RU2511613C1 - Способ получения слоя фторографена - Google Patents

Способ получения слоя фторографена Download PDF

Info

Publication number
RU2511613C1
RU2511613C1 RU2012142404/28A RU2012142404A RU2511613C1 RU 2511613 C1 RU2511613 C1 RU 2511613C1 RU 2012142404/28 A RU2012142404/28 A RU 2012142404/28A RU 2012142404 A RU2012142404 A RU 2012142404A RU 2511613 C1 RU2511613 C1 RU 2511613C1
Authority
RU
Russia
Prior art keywords
layer
fluorination
layers
fluorographic
substrate
Prior art date
Application number
RU2012142404/28A
Other languages
English (en)
Inventor
Надежда Александровна Небогатикова
Ирина Вениаминовна Антонова
Виктор Яковлевич Принц
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН)
Priority to RU2012142404/28A priority Critical patent/RU2511613C1/ru
Application granted granted Critical
Publication of RU2511613C1 publication Critical patent/RU2511613C1/ru

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к нанотехнологии и предназначено для использования при создании современных тонкопленочных полупроводниковых приборов и структур наноэлектроники. В способе получения слоя фторографена от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм. При этом используют подложку кремния. На ее рабочей поверхности предварительно может быть выращен слой окиси кремния. Фторирование проводят в водном растворе плавиковой кислоты с содержанием 3÷7% HF длительностью обработки до 30 минут, но не менее tcr, при котором меняется проводимость фторируемых слоев. Кроме того, при фторировании используют температуры до 60°C. В результате достигается повышение качества слоев фторографена, снижение дефектности, уменьшение длительности процесса, повышение экологичности. 5 з.п. ф-лы, 2 ил.

