RU2510363C1 - Теплоноситель на основе соединений кремния - Google Patents

Теплоноситель на основе соединений кремния Download PDF

Info

Publication number
RU2510363C1
RU2510363C1 RU2013104925/05A RU2013104925A RU2510363C1 RU 2510363 C1 RU2510363 C1 RU 2510363C1 RU 2013104925/05 A RU2013104925/05 A RU 2013104925/05A RU 2013104925 A RU2013104925 A RU 2013104925A RU 2510363 C1 RU2510363 C1 RU 2510363C1
Authority
RU
Russia
Prior art keywords
methyl
compounds
heat carrier
trimethyldisilazane
coolant
Prior art date
Application number
RU2013104925/05A
Other languages
English (en)
Inventor
Евгений Викторович Бурлаков
Вячеслав Андреевич Василенко
Александр Григорьевич Заковоротный
Валерий Иванович Лебедев
Михаил Андреевич Павлов
Александр Николаевич Поливанов
Ольга Георгиевна Рыжова
Николай Викторович СТЕПАНОВ
Павел Аркадьевич Стороженко
Original Assignee
Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химии И Технологии Элементоорганических Соединений"
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ им. А.П. АЛЕКСАНДРОВА", Предприятие госкорпорации "РОСАТОМ"
Александр Григорьевич Заковоротный
Николай Викторович СТЕПАНОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химии И Технологии Элементоорганических Соединений", Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт", ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ им. А.П. АЛЕКСАНДРОВА", Предприятие госкорпорации "РОСАТОМ", Александр Григорьевич Заковоротный, Николай Викторович СТЕПАНОВ filed Critical Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химии И Технологии Элементоорганических Соединений"
Priority to RU2013104925/05A priority Critical patent/RU2510363C1/ru
Application granted granted Critical
Publication of RU2510363C1 publication Critical patent/RU2510363C1/ru

Links

Abstract

Изобретение относится к области химии и может быть использовано для создания теплоносителей. Предложен теплоноситель на основе кремнийорганических соединений. Теплоноситель содержит соединения на основе органодисилазанов или органоциклосилазанов. Заявленные соединения обладают стабильностью в потоке нейтронов при температуре выше 350°C, которую оценивают по отсутствию изменения молекулярной массы соединения после его облучения нейтронами. Заявленные в качестве теплоносителя соединения имеют температуру кипения ниже 126°C. Техническим результатом является повышенная эффективность заявленного теплоносителя при его использовании в ядерном реакторе и других подобных системах теплорегулирования. 4 з.п. ф-лы, 4 табл.

