RU2509844C2 - Способ управления источником вакуума в вакуумной канализационной системе - Google Patents

Способ управления источником вакуума в вакуумной канализационной системе Download PDF

Info

Publication number
RU2509844C2
RU2509844C2 RU2011103717/13A RU2011103717A RU2509844C2 RU 2509844 C2 RU2509844 C2 RU 2509844C2 RU 2011103717/13 A RU2011103717/13 A RU 2011103717/13A RU 2011103717 A RU2011103717 A RU 2011103717A RU 2509844 C2 RU2509844 C2 RU 2509844C2
Authority
RU
Russia
Prior art keywords
vacuum
source
per minute
revolutions per
sources
Prior art date
Application number
RU2011103717/13A
Other languages
English (en)
Other versions
RU2011103717A (ru
Inventor
Олай ХОФСЕТ
Эймунд ЭВСТУС
Original Assignee
Джетс Ас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джетс Ас filed Critical Джетс Ас
Publication of RU2011103717A publication Critical patent/RU2011103717A/ru
Application granted granted Critical
Publication of RU2509844C2 publication Critical patent/RU2509844C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/02Toilet fittings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • E03F1/006Pneumatic sewage disposal systems; accessories specially adapted therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/56Number of pump/machine units in operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sewage (AREA)
  • Sanitary Device For Flush Toilet (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Группа изобретений относится к способам управления одним или более источниками вакуума и тем самым вакуумом в вакуумной канализационной системе, содержащей за источником/источниками один или более трубчатых коллекторов или всасывающих трубопроводов, подключенных к источнику вакуума, и один или более унитазов, писсуаров, приемников сточных вод и других подобных устройств, подключенных к всасывающему трубопроводу через ответвляющиеся трубопроводы. Вакуум, т.е. уровень давления, и производительность системы поддерживают и контролируют, управляя скоростью вращения источника/источников вакуума, измеряемой количеством оборотов в минуту. Источник вакуума является жидкостно-кольцевым винтовым насосом, приводимым в действие электрическим двигателем. Количеством оборотов в минуту каждого двигателя в системе управляют посредством программируемого логического контроллера. Контроллер программируют на поддержание включенным одного, первого, источника вакуума до тех пор, пока он не достигнет заданного максимального количества оборотов в минуту, с последующим включением следующего, второго, источника вакуума, если вакуумная система требует повышенной производительности откачки. Программируемый логический контроллер также могут программировать на управление количеством оборотов в минуту для каждого источника таким образом, чтобы источники работали с одинаковой скоростью вращения в интервале от меньшего до большего количества оборотов в минуту в зависимости от требуемого вакуума, но с включением дополнительного источника вакуума, когда требуется повышенная производительность. Группа изобретений обеспечивает эффективный способ управления вакуумными насосами или другими источниками вакуума в вакуумной канализационной системе. 2 н. и 2 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу управления источником/источниками вакуума и, таким образом, вакуумом в вакуумной канализационной системе. Конкретно изобретение относится к управлению одним или более гидравлическими жидкостно-кольцевыми винтовыми насосами в указанной системе, содержащей за источником/источниками вакуума один или более трубчатых коллекторов или всасывающих трубопроводов, подключенных к источнику вакуума, и один или более унитазов, писсуаров, приемников сточных вод и других подобных устройств, подключенных к всасывающему трубопроводу/всасывающим трубопроводам.
Уровень техники
Вакуумные канализационные системы указанного типа широко известны: они занимают ведущие позиции в применении на борту кораблей, самолетов и поездов. Однако и в наземных условиях использование таких систем увеличивается, причем основой этого роста является, в первую очередь, уменьшение расхода воды и легкость манипулирования отработанной водой и ее обработки, а также легкая приспособляемость системы в плане установки требуемых для нее труб.
В 1987 г. заявитель настоящего изобретения предложил (см. патент ЕР 0287350) новую вакуумную канализационную систему, в которой вакуум создается посредством жидкостно-кольцевого винтового насоса, причем указанный насос применяется также и для удаления нечистот из подсоединенного к нему вакуумного бака.
Патент ЕР 0454794, также принадлежащий заявителю настоящего изобретения, дополнительно предлагает радикальную модернизацию вакуумной канализационной системы, в которой жидкостно-кольцевой насос оборудован размалывающим средством и подключен непосредственно к всасывающей трубе системы. Вакуум создается в трубе, отсасывающей нечистоты, которые удаляются прямо из системы посредством насоса.