Description

Изобретение относится к полупроводниковым приборам, к технологии изготовления полупроводниковых приборов, нанотехнологии и предназначено для использования при создании современных тонкопленочных полупроводниковых приборов и структур наноэлектроники, в частности при разработке наноразмерных приборов на основе графена в качестве изолирующих слоев нанометровой толщины.
Развитие нанотехнологии придало особую актуальность поиску способов получения тонких диэлектрических, полупроводниковых и металлических пленок толщиной от монослоя до нескольких нанометров для создания элементной базы наноэлектроники и, в частности, графеновой наноэлоктроники. Фторографен - это монослой, в котором каждый атом углерода соединен с атомом фтора (S.-H. Cheng, К. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, J. Phys. Rev. В., 81 (2010) 205435) и который вызывает в последнее время огромный интерес. Фторографен стабилен до температур более 400°C и является высококачественным изолятором с сопротивлением более 1012 Om/d, с шириной запрещенной зоны около 3 эВ (S.-H. Cheng, К. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, J. Phys. Rev. B, 81, (2010) 205435; R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Small., 6 (2010) 2877).
Известен способ получения слоя фторографена (S.-H. Cheng, К. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, J. Phys. Rev. B, 81, (2010) 205435), заключающийся в том, что осуществляют синтез фторографена путем проведения реакции между высокоупорядоченным пиролитическим графитом и фтором, при этом фтор в газообразном состоянии вводят в реактор изначально при температуре 115°C, реакцию проводят в течение 36÷48 часов при температуре 600°C и давлении фтора 1 атм, далее после фторирования кристалл расслаивают на листообразные частицы, представляющие собой тонкие слои фторографена, в растворе изопропанола с использованием ультразвука с последующим нанесением их на подложку - сетчатое основание из меди.
К недостаткам приведенного аналога относится невысокое качество получаемых тонких слоев фторографена, высокая дефектность; длительность получения слоев фторографена; низкая экологичность.
Недостатки обусловлены следующим.
Невысокое качество обусловлено не полностью завершенным образованием фторографена - отсутствием 100% прореагировавших атомов углерода. Высокая дефектность связана с операцией расслаивания фторографита на листообразные частицы фторографена с последующим нанесением их на подложку.
Для осуществления реакции фторирования используется фтор в газообразном состоянии, что обуславливает длительность и необходимость высоких температур. К тому же фторсодержащая атмосфера ядовита.
За ближайший аналог принят способ получения слоев фторографена (R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Small., 6 (2010), No. 24, p.p.2877-2884), в котором проводят операцию отделения - слой фторографена отделяют от объемного кристалла фторографита и отделенный слой фторографена размещают на химически инертной подложке, фторографит при этом получают путем обработки графита во фторсодержащей атмосфере, формируемой посредством декомпозиции XeF2 с образованием атомарного F, затем для осуществления более полного образования фторографена, или более полного фторирования, слой фторографена, размещенный на сетке из Аu в качестве подложки, подвергают повторному двустороннему воздействию фтора.
К недостаткам способа, приведенного в качестве ближайшего аналога, относится невысокое качество получаемых тонких слоев фторографена, высокая дефектность; длительность получения слоев фторографена; низкая экологичность.
Недостатки обусловлены следующим.
Во-первых, процесс образования фторографена все-таки не является полностью завершенным. Количество прореагировавших атомов углерода не превышает 70%, что видно по наличию пика G (около 1589 см-1) в спектрах комбинационного рассеивания света. Кроме того, операция отслоения тонких пленок фторографена от кристалла фторографита обеспечивает большое количество дефектов, позволяет получать лишь небольшие кусочки пленок, как правило, с характерными размерами несколько десятков микрометров.
Во-вторых, для осуществления реакции фторирования используется фтор в газообразном состоянии - фторсодержащая атмосфера, которая ядовита в особенности при повышенной температуре. Использование газообразного реагента обуславливает большую длительность процесса и наличие высоких температур.
Техническим результатом является:
- повышение качества получаемых тонких, до толщин от 10 до 15 нм, слоев фторографена, снижение дефектности;
- существенное уменьшение длительности получения слоев фторографена;
- повышение экологичности.
Технический результат достигается в способе получения слоев фторографена, заключающемся в том, что проводят операции фторирования и отделения, при этом от объемного графита отделяют слой требуемой толщины и размещают его на подложке, затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм.
В способе в качестве подложки используют подложку кремния.
В способе в составе подложки на ее рабочей поверхности выращен слой окиси кремния.
В способе проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм, а именно водного раствора плавиковой кислоты с содержанием 3÷7% HF длительностью обработки до 30 минут, но не менее tcr, при котором меняется проводимость фторируемых слоев.
В способе от объемного графита отделяют слой требуемой толщины и размещают его на подложке, а именно отделяют слой толщиной менее 10÷15 нм - мультиграфена.
В способе проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм, а именно при использовании температур до 60°C.
Сущность технического решения поясняется нижеследующим описанием и прилагаемыми фигурами.
На Фиг.1 приведена зависимость минимального времени обработки мультиграфена от его толщины.
На Фиг.2 показаны спектры комбинационного рассеивания света (КРС), полученные на структурах, обработанных в течение 3, 7 и 11 минут, с толщиной мультиграфена 4 нм. Достижение технического результата базируется на следующем.
Во-первых, в отличие от приведенных аналогов, в которых сначала проводят операцию фторирования графита и только после этого отделяют слой фторографена с размещением его на подложке, в предлагаемом техническом решении на подложке сначала формируют исходный слой графита требуемой толщины (мультиграфен), а затем осуществляют фторирование. Такая последовательность операций обеспечивает снижение дефектности получаемых тонких слоев фторографена.
Во-вторых, в предлагаемом техническом решении осуществлен переход от газовой фторсодержащей среды к жидкому реагенту на основе плавиковой кислоты. В результате получение слоев фторографена становится более быстрым, легким, технологичным и экологичным. Минимальное время обработки пропорционально зависит от толщины структуры (см. Фиг.1), для указанных толщин до 10-15 нм оно не превышает 30 минут. Особо следует отметить, что техническое решение позволяет использовать в качестве подложек подложки кремния, в то время как ближайший аналог не обеспечивает, как подчеркивают сами же авторы, такой возможности, поскольку газообразная фторсодержащая среда действует на подложки кремния разрушающе. Кроме того, использование жидкого реагента на основе плавиковой кислоты, как показывают спектры КРС (см. Фиг.2), обеспечивает законченное формирование фторографена, что обеспечивает его более высокое качество.