Description

Изобретение относится к теплоносителям, в том числе неэлектропроводным жидкостям, для различных систем терморегулирования, в частности для атомных реакторов, электрических машин, а также может использоваться в качестве заменителей антифриза и тосола.
Известны теплоносители, в состав которых в качестве основного компонента входят различные гликоли (например, RU 2370512, 2009).
Недостатком теплоносителей на основе гликолей является многокомпонентный сложный состав, включающий 4 антикоррозионные присадки, что усложняет технологию их получения. Кроме того, присутствие воды в составе не обеспечивает диэлектрические свойства теплоносителя.
Известны ингибирующие коррозию теплоносители, содержащие соединения азота из класса триазолов, коллоидную двуокись кремния, поверхностно-активное вещество и, возможно, добавки различных спиртов (US 7662304, 2010; US 20090266519, 2009).
К недостаткам этих теплоносителей можно отнести наличие в составе воды, гидролизующей компоненты ингибирующего теплоносителя, приводя к изменению его вязкости и повышению его проводимости.
В области низкотемпературных теплоносителей широко представлены кремнийорганические соединения из класса силоксанов (RU 2221826, 2004).
Однако при повышенных температурах вязкость теплоносителя будет возрастать за счет увеличения его молекулярной массы, при этом теплоноситель будет осаждаться на теплопередающей поверхности, что приводит к снижению эффективности теплопередачи.
Из уровня техники известен способ получения и использования высокотемпературного теплоносителя (RU 1832696, 1989).
Стабильность полученного теплоносителя зависит от содержания в нем кислорода. При остаточной концентрации кислорода менее 0,5 об. термостабилизация не достигается, а более 5 об. теряется однородность продукта при хранении.
Наиболее близким по технической сущности является использование в качестве теплоносителя полибутилсилазана: (C4H9Si)15(NH)18 (см. GB 921049, 1963).
Однако из-за наличия объемных радикалов, связанных с атомом кремния, не обеспечивается стабильность известного теплоносителя в условиях высоких температур в течение длительного времени, в том числе в потоке нейтронов. Высокая молекулярная масса соединения обусловливает высокую вязкость теплоносителя, что приводит к ухудшению процесса теплообмена.
Задачей изобретения является разработка нового неэлектропроводного теплоносителя, обладающего высокими эксплуатационными характеристиками, в том числе в потоке нейтронов и при эксплуатации в герметичном объеме в течение длительного времени.
Поставленная задача решается описываемым теплоносителем на основе неэлектропроводных соединений кремния, в качестве которых используют органодисилазаны или органоциклосилазаны, обладающие стабильностью в потоке нейтронов при температуре выше 350°C, характеризующиеся отсутствием изменения молекулярной массы соответствующего соединения после его облучения потоком нейтронов, при этом органодисилазаны выбирают из группы: гекаметилдисилазан, гексаметил(N-метил)дисилазан,1 бис(1,1-диметил-1-фенил)силазан, 1,1-диметил-1-фенил-3,3,3-триметилдисилазан, 1,1,1-трифенил-3,3,3-триметилдисилазан, 1,1,1-триэтил-3,3,3-триметилдисилазан, 1-метил, 1-дифенил-3,3,3-триметилдисилазан, а органоциклосилазаны выбирают из группы: гексаметилциклотрисилазан, октаметилциклотрисилазан, гексафенилциклотрисилазан, 1,3,5-метилфенилциклотрисилазан(транс), 1,3,5-метилфенилциклотрисилазан(цис), гексаэтилциклотрисилазан, (N-метил)гексаметилциклотрисилазан, (N-метил)октаметилциклотрисилазан.
Предпочтительно выбирают соединение, обладающее стабильностью в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 400°C и давлении 250-300 ат.
Предпочтительно выбирают соединение, обеспечивающее давление насыщенных паров при 350-450°C не выше 12 атм.
В качестве теплоносителя выбирают соединения, характеризующиеся температурой кипения при атмосферном давлении не менее 126°C.
Предпочтительно, выбранное соединение содержит изотопы 29Si или 30Si и изотопы 15N.
В общем случае заявленные соединения могут быть получены известным способом, а именно: аммонолизом органохлорсиланов. Методики получения описаны в следующих источниках информации: К.А.Андрианов. Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров. - «Химия», 1973, с.177-180; К.А.Андрианов, Л.М.Хананашвили. Технология элементоорганических мономеров и полимеров - «Химия», 1983, с.208-211).
Соединения, содержащие изотопы 29Si или 30Si и изотопы 15N, получают путем взаимодействия соответствующих органохлорсиланов, содержащих изотопы 29Si или 30Si, с аммиаком или амином, содержащим изотоп 15N.
Заявленные в качестве теплоносителя органодисилазаны можно представить общей химической формулой: (1R 2R 4R Si)2- N 3R, где 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, при этом независимо друг от друга представляют собой: 1R=Ph, Me, 2Et; 2R=Me, Et, Ph; 3R=H D, метил D, этил D, пропил D, 4R=Ph; Et; пропил D.
Заявленные в качестве теплоносителя органоциклосилазаны могут быть представлены общей химической формулой [ 1 R _ 2 R S i N R 3 ] n
Figure 00000001
, причем n=3, 4; 1R, 2R, 3R, 4R означают одинаковые или разные радикалы, которые независимо друг от друга представляют собой: 1R=Ph, Me, Et; 2R=Me, Et, Ph; 3R=H D, алкил D (метил D, этил D, пропил D), 4R=Ph; Et; пропил D.
В объеме заявленной совокупности признаков достигается новый технический результат, заключающийся в эффективности использования заявленных соединений в качестве теплоносителей, особенно в качестве теплоносителей ядерных реакторов.
Ниже приведены примеры осуществления изобретения, оформленные в виде таблиц, содержащих конкретные физические, теплофизические и иные характеристики, определяющие эффективность работы заявленных соединений под действием облучения, и характеристики прототипа.
Таблица 1
Характеристики прототипа