Далее, патент США №4034421 представляет вакуумную канализационную систему, в которой предусмотрено наличие бака для сбора нечистот из ватерклозетов. К баку подключены вход и выход циркуляционного насоса, выполненного с возможностью создавать циркуляцию сред, содержащихся в баке, в замкнутом контуре с целью их перемешивания, взаимодействия и аэрации. Для установления вакуума, требуемого для канализационной системы, в замкнутый контур введен жидкоструйный насос.
Общим недостатком всех перечисленных систем, причем, в особенности, больших систем, содержащих большое количество унитазов и других подобных устройств и два или более источников вакуума, является работа указанных источников с перерывами (в режиме "включен/выключен"), зависящими от уровня вакуума в системе. Так, вакуумные насосы или какие-то другие источники вакуума начинают функционировать, когда давление достигает верхнего предельного уровня (обычно это сорокапроцентный вакуум, т.е. давление, пониженное на 40% относительно атмосферного давления), и отключаются при достижении нижнего предельного уровня давления (обычно это шестидесятипроцентный вакуум). Такой прерывистый режим работы источников вакуума неэффективен из-за увеличенного расхода энергии и вызывает повышенный износ источников, приводящий к увеличению объема техобслуживания системы. Кроме того, управление источниками вакуума в режиме "включен/выключен" при условии их работы с постоянной высокой скоростью (во время функционирования) дает свой вклад в повышенную выработку тепла, подводимого к источникам, увеличивая тем самым их температуру. При использовании жидкостно-кольцевых насосов это приводит к испарению жидкости в насосах и ускорению разрушения жидкостного кольца в насосе, что выражается, в свою очередь, в потере вакуума в насосах этого типа.
Раскрытие изобретения
В рамках настоящего изобретения предлагается способ управления вакуумными насосами или другими источниками вакуума в вакуумной канализационной системе, в котором перечисленные недостатки радикально уменьшены или вообще устранены и который более эффективен энергетически и отличается пониженным объемом техобслуживания.
Изобретение характеризуется признаками, включенными в независимый п.1 прилагаемой формулы. Предпочтительные признаки изобретения включены в зависимые пункты формулы.
Краткое описание чертежей
Далее изобретение будет описано более подробно с помощью примеров и со ссылками на прилагаемые чертежи, где
на фиг.1 представлено схематичное изображение примера вакуумной канализационной системы;
на фиг.2-4 показаны графики производительности, мощности и эффективности, полученные в результате проведенных испытаний изобретения.
Осуществление изобретения
Как уже упоминалось, на фиг.1 проиллюстрирован пример вакуумной канализационной системы, содержащей два источника 1 вакуума, имеющих форму жидкостно-кольцевых винтовых насосов со встроенными параллельно присоединенными дробилками, и общий всасывающий трубопровод (трубу коллектора) 2, одним концом подключенный (подключенную) к источникам вакуума, а другим - к нескольким унитазам, писсуарам и другим подобным устройствам (3, 4) через ответвляющиеся трубопроводы 6. Посредством источников 1 вакуума в трубе 2 и в трубопроводах 6 создается вакуум, и при промывании унитазов, писсуаров и других подобных устройств следующие друг за другом порции жидкости и воздуха сбрасываются вниз к источникам вакуума и выводятся через выход 5 источника/источников.
На фиг.1 показано, что система, как уже упоминалось, обычно управляется включением/выключением источников вакуума. Таким образом, когда система находится в состоянии не слишком активного применения, например среди ночи, т.е. когда унитазы вообще не используются или используется только малая их часть, работает только один источник вакуума и то только, когда это требуется (т.е. когда давление выходит на верхний заданный уровень (сорокапроцентный вакуум)). Как только источник вакуума снова выведет давление на нижний заданный уровень (шестидесятипроцентный вакуум), источник выключится.
В режиме активного применения, например утром, когда используется большое количество унитазов и других подобных устройств, оба источника вакуума будут работать одновременно, причем в зависимости от востребованного вакуума в течение дня или ночи только один источник будет работать с перерывами. В другом варианте один или оба источника будут работать непрерывно и/или с перерывами.
Согласно настоящему изобретению предлагается способ управления источниками вакуума (или режим управления для указанных источников) в вакуумной канализационной системе. Способ предусматривает непрерывную работу источников, но с контролем их скорости вращения, определяемым установленным вакуумметрическим давлением и требуемой производительностью при создании вакуума.