Вывод о формировании фторографена основан на характерном изменении упомянутых спектров КРС. С течением обработки сначала на спектрах комбинационного рассеяния света (КРС) происходит возрастание интенсивности пика D (1350 см-1) и уменьшение интенсивности пиков G и 2D (около 1580 см-1 и около 2700 см-1 соответственно). Затем все пики на спектрах КРС полностью исчезают.
Вторым, важным, но косвенным аргументом в пользу протекания реакции образования фторографена, является переход проводник - изолятор, наблюдаемый по прошествии при обработке некоторого характерного времени tcr. Проводимость структур, обработанных в течение времен меньше tcr, практически не меняется по сравнению с исходной проводимостью и характеризуется величинами сопротивления от 100 Ом/□ до 1 кОм/□. После перехода сопротивление составляет около 100 ГОм/□. Это может быть связано с тем, что на этой стадии происходит полное фторирование графена и мультиграфеновых пленок. Показано, что проводимость структур не восстанавливается при отжиге 300°C в течение часа. Указанные факты являются дополнительным подтверждением формирования фторографена, так как известно, что графен восстанавливает свою проводимость при термообработках в диапазоне примерно от 200 до 290°C (S. Ryu, M.Y. Han, J. Maultzsch, T.F. Heinz, P. Kim, M.L. Steigerwald, L.E. Bras, Nano Letters, 8, (2008), 4597), тогда как связи C-F остаются стабильными до температур около 400°C (S.-H. Cheng, К. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, J. Phys. Rev. В., 81 (2010) 205435). Многократные повторные измерения показали стабильность свойств полученных структур в течение года.
Важным фактором для получения фторографена является то обстоятельство, что формирование фторографена наблюдается только в отношении толщин менее 10÷15 нм. Стоит подчеркнуть, что в процессе обработки наступление момента времени, когда резко возрастает величина сопротивления формируемого слоя фторографена, что является, по нашему мнению, следствием формирования связанной сетки фторографена, полностью подавляющей проводимость слоя, также сильно зависит от толщины формируемого слоя фторографена. Так, например, для графена или биграфена достаточно провести обработку в 5% водном растворе HF в течение 30 с, чтобы сформировать слой фторографена соответствующей толщины.
Операцию фторирования с использованием плавиковой кислоты проводят при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм. В частности, используют раствор при содержании плавиковой кислоты в растворе от 3 до 7%. В указанном интервале скорости процесса оптимальны и слабо меняются, за пределами значений данного интервала скорости падают. Например, использование 1% раствора существенно замедляет процесс и, даже, он может оказаться не полностью завершенным: наблюдается лишь формирование сетки фторографена на границах доменов мультиграфена. Длительность обработки увеличивается в случае использования более слабых или более концентрированных растворов.
Кроме того, к условиям проведения операции фторирования, в частности, относятся температурные условия. Температура является параметром, определяющим протекание процесса фторирования. Так, увеличение температуры при фторировании до 60°C приводит к возможности получения максимальной толщины фторографена с реализацией полного фторирования. Известно, что при обработке системы SiO2/Si, используемой в качестве подложки, происходит травление окисла с выделением тепла. Формируя путем отделения от объемного графита слоя требуемой толщины (исходный слой мультиграфена) на подложке SiO2/Si, автоматически обеспечивается локальное повышение температуры, стимулирующее протекание реакции фторирования. Таким образом, увеличение температуры сокращает также и время фторирования. Время полного стравливания окисла кремния толщиной 300 нм в 5% растворе плавиковой кислоты составляет 15 минут. Времена фторирования, используемые для получения слоев фторографена указанных толщин, зачастую меньше 15 минут.
Время обработки выбирают не менее tcr, при котором меняется проводимость фторируемых слоев. При меньших значениях проводимость структур практически не меняется по сравнению с исходной проводимостью. С другой стороны, время обработки выбирают не более 30 минут, поскольку процесс фторирования в любом случае завершается в указанный временной промежуток, и более продолжительная обработка не имеет смысла.
В заключение пояснения сущности разработанного решения отметим, что указанные конкретные условия проведения операции фторирования - концентрация раствора плавиковой кислоты, время обработки и температура, при которой ее осуществляют, являются взаимно связанными условиями.
В качестве сведений, подтверждающих возможность осуществления способа с достижением технического результата, приводим нижеследующие примеры реализации.
Пример 1.
При получении слоя фторографена проводят операции фторирования и отделения. Сначала от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Отделяют слой толщиной, соответствующей однослойному графену. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоя фторографена толщиной в один слой.
В качестве подложки используют подложку кремния.
Операцию фторирования проводят с использованием водного раствора плавиковой кислоты с содержанием 3% HF и 97% воды длительностью обработки 1 минута при комнатной температуре раствора.
В результате обработки получают слой фторографена, измеренные спектры КРС которого показывают полное исчезновение пиков G, D и 2D, связанных с графеном.
Пример 2.
При получении слоя фторографена проводят операции фторирования и отделения. Сначала от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Отделяют слой толщиной, соответствующей 5 нм мультиграфена. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоя фторографена толщиной 5 нм.
В качестве подложки используют подложку кремния.
Операцию фторирования проводят с использованием водного раствора плавиковой кислоты с содержанием 5% HF и 95% воды длительностью обработки 8 минут при комнатной температуре раствора.
В результате обработки получают слой фторографена, измеренные спектры КРС которого показывают полное исчезновение пиков G, D и 2D, связанных с графеном.
Пример 3.
При получении слоя фторографена проводят операции фторирования и отделения. Сначала от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Отделяют слой толщиной, соответствующей 9 нм мультиграфена. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоя фторографена толщиной около 9 нм.
В качестве подложки используют подложку кремния.
Операцию фторирования проводят с использованием водного раствора плавиковой кислоты с содержанием 7% HF и 93% воды длительностью обработки 30 минут при комнатной температуре раствора.
В результате обработки получают слой фторографена, измеренные спектры КРС которого показывают полное исчезновение пиков G, D и 2D, связанных с графеном.
Пример 4.
При получении слоя фторографена проводят операции фторирования и отделения. Сначала от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Отделяют слой толщиной, соответствующей 5 нм мультиграфена. Затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоя фторографена толщиной около 5 нм.
В качестве подложки используют подложку кремния, в составе которой на рабочей поверхности выращен слой окиси кремния.
Операцию фторирования проводят с использованием водного раствора плавиковой кислоты с содержанием 5% HF и 95% воды длительностью обработки 2 минуты при температуре раствора 60°C.
В результате обработки получают слой фторографена, измеренные спектры КРС которого показывают полное исчезновение пиков G, D и 2D, связанных с графеном.

