanium metal scrap utilizing chloride waste
Yagmurlu et al. Combined saf smelting and hydrometallurgical treatment of bauxite residue for enhanced valuable metal recovery
Yu et al. Vanadium extraction from water-cooled vanadium converter slag via salt-free roasting and acid leaching
NO115130B (ru)
Liu et al. Novel methods to extract vanadium from vanadium slag by liquid oxidation technology
RU2513327C1 (ru) Способ переработки лопаритового концентрата
Yao et al. Clean process for vanadium extraction from vanadium-bearing converter slag
CN108950187A (zh) 一种碳酸钠焙烧分解混合稀土矿的方法
CN104805292A (zh) 稀土镨钕熔盐电解废料中有价成分的分离及回收方法
RU2525951C1 (ru) Способ переработки лопаритового концентрата
BE1026928B1 (fr) Procédé hydrométallurgique de traitement de poussières contenant des oxydes métalliques issues de la pyrométallurgie
KR101306688B1 (ko) 슬래그로부터 실리콘을 회수하는 방법 및 장치
RU2398900C1 (ru) Способ извлечения палладия из отходов электронного сырья
Ntita et al. Selective leaching of vanadium from vanadium slag using organic acids
RU2432408C1 (ru) Способ извлечения золота из отходов электронного лома