В вакуумной канализационной системе источники вакуума обычно получают энергию от электрических двигателей, а скорость вращения (количество оборотов в минуту) для каждого двигателя в системе предпочтительно регулируется с помощью программируемого логического контроллера (ПЛК) через преобразователь частоты на основе сигналов, полученных от датчика давления. Таким образом, согласно настоящему изобретению выбирают требуемый уровень вакуума (обычно 50%) и настраивают ПЛК на управление параметром "количество оборотов в минуту" двигателя/двигателей источника/источников вакуума на основе сигнала, полученного от датчика давления в вакуумной системе. В системах, имеющих два или более источников вакуума, работающих параллельно, для предпочтительного режима управления необходимо, исходя из величины требуемого вакуума в любой момент времени, запрограммировать ПЛК на работу одного (первого) источника до тех пор, пока указанный источник не достигнет заданного максимального количества оборотов в минуту, а затем запустить следующий (второй) источник, если вакуумная система требует увеличения производительности при создании вакуума. Далее, когда второй источник достигнет своего заданного максимального количества оборотов в минуту, но будет нужно дополнительно увеличить производительность, включают третий, четвертый и т.д. источники вакуума, которые далее работают при скорости вращения, требуемой для выбранного уровня вакуума в системе. Таким образом, выбранный уровень вакуума (50%) поддерживается все время.
Альтернативный режим управления для вакуумных систем, имеющих один или более источников вакуума, заключается в следующем. Программируют ПЛК на управление параметром "количество оборотов в минуту" для каждого источника таким образом, чтобы источники работали с одинаковой скоростью в интервале от минимального до максимального значения данного параметра исходя из требуемого уровня вакуума, с включением нового источника вакуума, когда потребуется повысить производительность, а работающий источник/работающие источники функционирует/ функционируют на максимально возможном требуемом уровне. Указанный вариант управления несколькими источниками и параметром "количество оборотов в минуту" для каждого источника исходя из заданного вакуума и востребованной производительности при создании вакуума может быть таким же эффективным, как и описанный выше предпочтительный вариант осуществления, в котором каждый (первый, второй и т.д.) источник работает в режиме полных оборотов, и такой режим поддерживается до включения следующего источника 1.
Как мера предосторожности, ПЛК предпочтительно запрограммировать на приведение в действие сигнала тревоги в ситуации, когда все насосы системы включены и работают на полную мощность (т.е. с максимальным количеством оборотов в минуту), а заданный уровень вакуума после истечения определенного периода времени не достигается. В этом случае необходимо провести проверку вакуумных систем в отношении возможных утечек или других дефектов, которые могли привести к низкому давлению.
Испытания
Широкомасштабные испытания, проведенные авторами изобретения, показали, что можно поддерживать достаточный вакуум (на уровне 40% или менее) с помощью жидкостно-кольцевых винтовых насосов, работающих с пониженной скоростью вращения.
Оборудование:
Источник вакуума Жидкостно-кольцевой винтовой насос JETS NT 220
Электрический двигатель Lönne 14G186-4AA11-Z 230/400 В 50 Гц - 22 кВт, 1465 об/мин 460 В 60 Гц - 23,3 кВт, 1765 об/мин
Инвертор (регулировка частоты) Mitsubishi FR-F740-00620 ЕС
ПЛК (управление и регистрация) Mitsubishi Melsec FXN-16MR
Датчик давления GE Druck PTX 1400
Условия испытаний:
Комнатная температура 23°C
Подаваемая вода:
Температура 11°C
Расход 20 л/мин
Давление воздуха 99300 Па
Высота подъема
(источник вакуума/насос) 2 м
Процедура испытаний
Используемый в испытании источник вакуума всасывающим (входным) отверстием и выпускным отверстием подключили посредством трубчатого контура к баку с водой (не показан). Вакуум получали, плавно регулируя дроссельный клапан (также не показан), расположенный на трубчатом контуре перед входом насоса. Для каждого испытания после каждого цикла работы источника вакуума бак в течение 10 мин проветривали перед включением источника, который затем работал 3 мин перед каждым испытанием.
Результаты испытаний представлены на фиг.2-4. Так, фиг.2 иллюстрирует зависимость производительности Q (м3/ч) откачки от уровня вакуума (в процентах) при работе жидкостно-кольцевого винтового насоса с различными скоростями вращения в интервале 30-60 Гц.
Фиг.3 иллюстрирует зависимость мощности P (кВт) от уровня вакуума для этого же насоса при тех же скоростях вращения.
Фиг.4 иллюстрирует зависимость эффективности Q/P (м3/час/кВт) от процентного уровня вакуума для этого же насоса и при тех же скоростях вращения.
Из графиков на фиг.2-4 можно заключить, что существует возможность поддерживать вакуум ниже 40%, одновременно поддерживая достаточную производительность при понижении скорости вращения в интервале 60-30 Гц.