Claims (6)

1. Способ получения слоев фторографена, заключающийся в том, что проводят операции фторирования и отделения, отличающийся тем, что от объемного графита отделяют слой требуемой толщины и размещают его на подложке, затем проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм.
2. Способ по п.1, отличающийся тем, что в качестве подложки используют подложку кремния.
3. Способ по п.2. отличающийся тем, что в составе подложки на ее рабочей поверхности выращен слой окиси кремния.
4. Способ по п.1, отличающийся тем, что проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм, а именно водного раствора плавиковой кислоты с содержанием 3÷7% HF длительностью обработки до 30 минут, но не менее tcr, при котором меняется проводимость фторируемых слоев.
5. Способ по п.1, отличающийся тем, что от объемного графита отделяют слой требуемой толщины и размещают его на подложке, а именно отделяют слой толщиной менее 10÷15 нм - мультиграфена.
6. Способ по п.1, отличающийся тем, что проводят операцию фторирования с использованием плавиковой кислоты при условиях, обеспечивающих получение слоев фторографена толщиной до 10÷15 нм, а именно при использовании температур до 60°C.
RU2012142404/28A 2012-10-04 2012-10-04 Способ получения слоя фторографена RU2511613C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012142404/28A RU2511613C1 (ru) 2012-10-04 2012-10-04 Способ получения слоя фторографена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012142404/28A RU2511613C1 (ru) 2012-10-04 2012-10-04 Способ получения слоя фторографена

Publications (1)