п.п.
Структурная формула Т кип, °C / Р, мм рт.ст. Молекулярная масса*
До облучения После облучения
прототип (C4H9Si)15(NH)18 1425 1500
Таблица 2
Характеристики гексаорганодисилазанов
Структурная формула T кип, Давление Молекулярная масса
п.п. °C/ P, мм рт.ст. насыщенных паров при T≥350°C До облучения После облучения
1 [(CH3)3Si]2NH 126/760 ≤12 атм 161.4 Изменений нет
2 [(CH3)3Si]2NCH3 148/760 ≤12 атм 175.4 Изменений нет
3 [(CH3)2PhSi]2NH 96.9/0.1 ≤12 атм 285.5 Изменений нет
4 (CH3)2PhSiNHSi (CH3)3 75.9/1 ≤12 атм 223.0 Изменений нет
5 Ph3SiNHSi (CH3)3 186/2 ≤12 атм 347 Изменений нет
6 (C2H5)3SiNHSi(CH3)3 194.3/738 ≤12 атм 203 Изменений нет
7 (CH3)Ph2SiNHSi (CH3)3 173.5/3.5 ≤12 атм 285 Изменений нет
Таблица 3
Характеристики гексаорганоциклотрисилазанов
№ п.п. Структурная формула T кип, °С / Р, мм рт.ст. Давление насыщенных паров при T≥350°C Молекулярная масса
До облучения После облучения
1 [(CH3)2SiNH]3 51-52/4 ≤12 атм 219.51 Изменений нет
2 [(CH3)2SiNH]4 56-57/1 ≤12 атм 292.7 Изменений нет
3 *[Ph2SiNH]3 213.5 ≤12 атм 597 Изменений нет
4 **[CH3PhSiNH]3 транс 246/2-5 ≤12 атм 408 Изменений нет
5 ***[CH3PhSiNH]3 цис 280/7-8 ≤12 атм 408 Изменений нет
6 [(C2H5)2SiNH]3 128-129/1 ≤12 атм 309 Изменений нет
*-T пл, **Т пл. - 61.6-62.6, ***Тпл - 116.5.
Молекулярная масса соединений, указанных в таблицах, определена криоскопическим методом (по температуре замерзания) до и после облучения в течение 1 часа в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 350°C.
Следует заметить, что все соединения, представленные в таблицах 2 и 3, при атмосферном давлении имеют температуру кипения не менее 126°C. Для части соединений, представленных в таблице, температура кипения указана при давлении ниже атмосферного (реальные условия использования), поэтому в соответствующей графе таблицы значение температуры кипения меньше чем 126°С. Однако при 760 мм рт.ст. температуры кипения этих соединений превышают 190°C, что соответствует характеристике, заявленной в п.4 формулы изобретения.
Ниже представлены подробные теплофизические характеристики двух соединений, одно из которых выбрано из группы органодисилазанов, а другое - из группы органоциклосилазанов.
Таблица 4
Теплофизические характеристики гексаметилдисилазана и гексаметилциклотрисилазана
Характеристики Соединения
п.п. [(CH3)3Si]2NH [(CH3)2SiNH]3
1 Диэлектрическая проницаемость, 1000 Hzz 2.27 2.57
2 Показатель преломления, n 4 20
Figure 00000002
1.4080 1.4070
3 Плотность D 4 20
Figure 00000003
,г/см3
0.7742 1.095
4 Теплота испарения, АН исп, ккал/моль 9.2 (при 70°C) -
5 Теплота образования, ккал/моль, (298 K) -91.8 132
6 Вязкость, сСт, при 20°C 0.9 1.7
7 Теплоемкость Ср, 82.5(298.1 K) 2.64 кДж/кг·K
кал/моль·град кал/моль·K
8 Поверхностное натяжение, 5, дн/см, при 25°C 18.16() 19.02
9 Коэффициент теплопроводности, λ, ккал/м·час·град 0.0985(при 25°C), 0094*(при 60°C) 0.6 Вт/м·K
10 Удельная 5.4·10-14 1.10-13
электропроводность, см-1·Ом-1 при 20±2°C, при 100±2°C 5.1·10-13
Испытаны теплофизические параметры всех заявленных соединений. Результаты испытаний оказались аналогичны результатам, приведенным в таблице 4.
Как следует из описания, все заявленные соединения характеризуются высокими температурами кипения, что обеспечивает низкую плотность паров. Например, температура разложения гексаметилтрисилазана составляет при давлении 2 кбар в атмосфере азота более 1300°C. После облучения мощностью 400 кВ при температурах более 350°C давление насыщенных паров не превышает 12 атм. Не выявлено изменение молекулярной массы заявленных теплоносителей под действием потока нейтронов в реальных условиях работы, что свидетельствует об их стабильности, т.е. возможности их эксплуатации в герметичном объеме в течение длительного времени. Кроме того, заявленные в качестве теплоносителя соединения достаточно инертны и не подвержены взаимодействию с конструкционными металлическими материалами. Таким образом, из результатов испытаний, представленных в описании, можно сделать вывод, что предложенные соединения являются эффективными теплоносителями, в том числе в условиях работы ядерного реактора. Заявленные соединения эффективны также в качестве заменителей антифриза и тосола.