Claims (4)

1. Способ управления одним или более источниками (1) вакуума и тем самым вакуумом в вакуумной канализационной системе, содержащей за источником (источниками) (1) один или более трубчатых коллекторов или всасывающих трубопроводов (2), подключенных к источнику вакуума, и один или более унитазов, писсуаров, приемников сточных вод и других подобных устройств (3, 4), подключенных к всасывающему трубопроводу через ответвляющиеся трубопроводы (6), при этом вакуум, т.е. уровень давления, и производительность системы поддерживают и контролируют, управляя скоростью вращения источника (источников) (1) вакуума, измеряемой количеством оборотов в минуту, на основе заданных требований к вакууму, а источник вакуума является жидкостно-кольцевым винтовым насосом, приводимым в действие электрическим двигателем, причем количеством оборотов в минуту каждого двигателя в системе управляют посредством программируемого логического контроллера (ПЛК), отличающийся тем, что ПЛК программируют на поддержание включенным одного, первого источника вакуума до тех пор, пока он не достигнет заданного максимального количества оборотов в минуту, с последующим включением следующего, второго, источника вакуума, если вакуумная система требует повышенной производительности откачки.
2. Способ по п.1, отличающийся тем, что количеством оборотов в минуту каждого двигателя в системе управляют через преобразователь частоты на основе сигналов от датчика давления.
3. Способ управления одним или более источниками (1) вакуума и тем самым вакуумом в вакуумной канализационной системе, содержащей за источником (источниками) (1) один или более трубчатых коллекторов или всасывающих трубопроводов (2), подключенных к источнику вакуума, и один или более унитазов, писсуаров, приемников сточных вод и других подобных устройств (3, 4), подключенных к всасывающему трубопроводу через ответвляющиеся трубопроводы (6), при этом вакуум, т.е. уровень давления, и производительность системы поддерживают и контролируют, управляя скоростью вращения источника (источников) (1) вакуума, измеряемой количеством оборотов в минуту, на основе заданных требований к вакууму, а источник вакуума является жидкостно-кольцевым винтовым насосом, приводимым в действие электрическим двигателем, причем количеством оборотов в минуту каждого двигателя в системе управляют посредством программируемого логического контроллера (ПЛК), отличающийся тем, что ПЛК программируют на управление количеством оборотов в минуту для каждого источника таким образом, чтобы источники работали с одинаковой скоростью вращения в интервале от меньшего до большего количества оборотов в минуту в зависимости от требуемого вакуума, но с включением дополнительного источника вакуума, когда требуется повышенная производительность, причем работающий источник (работающие источники) работает (работают) с максимальным требуемым количеством оборотов в минуту.
4. Способ по п.1, отличающийся тем, что количеством оборотов в минуту каждого двигателя в системе управляют через преобразователь частоты на основе сигналов от датчика давления.
RU2011103717/13A 2008-07-10 2009-07-08 Способ управления источником вакуума в вакуумной канализационной системе RU2509844C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20083096 2008-07-10
NO20083096 2008-07-10
PCT/NO2009/000252 WO2010005313A1 (en) 2008-07-10 2009-07-08 Method for controlling the vacuum generator^ in a vacuum sewage system