Publication Number Publication Date
RU2511613C1 true RU2511613C1 (ru) 2014-04-10

Family

ID=50438082

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142404/28A RU2511613C1 (ru) 2012-10-04 2012-10-04 Способ получения слоя фторографена

Country Status (1)

Country Link
RU (1) RU2511613C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105621399A (zh) * 2015-12-25 2016-06-01 山东重山光电材料股份有限公司 一种采用三氟化氮为氟源制备高纯氟化石墨烯的方法
RU2603160C2 (ru) * 2015-01-12 2016-11-20 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ изготовления активного слоя для резистивной памяти
RU2620123C1 (ru) * 2016-04-26 2017-05-23 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ изготовления суспензии для 2D печати диэлектрических слоев на основе фторографена
RU2714379C1 (ru) * 2019-05-31 2020-02-14 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Элемент резистивной памяти
RU2816197C2 (ru) * 2022-07-13 2024-03-26 Общество с ограниченной ответственностью "АМВР" Способ получения устойчивых дисперсий фторида графена

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011109695A (ru) * 2011-03-16 2012-09-27 Михаил Алексеевич Игнатов (RU) Способ получения свободного графена

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011109695A (ru) * 2011-03-16 2012-09-27 Михаил Алексеевич Игнатов (RU) Способ получения свободного графена

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.R. Nair, et al. Small, 6 (2010), No. 24, p.p.2877-2884. S.-H. Cheng et al. J. Phys. Rev. В., 81 (2010), p. 205435. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603160C2 (ru) * 2015-01-12 2016-11-20 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ изготовления активного слоя для резистивной памяти
CN105621399A (zh) * 2015-12-25 2016-06-01 山东重山光电材料股份有限公司 一种采用三氟化氮为氟源制备高纯氟化石墨烯的方法
RU2620123C1 (ru) * 2016-04-26 2017-05-23 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ изготовления суспензии для 2D печати диэлектрических слоев на основе фторографена
RU2714379C1 (ru) * 2019-05-31 2020-02-14 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Элемент резистивной памяти
RU2816197C2 (ru) * 2022-07-13 2024-03-26 Общество с ограниченной ответственностью "АМВР" Способ получения устойчивых дисперсий фторида графена

Similar Documents

Publication Publication Date Title
Zhu et al. Healing of reduced graphene oxide with methane+ hydrogen plasma
EP2950334B1 (en) Method of forming pattern by using a hardmask composition
Compagnini et al. Laser assisted green synthesis of free standing reduced graphene oxides at the water–air interface
Nebogatikova et al. Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties
RU2511613C1 (ru) Способ получения слоя фторографена
JP6283508B2 (ja) 薄片化黒鉛分散液及び薄片化黒鉛の製造方法
JP2016518300A (ja) ガラス上への低温グラフェン析出方法、及びそれに関連する物品/装置
Lee et al. Synthesis of conducting transparent few-layer graphene directly on glass at 450 C
TW201637870A (zh) 石墨烯及用於將cvd生長石墨烯轉移至疏水性基材之無聚 合物方法
Ishikawa et al. Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates
CN106395768B (zh) 一种超薄氮化硼纳米片的合成方法
Godin et al. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates
Nebogatikova et al. Fluorinated graphene suspension for inkjet printed technologies
Zhang et al. Layer-controllable graphene by plasma thinning and post-annealing
Mag-isa et al. A systematic exfoliation technique for isolating large and pristine samples of 2D materials
Anagnostopoulos et al. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation
WO2015184473A1 (en) Hybrid graphene materials and methods of fabrication
Wu et al. Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors
Kotin et al. High carrier mobility in chemically modified graphene on an atomically flat high-resistive substrate
Qi et al. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica
JP6195109B2 (ja) グラフェン分散液の製造方法およびグラフェン薄膜の製造方法
Zhang et al. Millimeter-long multilayer graphene nanoribbons prepared by wet chemical processing
Li et al. Direct growth of nanographene at low temperature from carbon black for highly sensitive temperature detectors
Obata et al. High degree reduction and restoration of graphene oxide on SiO2 at low temperature via remote Cu-assisted plasma treatment
Yu Effective reduction of copper surface for clean graphene growth