Claims (5)

1. Теплоноситель на основе соединений кремния, содержащий соединения класса силазанов, отличающийся тем, что содержит органодисилазаны или органоциклосилазаны, обладающие стабильностью в потоке нейтронов при температуре выше 350°C, которые характеризуются отсутствием изменения молекулярной массы соответствующего соединения после его облучения потоком нейтронов, при этом органодисилазаны выбирают из группы: гекcаметилдисилазан, гексаметил(N-метил)дисилазан, бис(1,1-диметил-1-фенил)силазан, 1,1-диметил-1-фенил-3,3,3-триметилдисилазан, 1,1,1-трифенил-3,3,3-триметилдисилазан, 1,1,1-триэтил-3,3,3-триметилдисилазан, 1-метил, 1-дифенил-3,3,3-триметилдисилазан, а органоциклосилазаны выбирают из группы: гексаметилциклотрисилазан, октаметилциклотрисилазан, гексафенилциклотрисилазан, 1,3,5-метилфенилциклотрисилазан(транс), 1,3,5-метилфенилциклотрисилазан(цис), гексаэтилциклотрисилазан, (N-метил)гексаметилциклотрисилазан, (N-метил)октаметилциклотрисилазан.
2. Теплоноситель по п.1, отличающийся тем, что обладает стабильностью в потоке нейтронов 1014 n/cm2 при рабочей температуре выше 400°C и давлении 250-300 ат.
3. Теплоноситель по п.1, отличающийся тем, что обеспечивает давление насыщенных паров при 350-450°C не выше 12 атм.
4. Теплоноситель по п.1, отличающийся тем, что характеризуется температурой кипения при атмосферном давлении не менее 126°C.
5. Теплоноситель по п.1, отличающийся тем, что содержит соединения на основе органодисилазана или органоциклосилазана, содержащего изотопы 29Si или 30Si и изотопы 15N.
RU2013104925/05A 2013-02-06 2013-02-06 Теплоноситель на основе соединений кремния RU2510363C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013104925/05A RU2510363C1 (ru) 2013-02-06 2013-02-06 Теплоноситель на основе соединений кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013104925/05A RU2510363C1 (ru) 2013-02-06 2013-02-06 Теплоноситель на основе соединений кремния