Publications (2)

Publication Number Publication Date
RU2011103717A RU2011103717A (ru) 2012-08-20
RU2509844C2 true RU2509844C2 (ru) 2014-03-20

Family

ID=41507256

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011103717/13A RU2509844C2 (ru) 2008-07-10 2009-07-08 Способ управления источником вакуума в вакуумной канализационной системе

Country Status (11)

Country Link
US (1) US9932114B2 (ru)
EP (1) EP2313565B8 (ru)
CN (1) CN102089481B (ru)
BR (1) BRPI0915533B1 (ru)
DK (1) DK2313565T3 (ru)
ES (1) ES2864549T3 (ru)
HR (1) HRP20210678T1 (ru)
LT (1) LT2313565T (ru)
PL (1) PL2313565T3 (ru)
RU (1) RU2509844C2 (ru)
WO (1) WO2010005313A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025888A1 (en) 2011-08-16 2013-02-21 Flow Control Llc. Toilet with ball valve mechanism and secondary aerobic chamber
JP2013231396A (ja) * 2012-04-27 2013-11-14 Anest Iwata Corp 圧縮気体供給ユニット
JP6200905B2 (ja) * 2013-02-08 2017-09-20 株式会社日立産機システム 流体圧縮システムまたはその制御装置
DK178041B1 (da) * 2014-06-25 2015-04-07 Hvidtved Larsen As J Mobil slamsuger samt fremgangsmåde
US10041241B2 (en) * 2015-03-30 2018-08-07 B/E Aerospace, Inc. Method and apparatus for installation of a toilet system on an aircraft
CN105000390B (zh) * 2015-05-25 2018-01-16 大连四达高技术发展有限公司 便携式轨道真空控制系统
BE1024411B1 (nl) * 2016-02-23 2018-02-12 Atlas Copco Airpower Naamloze Vennootschap Werkwijze voor het bedienen van een vacuümpompsysteem en vacuümpompsysteem dat een dergelijke werkwijze toepast.
DE102016109907A1 (de) * 2016-05-27 2017-11-30 Bilfinger Water Technologies Gmbh Verfahren zum Betrieb einer Vakuumpumpe sowie Vakuumpumpenanordnung
US20190085545A1 (en) * 2017-09-18 2019-03-21 Dometic Sweden Ab Touch Free Toilet
CN112576505A (zh) * 2020-12-14 2021-03-30 营口康辉石化有限公司 多泵组真空控制系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333045A1 (fr) * 1988-03-11 1989-09-20 Evac S.A.E.D. Système d'évacuation sous vide d'eaux usées
RU2072021C1 (ru) * 1989-03-03 1997-01-20 Хофсет Олав Вакуумная дренажная система
US5960736A (en) * 1997-04-17 1999-10-05 Cornell Research Foundation, Inc. Vacuum level control system using variable frequency drive
US6056510A (en) * 1996-11-30 2000-05-02 Aisin Seiki Kabushiki Kaisha Multistage vacuum pump unit
US20050016588A1 (en) * 2003-07-22 2005-01-27 Ebara Corporation Vacuum station and the method for operating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971691A (en) 1955-08-16 1961-02-14 Heraeus Gmbh W C Pumping system
DE3420144A1 (de) * 1984-05-30 1985-12-05 Loewe Pumpenfabrik GmbH, 2120 Lüneburg Regelungs- und steuerungssystem, insbes. fuer wassering-vakuumpumpen
US5742500A (en) * 1995-08-23 1998-04-21 Irvin; William A. Pump station control system and method
US5845599A (en) * 1997-02-10 1998-12-08 Smartenergy Services, Inc. Vacuum controller and method of controlling vacuum in a dairy milking systems
DE19737236A1 (de) 1997-08-27 1999-03-11 Scintilla Ag Einspannvorrichtung für Sägeblätter
US6579067B1 (en) * 2001-12-31 2003-06-17 Carrier Corporation Variable speed control of multiple compressors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333045A1 (fr) * 1988-03-11 1989-09-20 Evac S.A.E.D. Système d'évacuation sous vide d'eaux usées
RU2072021C1 (ru) * 1989-03-03 1997-01-20 Хофсет Олав Вакуумная дренажная система
US6056510A (en) * 1996-11-30 2000-05-02 Aisin Seiki Kabushiki Kaisha Multistage vacuum pump unit
US5960736A (en) * 1997-04-17 1999-10-05 Cornell Research Foundation, Inc. Vacuum level control system using variable frequency drive
US20050016588A1 (en) * 2003-07-22 2005-01-27 Ebara Corporation Vacuum station and the method for operating the same

Also Published As

Publication number Publication date
WO2010005313A1 (en) 2010-01-14
RU2011103717A (ru) 2012-08-20
PL2313565T3 (pl) 2021-09-27
CN102089481A (zh) 2011-06-08
EP2313565B1 (en) 2021-02-17
CN102089481B (zh) 2013-12-18
HRP20210678T1 (hr) 2021-05-28
LT2313565T (lt) 2021-05-25
EP2313565A1 (en) 2011-04-27
EP2313565A4 (en) 2015-03-25
BRPI0915533B1 (pt) 2019-02-26
US20110129355A1 (en) 2011-06-02
EP2313565B8 (en) 2021-06-02
ES2864549T3 (es) 2021-10-14
DK2313565T3 (da) 2021-05-10
BRPI0915533A2 (pt) 2018-02-06
US9932114B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
RU2509844C2 (ru) Способ управления источником вакуума в вакуумной канализационной системе
CN201932952U (zh) 一种可以间歇冲刷曝气的mbr装置
US7152618B2 (en) Vacuum station and the method for operating the same
CN211141686U (zh) 一种污水处理用沉淀装置
CN109368921B (zh) 一种绿色生态污水处理控制系统
CN208669564U (zh) 水泵节能控制系统
CN217025917U (zh) 一种多层液态发酵罐
KR101287748B1 (ko) 마이크로버블발생장치용 펌프
JP3209903U (ja) 厨芥スラリー移送装置
CN214833140U (zh) 一种变频pid供水控制系统
CN112746975B (zh) 一种防堵塞污泥回流泵
CN211813579U (zh) 一种反渗透水处理系统
CN210367206U (zh) 一种用于废水处理的曝气装置
CN211849901U (zh) 一种用于调蓄池的清洗系统
CN208121947U (zh) 一种防堵塞的预制泵站进口过滤装置
CN219217721U (zh) 一种穿孔曝气管自动排水的膜生物反应器
CN211339211U (zh) 一种医院污水处理装置
CN208441163U (zh) 一种用于sirox烟丝膨胀机清洗的给水装置
RU2797589C1 (ru) Вакуумная установка для сбора и перекачки судовых сточных вод
CN212532390U (zh) 中央空调冷却水电化学除垢杀菌装置智能控制系统
CN213112864U (zh) 一种煤矿矿井废水高效处理装置
CN214880937U (zh) 一种实现离岸和靠岸对污水排放的污水处理装置
CN212406970U (zh) 一体化多级耦合真空泵组
CN219809141U (zh) 一种节能型wqd污水泵
CN220745549U (zh) 一种缓解膜污染的mbr组件