Publications (1)

Publication Number Publication Date
RU2510363C1 true RU2510363C1 (ru) 2014-03-27

Family

ID=50343057

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104925/05A RU2510363C1 (ru) 2013-02-06 2013-02-06 Теплоноситель на основе соединений кремния

Country Status (1)

Country Link
RU (1) RU2510363C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB921049A (en) * 1959-11-04 1963-03-13 Ici Ltd Organo-silicon compounds
SU1832696A1 (ru) * 1989-01-06 1996-08-27 Государственный научно-исследовательский институт химии и технологии элементоорганических соединений Способ термостабилизации олигоорганосилоксанов
US20100098987A1 (en) * 2004-09-08 2010-04-22 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7744775B2 (en) * 2005-10-25 2010-06-29 Honeywell International Inc. Heat transfer fluid compositions for cooling systems containing magnesium or magnesium alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB921049A (en) * 1959-11-04 1963-03-13 Ici Ltd Organo-silicon compounds
SU1832696A1 (ru) * 1989-01-06 1996-08-27 Государственный научно-исследовательский институт химии и технологии элементоорганических соединений Способ термостабилизации олигоорганосилоксанов
US20100098987A1 (en) * 2004-09-08 2010-04-22 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7854253B2 (en) * 2004-09-08 2010-12-21 Honeywell International Inc. Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7744775B2 (en) * 2005-10-25 2010-06-29 Honeywell International Inc. Heat transfer fluid compositions for cooling systems containing magnesium or magnesium alloys

Similar Documents

Publication Publication Date Title
Ciccioli et al. Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3
Kamminga et al. The role of connectivity on electronic properties of lead iodide perovskite-derived compounds
García-Fernández et al. Phase transition, dielectric properties, and ionic transport in the [(CH3) 2NH2] PbI3 organic–inorganic hybrid with 2H-hexagonal perovskite structure
Nishida et al. Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy
KR101443758B1 (ko) 실리카층 형성용 조성물, 그 제조방법, 이를 이용한 실리카층 및 실리카층 제조방법
US9082612B2 (en) Composition for forming a silica layer, method of manufacturing the composition, silica layer prepared using the composition, and method of manufacturing the silica layer
AU2010276766B2 (en) Carbon dioxide absorbent and method of using the same
US9096726B2 (en) Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
KR101432606B1 (ko) 갭필용 충전제, 이의 제조 방법 및 이를 사용한 반도체 캐패시터의 제조 방법
KR20170126049A (ko) 실리콘 질화막 식각 용액
WO2012087750A1 (en) Cyclic carbosilane dielectric films
KR101556672B1 (ko) 실리카계 절연층 형성용 조성물, 실리카계 절연층 형성용 조성물의 제조방법, 실리카계 절연층 및 실리카계 절연층의 제조방법
KR101741899B1 (ko) 이산화탄소 흡수용 공융용제, 그 제조방법 및 이를 포함하는 이산화탄소 흡수제
JP6530167B2 (ja) 二酸化炭素化学吸収液及び二酸化炭素分離回収方法
Ning et al. Energetic, optical, and electronic properties of intrinsic electron-trapping defects in YAlO3: a hybrid DFT study
Vidya et al. Ab-initio studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO
Yadav et al. Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from ab initio calculations
CN101859913A (zh) 含氰基高介电常数有机硅电解质材料
Weston et al. Hole polarons and p-type doping in boron nitride polymorphs
JP2019204954A (ja) エッチング液組成物、絶縁膜のエッチング方法、半導体素子の製造方法及びシラン化合物
Cardiano et al. POSS–tetraalkylammonium salts: a new class of ionic liquids
RU2510363C1 (ru) Теплоноситель на основе соединений кремния
KR101825546B1 (ko) 실리카계 막 형성용 조성물, 및 실리카계 막의 제조방법
US20150243869A1 (en) Self doping materials and methods
JP5667092B2 (ja) シリコンウエハを織地化する方法、その方法のための処理液及びその使用

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180207